The Macroeconomic Impact of Oil Industry Uncertainty: New Evidence from Millions of Financial Analyst Forecasts

Xiaohan Ma ¹ Roberto Samaniego ²

¹Texas Tech University

²George Washington University

December 2020

Outline

- Introduction
- Measure and Data
- Empirical Analysis
- Robustness
- Discussion
- Conclusion

Introduction

Objective

In this paper, we

- Construct novel measures of oil industry uncertainty (OIU) based on forecasts of a large number of financial analysts
- Study the macroeconomic impact of OIU measures
- Explore possible sources of OIU

Feature

- Oil Uncertainty measure in the literature
 - Oil price uncertainty, as in Elder and Serletis (2010), Kellogg (2014), Maghyereh et al. (2016), Yin and Feng (2019), among others
 - 2 Unpredictability in oil variables, as in Jo (2014)

- Advantages of our measure
 - Uncertainty in the form of an increase in the difficulty of analysts arriving at accurate or agreed forecasts
 - 2 12-months forecast horizon, likely to be a more relevant horizon for investment decisions and real activity

Findings

- Baseline OIU lowers US output and price level, and the federal funds rate.
- In the oil market, it lowers US oil production and oil price.
- The stock market responds slightly positively to OIU.
- OIU differs from aggregate uncertainty and other oil shocks identified in the literature, but correlated with technical change specific to the oil industry.

Measure and Data

Baseline Measure

- Use forecasts of earnings-per-share ratios (EPS) of individual companies in oil&gas sector.
- On each day, compute the average forecast error of all analysts for each firm.

$$FE_{i,d} = \frac{1}{N_{i,d}} \sum_{j=1}^{N_{i,d}} \left\{ F[S_{i,d^*}|I_{j,d}] - S_{i,d^*} \right\}$$

where i denotes firm, j denotes analyst, d denotes day

• Then for each month, compute the median of absolute forecast errors across all firms

$$extit{OIU}_t = \mathsf{median}igg\{ | extit{FE}_{i,d}| : orall d \in [t,t+1) \land extit{N}_{i,d} > 0, i \in \Upsilon igg\}$$

where t denotes month, Υ is the set of firms in the oil&gas producing sector.

8/37

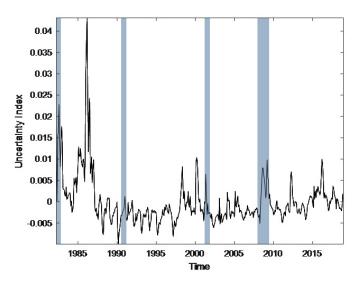
Other Measures

Relative OIU

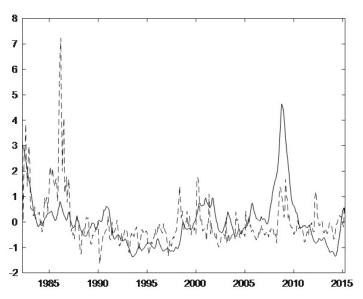
$$OIU_t = rac{\mathsf{median}igg\{ | \mathit{FE}_{i,d}| : orall d \in [t,t+1) \land \mathit{N}_{i,d} > 0, i \in \Upsilon igg\}}{\mathsf{median}igg\{ | \mathit{FE}_{i,d}| : orall d \in [t,t+1) \land \mathit{N}_{i,d} > 0, i
otin \Upsilon igg\}$$

 OIU based on dispersion: For each firm i within each month t, we compute

$$D_{it} = \mathsf{Disp} iggl\{ F\left[S_{i,d^*} | I_{j,d}
ight] : orall d \in [t,t+1) \land N_{i,d} > 0 iggr\}$$


Then,

$$\mathit{OIU}_t = \mathsf{median} igg\{ D_{it} : i \in \Upsilon igg\}$$


Data

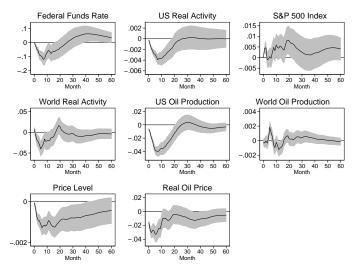
- Daily EPS forecasts are drawn from the Institutional Brokers'
 Estimate System dataset (I/B/E/S) to construct monthly uncertainty measure
- US firms
- 03/1982-12/2018
- 4.7 million forecasts by roughly 1,500 brokers
- 86% single forecasts per firm per day
- Deflate by security prices from CRSP dataset.

Historical Uncertainty Series

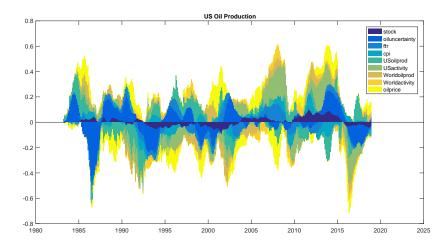
Compared to Aggregate Uncertainty

Macroeconomic Impact

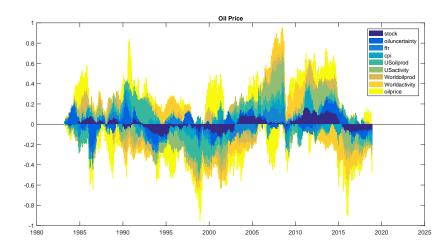
Baseline VAR


Monthly data of

log(S&P 500 Index)
oilindustryuncertainty
federal funds rate
log(CPI)
log(US oil production)
log(US real activity)
log(World oil production)
Worldrealactivity
log(real oil price)

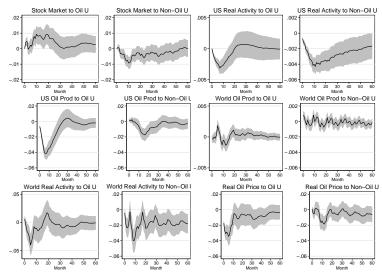

• Similar with Bloom (2009) and Kilian (2009)

Macroeconomic Implications of OIU


Responses to Innovation in oil industry uncertainty, Oil Uncertainty Shock

Historical Decomposition: US Oil Production

Historical Decomposition: Oil Price


Robustness

Variants of VAR Specification & OIU Measure

- Variants of VAR specification
 - Changing the ordering of uncertainty
 - ② Using 13 lags and 24 lags
 - 4 HP-filtering or log-differencing all variables
 - Excluding post-2007 observations
- Variants of uncertainty measure Selected Robustness
 - Measures based on interquartile and standard deviation
 - Measures with various forecast horizons
- Variants of identification
 - VAR with oil inventories
 - VAR with the world production index constructed by Baumeister and Hamilton (2019)

Oil and Non-Oil Uncertainty I

Impulse Responses to Oil and Non-Oil Uncertainty Shocks

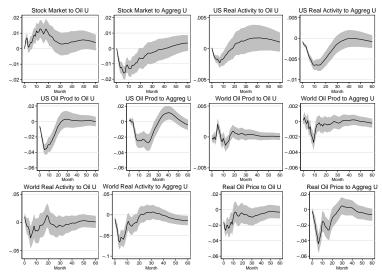

Oil and Non-Oil Uncertainty II

Table 1: Forecast Variance Due to Oil and Non-Oil Uncertainty (in percent)

Horizon	US oil prod		World oil prod		US activity		World activity		Oil price	
	Oil	Non-Oil	Oil	Non-Oil	Oil	Non-Oil	Oil	Non-Oil	Oil	Non-Oil
h = 3	10.98	0.10	0.09	0.45	3.91	5.68	0.44	1.34	7.89	0.20
h = 12	31.96	0.44	1.77	0.57	8.44	14.56	2.56	3.91	9.75	1.33
h = 36	20.25	3.30	2.70	0.97	3.21	14.36	2.21	4.95	7.45	1.72
h = 60	17.86	3.02	2.48	1.14	2.32	13.24	2.01	6.33	6.51	1.92

Oil and Aggregate Uncertainty I

Impulse Responses to Oil and Aggregate Uncertainty Shocks

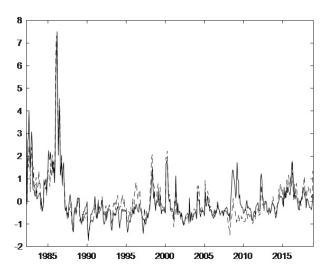
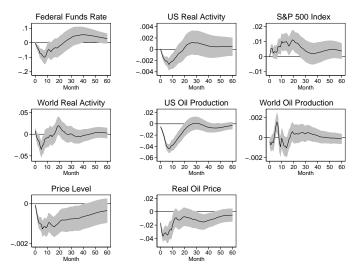

Oil and Aggregate Uncertainty II

Table 2: Forecast Variance Due to Oil and Aggregate Uncertainty (in percent)

Horizon	US oil prod		World oil prod		US activity		World activity		Oil price	
	Oil	Aggr	Oil	Aggr	Oil	Aggr	Oil	Aggr	Oil	Aggr
h = 3	10.44	0.14	0.08	0.12	3.11	9.16	0.22	2.80	6.35	1.10
h = 12	26.59	8.89	1.87	4.63	5.11	40.87	1.35	12.87	6.34	11.94
h = 36	18.22	16.00	2.69	3.47	2.32	25.94	1.36	10.79	5.48	12.17
h = 60	15.48	15.17	2.44	3.08	3.43	19.33	1.21	9.99	4.77	10.18


Relative Oil Uncertainty I

Historical Time Series of Relative Oil Uncertainty

Relative Oil Uncertainty II

Impulse Responses to Relative Oil Uncertainty Shocks

Discussion

What does OIU pick up? I

- We include oil market variables and aggregate uncertainty in the VAR, so that oil uncertainty shocks are orthogonal to oil shocks and aggregate uncertainty shocks.
- We calculate the contemporaneous correlation between oil uncertainty shocks and oil and aggregate uncertainty shocks in the literature.
- We also calculate whether those shocks granger cause oil uncertainty shocks

Contemporaneous correlation

Table 3: Correlations of Oil Uncertainty Shocks with Other Shocks

Oil Shock and Uncertainty Shock	Oil Uncertainty Shock				
Oil supply	0.031(0.030)				
Economic activity	-0.138(0.080)				
Oil specific demand	-0.033(0.021)				
Oil speculative demand	-0.165 (0.160)				
Aggregate uncertainty	-0.008(0.043)				

Lagged correlation

Table 4: p-Values of the Granger Causality Test

Specification	Oil Unc	Non-Oil Unc
Oil supply	0.34	0.06
Economic activity	0.16	0.53
oil specific demand	0.16	0.75
oil speculative demand	0.27	0.44
aggregate uncertainty	0.06	0.00

What does OIU pick up? II

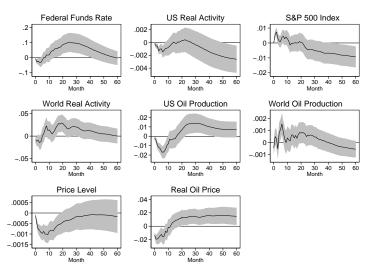
- Negative aggregate demand shock
- Positive oil supply shock: technical change in the oil industry
- We measure technical progress using the stock of patents related to the oil industry:

$$P_{t+1} = a_t + P_t(1 - \delta)$$

 The stock of oil patents and OIU have a significant correlation of 0.2, and the highest correlation is 0.24 between the oil technology series and OIU 7 months later

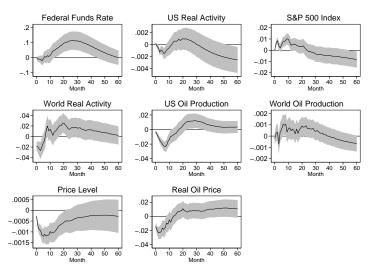
Table 5: p-Values of the Granger Causality Test

Specification	Oil patents	Non-Oil patents
p-value	0.07	0.67

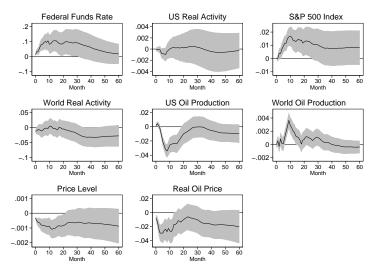

Conclusion

- We construct measures of oil industry uncertainty measure using micro level financial forecasts based on I/B/E/S survey data.
- OIU has unique implications for oil market and aggregate dynamics. The results are robust to various VAR specification/OIU measures.
- Oil uncertainty shocks could capture aggregate uncertainty and technology advancement in oil& gas sector.
- Future work: structural quantitative model where uncertainty originates in the oil industry.

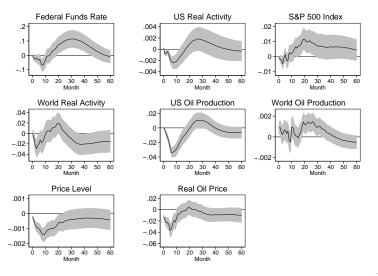
THANK YOU!


Alternative OIU Measures I

Responses to Uncertainty Measured as Interquartile

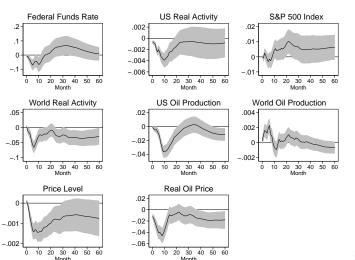

Alternative OIU Measures II

Responses to Uncertainty Measured as Standard Deviation


Alternative OIU Measures III

Responses to Uncertainty Measured based on 1Q Forecast Horizon

Alternative OIU Measures IV


Responses to Uncertainty Measured based on 2Q Forecast Horizon

Alternative OIU Measures V

Return
 Re

Responses to Uncertainty Measured based on 3Q Forecast Horizon

