Product-Level Trade Elasticities: Worth Weighting For?

Lionel Fontagné*, Houssein Guimbard** and Gianluca Orefice***

*PSE - University Paris 1, **CEPII, ***University Paris-Dauphine, PSL

Trade elasticity: key parameter in international trade models

- Key parameter to calculate the welfare impact of trade liberalization (or conversely cost of returning to autarky).
- Welfare gain from trade function of the trade elasticity to variable trade costs (Arkolakis, Costinot & Rodriguez-Clare 2012).
 - ▷ Trade elasticity estimates diverge (aggregation, empirical approach).
- Dispersion of elasticities across sectors matters for aggregate welfare changes (Ossa 2015; Giri, Yi & Yilmazkuday 2020).
 - \Rightarrow We estimate *product-level* elasticities based on *trade policy* (i.e. tariffs).

Welfare gains from trade: heterogeneous vs average elasticity

► We use the metric proposed by Arkolakis, Costinot & Rodriguez-Clare (2012), i.e. welfare gain from trade as the negative of move to autarky

$$\widehat{W}_{j} = 1 - \prod_{s}^{S} (\lambda_{jj}^{s})^{-\eta_{js}/\varepsilon_{s}}$$

- Elasticities computed at the TiVA sector level σ_s to calculate welfare gain with *heterogeneous* elasticity:
- $\triangleright \lambda_{jj}^{s}$ total expenditure on sector s devoted to home production in country j $\triangleright \eta_{js}$ consumption share of country j in sector s
- Weighted average trade elasticity across sector to infer the welfare gain from trade in the case of *homogeneous* elasticity.

Our contribution

- 1. Trade policy based + product level + large country coverage (including poor and developing countries).
- 2. Show bias in estimated gains from trade from considering *average* rather than *heterogeneous* trade elasticities.
- 3. Show that this bias varies systematically with development level of importing country.
- 4. Database publicly available & dedicated page:
 https://sites.google.com/view/product-level-trade-elasticity

Empirical Strategy

Estimate structural gravity for each of the 5,052 HS6 product categories k:

 $Import_{j,i,t} = \theta_{jt} + \theta_{it} + \beta_0 ln (1 + \tau_{j,i,t}) + \zeta Z_{j,i} + \epsilon_{j,i,t} \quad \forall k \in K$

► Where

- $ightarrow au_{ijt}$ is the applied bilateral tariff by country j on imports from i at time t.
- \triangleright Imports as FOB values \rightarrow tariff elasticity $\beta_0 = -\sigma \rightarrow \varepsilon = 1 \sigma$.

Bias in welfare-change evaluation: by countries' income level

The bias in welfare-change evaluation $\widehat{W}^{Hetero}/\widehat{W}^{Homo}$ (vertical axis) is larger for low-income countries.

Notes: The vertical axis refers to the ratio of the welfare change calculated using heterogeneous elasticities (\widehat{W}^{Hetero}) and a homogeneous (\widehat{W}^{Homog}) elasticity based on the weighted average of ε_k across sectors. The weights are the sectoral export shares.

- $\triangleright \theta_{it}$ and θ_{jt} respectively exporter-year and importer-year fixed effects.
- $\triangleright \mathbf{Z}_{j,i}$ controls for bilateral specific geographic related trade costs (log of distance, common colony, common border, common language).
- ▷ **Disclaimer**: We assume to live in a CES world with exporter specific pass-through.

Data

- ► BACI database on worldwide exports: bilateral flows, in current US Dollars, over the period 1996-2016 at the HS6 level.
- MAcMap HS6 database on applied bilateral tariffs for the years 2001, 2004, 2007, 2010, 2013 and 2016.
- Gravity control variables introduced in the estimations (such as distance and common colony) from CEPII gravity database
- Balanced panel: 189 exporters to 152 destinations, 5,052 HS6 categories, each year. Fill-in the relevant zero-trade.

Results: Empirical distribution of trade elasticities

Bias in welfare-change evaluation: heter. vs. homog. elasticities

The bias in welfare-change evaluation $\widehat{W}^{Hetero}/\widehat{W}^{Homo}$ (vertical axis) increases in the country's correlation between domestic-expenditure share λ_{ii}^{s} and trade elasticity ϵ_{s} (horizontal axis).

Dep var:	W He	tero/W	Homog
Developing country (dummy)	0.312		0.330
	(0.019)		(0.026)
$\operatorname{Corr}(\lambda_{ii}^{s}; \varepsilon_{k})$		0.476	-0.057
		(0.054)	(0.046)
$\operatorname{Corr}(\lambda_{ii}^{s}; \varepsilon_{k}) \times \operatorname{Developing} \operatorname{country} (\operatorname{dummy})$			0.232
			(0.093)
Observations	62	62	62
R-squared	0.820	0.446	0.829

Notes: The dependent variable is the ratio in the welfare changes calculated using income-group specific heterogeneous elasticities (\widehat{W}^{Hetero}) and a homogeneous elasticity (\widehat{W}^{Homog}). We use the World Bank classification of country income levels, and define poor and middle-income countries as "developing", while high-income countries are "developed". Robust standard errors appear in parentheses.

Conclusion

1. We provide and make publicly available estimates of trade elasticities at the

Note: This is the empirical distribution calculated for HS-6 products with $\varepsilon_k < 0$. *Source*: Authors' calculations.

- product level.
- 2. Shed light on the wide range of trade elasticities around the value that is generally used to calibrate empirical exercises.
- 3. Illustrate the impact of heterogeneous trade elasticities on the estimation of the welfare gains for countries at different levels of development.
- Using homogeneous trade elasticities produces a downward bias in the estimation of the welfare gains for developing countries; in particular for those with high import penetration in less-elastic sectors.

Dataset and last version of the paper available at: https://sites.google.com/view/product-level-trade-elasticity/home

https://sites.google.com/site/oreficegianluca/home

gianluca.orefice@cepii.fr