Can Estimated Risk and Time Preferences Explain Real-life Financial Choices?

Jorgo T.G. Goossens*, Marike Knoef** and Eduard H.M. Ponds*

*Tilburg University, **Leiden University

AEA 2021

TILBURG & LEIDEN UNIVERSITY

PREFERENCES AND CHOICES

What we know:

 Small lab samples, short horizons, low stakes, general context (e.g. Andreoni and Sprenger, 2012; Andersen et al., 2014)
 Correlations between preferences and personal traits (e.g. Bütler and Teppa, 2007; Chabris et al., 2008; Tanaka et al., 2010; Dohmen et al., 2011; Falk et al., 2018)

What we don't know:

- (1) Risk and time preferences in a large-scale non-student sample with delays of multiple years in a high-stakes real-life context
- (2) Relation between structurally estimated preferences and **actual** financial decision making

What we do

- We estimate risk and time preferences simultaneously with Convex Time Budgets (Andreoni and Sprenger, 2012)
 - How do our preference estimates compare to the literature? Realistic context, large stakes of €10.000 and horizons up to 10 years for 1110 pension fund participants
- We use a unique micro dataset from a Dutch pension fund to relate estimated preferences to actual financial decision making using a life-cycle model
 - (2) Can we explain actual chosen payment schemes (flat v.s. flexible) with the estimated preferences?
 - (3) What are the welfare implications of freedom of choice (flexibility in payment schemes)?

What we find

- (1) **Preferences:** present-bias factor $\beta = 0.88$, discount factor $\delta = 0.96$, CRRA curvature $\alpha = 0.97$ \Rightarrow Actives more present biased than retirees, 23% future biased
- (2) **Explaining choices**: estimated preferences explain actual chosen payment schemes (flat v.s. flexible) up to 83% of our sample
- (3) Welfare analysis: freedom of choice (i.e. flexibility) creates annual *potential* welfare gains up to 4.8%, but *realized* welfare gains are lower or even negative
 ⇒ Gains cluster at higher incomes, and at lower life expectancies

EXPERIMENTAL DESIGN: CONVEX TIME BUDGETS

Amount to divide: €10.000 Early payment date: 2019 Late payment date: 2029	-				
Now Early payment date Late payment date Late payment date 2018 2019					
Payment vale: Pay attention: The probability of payment is within these five scenarios always the same but it is increased to 100%. The interest rate increases per scenario. Fill in for each of the five scenarios how you want to divide €10.000,-					
	Early payment date The amount you receive at the early payment date:	Late payment date Amount you receive in 2029 with 100% probability:			
Scenario 16: suppose that per paid eur in 2029 you receive 60,00 additionally Scenario 17: suppose that per paid eur in 2029 you receive 60,05 additionally Scenario 18: suppose that per paid eur in 2029 you receive 60,12 additionally Scenario 19: suppose that per paid eur in 2029 you receive 60,12 additionally	10000 9 <td>€0 x 1.00 = €0 €500 x 1.05 = €525 €2000 x 1.17 = €2340 €8000 x 1.36 = €10880</td>	€0 x 1.00 = €0 €500 x 1.05 = €525 €2000 x 1.17 = €2340 €8000 x 1.36 = €10880			
Scenario 20: suppose that per paid euro in 2029 you receive 00,59 additionally		€10000 × 1.59 = €15900			

TILBURG & LEIDEN UNIVERSITY

Experimental design: Present bias

To identify present bias, we implement a scenario from the INTRA (International Test of Risk Attitudes) study, University of Zurich — adapted version of Frederick (2005)

Enter an amount such that option B is as attractive as option A: A. Receive \in 800 now,

- B. Receive $\in x$ next year.
- In total, we use 21 decisions to estimate preferences simultaneously at individual level. Assumptions:

 Quasi-hyperbolic discounting (Phelps and Pollak, 1968; Laibson, 1997)

• Power utility function: $U(x; \alpha) = \frac{x^{\alpha}}{\alpha}$

TWO-LIMIT TOBIT (MLE): PARAMETERS

			Standard	25th	75th
	Median	Mean	Deviation	Percentile	Percentile
All					
Present bias \hat{eta}	0.878	0.868	0.237	0.719	0.989
Discount factor $\hat{\delta}$	0.962	0.967	0.172	0.921	1.016
CRRA curvature \hat{lpha}	0.966	0.938	0.132	0.910	0.985
Actives					
Present bias \hat{eta}	0.855	0.850	0.235	0.696	0.981
Discount factor $\hat{\delta}$	0.963	0.970	0.168	0.922	1.017
CRRA curvature \hat{lpha}	0.966	0.943	0.127	0.912	0.985
Retirees					
Present bias \hat{eta}	0.911	0.899	0.237	0.776	1.005
Discount factor $\hat{\delta}$	0.962	0.963	0.180	0.917	1.014
CRRA curvature $\hat{\alpha}$	0.966	0.930	0.140	0.906	0.984

RETIREMENT CHOICES & WELFARE

Real-life retirement choice: flat or flexible annuity payments

How large is the difference between the actual real-life (act) and the expected utility (exp) choice?

• Prediction error ε

▶ Welfare analysis: set $\hat{\beta}_i = 1$ (Ericson and Laibson, 2019) ⇒ Potential and realized welfare effects

CAN WE EXPLAIN RETIREMENT CHOICES?

Successful explanation:

	Prediction error ε interval (%)						
	0	[-1, 0)	[-2, -1)	[-3, -2)	[-4, -3)	[-5, -4)	$(-\infty, -5)$
Cumulative fraction	42.72%	55.56%	67.16%	72.59%	79.26%	83.21%	100.00%

TILBURG & LEIDEN UNIVERSITY

Welfare effects (aggregate level)

Potential welfare gains possible, but only partially realized

	Sev	eral sam	oles based	on predie	ction erro	or ε interv	al (%)
	0	[-1, 0]	[-2, 0]	[-3, 0]	[-4, 0]	[-5, 0]	$(-\infty, 0]$
		Panel A: Potential welfare					
Mean	4.79	3.73	2.99	2.90	2.91	3.00	3.87
Median	2.53	1.98	1.75	1.76	1.85	2.01	2.52
Std. Dev.	6.01	4.70	3.57	3.30	3.12	3.13	4.01
5% perc.	0.31	0.27	1.00	1.44	2.24	2.68	7.61
95% perc.	16.62	12.89	9.21	8.07	6.99	6.59	5.43
	Panel B: Realized welfare						
Mean	1.70	1.25	0.98	0.86	0.73	0.62	-0.48
Median	0.89	0.64	0.47	0.42	0.35	0.24	-0.14
Std. Dev.	2.17	1.76	1.52	1.45	1.40	1.40	3.19
5% perc.	0.07	-0.16	-0.29	-0.35	-0.59	-0.76	-4.83
95% perc.	5.96	4.67	3.90	3.61	3.30	3.14	2.60

Median annual potential welfare gain €6,184, realized €1,691 only

TILBURG & LEIDEN UNIVERSITY

CONCLUSIONS

- We estimate preferences simultaneously in a non-student sample with long horizons in a realistic context
 - (1) Present-bias factor $\beta=$ 0.88, annual discount factor $\delta=$ 0.96, utility curvature $\alpha=$ 0.97
 - \Rightarrow Comparable with previous literature
 - \Rightarrow Actives more present biased than retirees
- ▶ We relate estimated preferences to actual financial choices
 - (2) Explain up to 83% of choices in our sample (with error $\varepsilon = 5\%$)
 - (3) Freedom of choice (i.e. flexibility) creates potential welfare gains, which are only partially realized
 ⇒ Gains cluster at higher incomes, and at lower life expectancies

References I

Andersen, S., G.W. Harrison, M.I. Lau, and E.E. Rutström (2014).
"Discounting behavior: A reconsideration". In: European Economic
<i>Review</i> 71, pp. 15–33.
Andreoni, J. and C. Sprenger (2012). "Estimating Time Preferences
from Convex Budgets". In: American Economic Review 102.7,
рр. 3333—3356.
Bütler, M. and F. Teppa (2007). "The choice between an annuity
and a lump sum: Results from Swiss pension funds". In: Journal
of Public Economics 91.10, pp. 1944–1966.
Chabris, C., D. Laibson, C. Morris, J. Schuldt, and D. Taubinsky
(2008). "Individual laboratory-measured discount rates predict
field behavior". In: Journal of Risk and Uncertainty 37,
pp. 237–269.

References II

Dohmen, T., A. Falk, D. Huffman, U. Sunde, J. Schupp, and G. Wagner (2011). "INDIVIDUAL RISK ATTITUDES: MEASUREMENT, DETERMINANTS, AND BEHAVIORAL CONSEQUENCES". In: Journal of the European Economic Association 9.3, pp. 522–550.

- Ericson, K. and D. Laibson (2019). "Intertemporal choice". In: Bernheim D, Laibson D, DellaVigna S, Handbook of Behavioral Economics - Foundations and Applications 2. Elsevier.
- Falk, A., A. Becker, T. Dohmen, B. Enke, D. Huffman, and U. Sunde (2018). "Global Evidence on Economic Preferences". In: *Quarterly Journal of Economics* 133.4, pp. 1645–1692.
- Frederick, S. (2005). "Cognitive Reflection and Decision Making". In: Journal of Economic Perspectives 19.4, pp. 25–42.
- Laibson, D. (1997). "Golden Eggs and Hyperbolic Discounting". In: *Quarterly Journal of Economics* 112.2, pp. 443–477.

References III

Phelps, E. and R. Pollak (1968). "On Second-Best National Saving and Game-Equilibrium Growth". In: *The Review of Economic Studies* 35.2, pp. 185–199.
 Tanaka, T., C. Camerer, and Q. Nguyen (2010). "Risk and Time Preferences: Linking Experimental and Household Survey Data from Vietnam". In: *American Economic Review* 100.1, pp. 557–571.