Differential impact of new public housing announcement on the property prices in more- and less-expensive neighbourhoods

Syed Hasan[†], Iqbal Syed[†] and Anastasia Klimova[‡]

[†]School of Economics and Finance, Massey University [‡]Economics Discipline Group, University of Technology Sydney

American Economic Association (AEA)/ASSA 2021 Annual Meeting

January 3-5, 2021

(日) (월) (분) (분) (분)

Contribution

- We investigated the announcement effect of public housing on property prices using a novel hedonic quality adjusted DiD method
- We found that the announcement of new public housing had a differential effect on neighbouring property prices
 - A negative impact in more expensive suburbs
 - No impact in less expensive suburbs

Motivation

- Public housing has been a policy in many countries for decades, providing subsidised shelter to low-income households
- The cost-benefit analysis for public housing should include external effects on the community (Prentice & Scutella 2018)
- The general perception of public housing is that the overall external effect is negative but heterogeneous (Nguyen 2005)
- Local residents' attitude towards public housing is reflected in changes in preferences to live in that neighbourhood (Schwartz et al. 2006)
- Public housing is a place-based policy, and policy formulation requires examining the effect by location (Diamond and McQuade 2019)[†]

A new public housing announcement

- The announcement occurred on 15 March 2017, outlining the construction of new public housing in ACT, Australia
- Single announcement covering all 5 locations
- Public housing is commissioned, and will be administered and managed by the same government authority
- The announcement was unanticipated as evidenced from the subsequent reaction to the announcement of the local residents

A new public housing announcement (cont.)

- Locals in some of the host neighbourhoods fiercely criticized the locations of the new public housing complexes (Burgess 2017)[†]
- Local residents complained that local amenities and public transport were not sufficient to support the new public housing tenants
- The Chief Minister of the ACT government dismissed the residents' concerns as thinly veiled NIMBY-ism (Burgess, 2017)
- By the end of 2018 (where our data ends), the projects were still on foot although construction work had not yet begun

External effects of public housing

- Positive
 - New building improves the facade of a location (Santiago et al. 2001; Schwartz et al. 2006)
 - Economic activity increases in the neighbourhoods (Diamond and McQuade 2019)
- Negative
 - Overcrowding and increases in crime rates (Gibbons 2004; Aliprantis and Hartley 2015)
 - Crowding-out effect on private rental market (Sinai and Waldfogel 2005; Eriksen and Rosenthal 2010)[†]

Literature

Impact of public housing on nearby property prices

- Results are mixed
 - Positive impact Nourse (1963) and Rabiega et al. (1984)
 - Negative impact Goetz et al. (1996) and Lee et al. (1999)
 - Negligible impact Lyons and Loveridge (1993), Briggs et al.
 (1999) and Ellen et al. (2007)
- Variety of factors impacting the results
 - Methodology and data used in studies (Schwartz et al. 2006)
 - Type of public housing (Aliprantis and Hartley 2015)
 - Level of compatibility between the public housing and the host neighbourhood (Nguyen 2005)[†]

Differential impact of public housing on nearby property prices

- Baum-Snow and Marion (2009) reported positive impact on nearby property prices if LIHTC housing is located in declining or stable neighbourhoods, but no such effect in gentrifying neighbourhoods[‡]
- Goujard (2011) found newly constructed public housing in low income suburbs has a positive impact on nearby property prices in Paris[†]
- Diamond and McQuade (2019) found positive impact of LIHTC housing in low income neighbourhoods in the US and vice-versa[§]

Where does our study fit?

- We investigate how the impact of public housing on surrounding property prices *differs* wrt the type of host neighbourhood
 - The type refers to whether the host neighbourhood is more expensive or less expensive than the rest of the ACT
- Our paper distinguishes itself from the few previous studies by
 - Examining the impact of the announcement that public housing is to be constructed (rather than the impact of public housing)
 - Devising a new method in a quasi-experimental framework
 - Identifying the heterogeneity of the impact with a unique set-up
 - Examining the impact of public housing in an new region

DiD models

• DiD Model:

 $Y_{ist} = \delta_0 + \delta_1 Treatment_s + \delta_2 After_t + \delta_3 After_t imes Treatment_s + \varepsilon_{ist}$

- Treatment group: properties that are located in the suburbs where the public housing will be constructed
- Control group: properties that are located in ACT suburbs where the public housing will not be constructed
- *After* indicates whether a property was sold before or after (both within one year range) the announcement
- Identifying assumption: parallel trend

DiD models: Approach 1

- $Y_{ist} = \delta_0 + \delta_1 Treatment_s + \delta_2 After_t + \delta_3 After_t \times Treatment_s + \beta Z_{ist} + \epsilon_{ist}$
- Pros
- Simple and used in similar and other contexts (Schwartz et al. 2006; Baum-Snow and Marion 2009; Goujard 2011)
- Cons
- Restricts the implicit values of the hedonic characteristics to remaining fixed for the whole sample[†]
- Results in biased estimates of the DiD coefficients

DiD models: Approach 2

- Involves two steps of estimations
- Step 1 (quality adjustment): Hedonic regressions are estimated separately for treatment and control groups
 - Hedonic model: $Y_{ist} = Z_{ist}\theta + \epsilon_{ist}$
 - Identifying assumption: conditional independence[†]
- Step 2 (identification): DiD regressions are run using the estimated residuals obtained from the first step as the dependent variable:

 $\widehat{\varepsilon}_{ist} = \delta_0 + \delta_1 \operatorname{Treatment}_s + \delta_2 \operatorname{After}_t + \delta_3 \operatorname{After}_t \times \operatorname{Treatment}_s + \upsilon_{ist}$

DiD models: Approach 2 (cont.)

- Pros
- Allows the implicit values of the hedonic characteristics to vary between treatment and control groups[†]
- Reduces the variance of the estimated residuals and improves the precision of the estimates
- Cons
- Public housing impacts the implicit values of the hedonic characteristics which impacts the post-announcement prices[‡]
- Understates the impact of public housing on property prices

DiD models: Approach 3

- Run separate hedonic regressions for the following four samples
 - Pre-announcement control group properties
 - Post-announcement control group properties
 - Pre-announcement treatment group properties
 - Post-announcement treatment group properties
- Predict prices for each group using the post-announcement period characteristics but with the hedonic coefficients of the sample period
- Run DiD regression with those predicted prices
- Similarly for the pre-announcement period

Data

• APM provided data of individual property sales in the ACT

Data

- Cover the period between 15 March 2016 14 March 2018 (the announcement took place on 15 March 2017)
- Contain 9,958 houses from 109 suburbs
- Public housing will be constructed in 5 of these suburb but 2 other suburbs share borders with public housing complexes
- Each observation includes information on a number of physical attributes of properties[†]
- Each observation includes property address and transaction date

Data

Host suburbs, where the public housing will be located (\star)

(a) Holder

(d) Chapman & Rivett

Syed Hasan (Massey University)

(e) Monash & Oxley

(b) Mawson

(c) Wright

5 / 30

Location of ACT suburbs analysed in this study

Data

Impact of public housing announcement

< 🗇 🕨

Data

Prices of control and treatment group properties

Property location		Median p	Median prices (NZD\$ '000) §		Quality-a	-adjusted price differences [†]	
		Pre	Post	All	$\%$ of $Base^\ddagger$	Ranking	Grouping
Control suburbs	Mean Median N	598 576 [4,646]	633 620 [4,751]	616 600 [9,397]	-	-	-
Treatment suburbs	Mean Median N	640 628 [286]	650 630 [275]	645 630 [561]	-	-	-
Wright	Mean Median N	731 787 [33]	716 780 [29]	724 782 [62]	19.32*** (4.61)	1	more expensive
Chapman	Mean Median N	738 710 [44]	757 800 [31]	745 749 [75]	18.85*** (2.62)	2	more expensive
Mawson	Mean Median N	744 735 [39]	691 681 [29]	722 713 [68]	16.19 ^{***} (1.96)	3	more expensive
Holder	Mean Median N	604 638 [30]	618 598 [50]	613 630 [80]	0.55 (3.02)	4	close
Rivett	Mean Median N	567 553 [48]	603 600 [64]	588 571 [112]	-3.89** (1.96)	5	less expensive
Oxley	Mean Median N	632 624 [16]	654 683 [14]	642 645 [30]	-5.88 ^{**} (2.72)	6	less expensive
Monash	Mean Median N	552 543 [76]	616 608 [58]	580 569 [134]	-12.66*** (2.77)	7	less expensive
All suburbs	Median N	580 [4,932]	622 [5,026]	600 [9,958]			er ker e
Syed Hasan (Massey Univ	ersity)	Impact	of public hc	ousing anno	uncement	Jan	uary 3-5, 2021

18 / 30

Data

Attributes of properties

	Pre-announcement			Post-	announceme	ent
Variable	Treatment (1)	Control (2)	<i>p</i> -value (3)	Treatment (4)	Control (5)	<i>p</i> -value (6)
Lot size	1,244 (2,628)	1,241 (4,297)	0.99	1,706 (4,409)	1,133 (3,225)	0.01
Number of bedrooms	[285] 3.522 (0.599)	[4,592] 3.396 (0.616)	0.00	[274] 3.445 (0.625)	[4,718] 3.397 (0.617)	0.27
Number of bathrooms	[224] 2.084 (0.706)	3,823 1.941	0.00	[211] 2.051 (0.762)	3,619 2.015	0.45
	[286] 2.213	[4,646] 2.079	0.00	[275] 2.193	[4,751] 2.167	0.56
Number of parking	[286] 0.133	(0.726) [4,646] 0.145	0.56	(0.722) [275] 0.131	(0.715) [4,751] 0.122	0.66
Have study	(0.340) [286] 0.108	(0.352) [4,646]	0.30	(0.338) [275] 0.124	(0.327) [4,751] 0.068	0.00
Have separatedining	(0.311) [286]	(0.286) [4,646]	0.50	(0.330) [275]	(0.251) [4,751]	0.00
Have heating	0.472 (0.500) [286]	0.471 (0.499) [4.646]	0.96	0.455 (0.499) [275]	0.394 (0.489) [4.751]	0.05
Have airconditioning	0.283 (0.451)	0.307 (0.461)	0.41	0.295 (0.457)	0.286 (0.452)	0.76
Have ensuite	0.402 (0.491)	[4,646] 0.412 (0.492)	0.73	0.385 (0.488)	[4,751] 0.320 (0.466)	0.02
Have garage	0.220 (0.415) [286]	0.233 (0.423) [4,646]	0.62	0.182 (0.386) [275]	(0.401) (4,751]	0.43

Syed Hasan (Massey University)

January 3-5 2021

.9 / 30

Cross table of the log price of properties

	Treatment	Control	Difference
	(1)	(2)	(3)
a. More-expensive sul	burbs		
Post-announcement	13.456	13.323	0.133***
	(0.029)	(0.004)	(0.029)
	[89]	[4,751]	[4,840]
Pre-announcement	13.487	13.262	0.225***
	(0.022)	(0.004)	(0.027)
	[116]	[4,646]	[4,762]
Post-Pre	-0.031	0.061***	-0.092**
	(0.035)	(0.006)	(0.040)
	[205]	[9,397]	[9,602]
b. Less-expensive sub	urbs		
Post-announcement	13.313	13.323	-0.010
	(0.014)	(0.004)	(0.020)
	[186]	[4.751]	[4.937]
Pre-announcement	13.237	13.262	-0.025
	(0.017)	(0.004)	(0.022)
	[170]	[4.646]	[4.816]
Post-Pre	0.076***	0.061***	0.015
	(0.022)	(0.006)	(0.030)
	[356]	[9,397]	[9,753]

Syed Hasan (Massey University)

イロト イヨト イヨト イヨト

Approach 1: Est. DiD models with quality adjustment

	More expensive suburbs		Less expension	sive suburbs	All suburbs	
	(1)	(2)	(3)	(4)	(5)	(6)
Treatment	0.180***		-0.070*		0.032	
	(0.019)		(0.036)		(0.059)	
Post	0.065***	0.071***	0.065***	0.071***	0.065***	0.071***
	(0.005)	(0.004)	(0.005)	(0.004)	(0.005)	(0.004)
Treatment \times post	-0.057***	-0.063***	0.026	0.009	-0.022	-0.018
-	(0.010)	(0.013)	(0.021)	(0.019)	(0.029)	(0.020)
Missing lotsize	-Ò.054*´*	-0.092***	-0.056* ^{**}	-0.094***	-Ò.057*´*	-0.093***
0	(0.027)	(0.031)	(0.027)	(0.031)	(0.026)	(0.031)
Lotsize between 20	0.096***	0.089****	0.096***	0.089***	0.090***	0.089***
& 40 percentile	(0.024)	(0.013)	(0.024)	(0.012)	(0.024)	(0.012)
Lotsize between 40	0.104***	0.123**'*	0.105***	0.124***	0.103****	0.124***
& 60 percentile	(0.023)	(0.014)	(0.024)	(0.014)	(0.024)	(0.014)
Lotsize between 60	-Ò.068*´*	-0.095* ^{**}	-Ò.074*´*	-0.101***	-Ò.068*´*	-0.096***
& 80 percentile	(0.029)	(0.025)	(0.029)	(0.024)	(0.029)	(0.024)
Lotsize above 80	-0.100***	-0.139* ^{**}	-0.091* ^{**}	-0.132* ^{**}	-0.098* ^{**}	-0.140* ^{**}
percentile	(0.032)	(0.018)	(0.032)	(0.017)	(0.031)	(0.018)
Missing bedroom	-0.189* ^{**}	-0.195* ^{**}	-0.195* ^{**}	-0.202* ^{**}	-0.193* ^{**}	-0.197* ^{**}
0	(0.018)	(0.015)	(0.018)	(0.014)	(0.018)	(0.014)
1 bedroom	-0.325***	-0.462* ^{**}	-0.309* ^{**}	-0.457* ^{**}	-0.316* ^{**}	-0.463* ^{**}
	(0.062)	(0.039)	(0.065)	(0.042)	(0.061)	(0.039)
2 bedroom	-0.131* ^{**}	-0.182* ^{**}	-0.130* ^{**}	-0.181* ^{**}	-0.130* ^{**}	-0.180* ^{**}
	(0.024)	(0.019)	(0.024)	(0.019)	(0.024)	(0.019)
4+ bedroom	0.152****	0.154***	0.150***	0.152****	0.151***	0.151***
	(0.014)	(0.010)	(0.014)	(0.010)	(0.013)	(0.010)

21/30

Approach 1: Est. DiD models with quality adjustment

	More expensive suburbs		Less expension	Less expensive suburbs		All suburbs	
	(1)	(2)	(3)	(4)	(5)	(6)	
2 bathroom	0.107***	0.076***	0.107***	0.077***	0.108***	0.076***	
	(0.012)	(0.007)	(0.012)	(0.007)	(0.012)	(0.007)	
3+ bathroom	0.201***	0.168***	0.204***	0.172***	0.205***	0.169***	
	(0.016)	(0.012)	(0.016)	(0.012)	(0.015)	(0.011)	
2 parking	0.049***	0.053***	0.048***	0.053***	0.048***	0.052***	
	(0.012)	(0.006)	(0.012)	(0.006)	(0.012)	(0.006)	
3+ parking	0.034***	0.053***	0.031***	0.051***	0.032***	0.052***	
	(0.012)	(0.006)	(0.011)	(0.006)	(0.011)	(0.006)	
Has study	0.052***	0.033****	0.051***	0.032****	0.051***	0.032***	
, , , , , , , , , , , , , , , , , , ,	(0.007)	(0.006)	(0.007)	(0.005)	(0.007)	(0.005)	
Has separatedining	0.012	0.015***	0.011	0.014***	0.009	0.015***	
5	(0.009)	(0.005)	(0.008)	(0.005)	(0.008)	(0.005)	
Has heating	-Ò.012*´*	0.010***	-Ò.012*'*	0.010***	-Ò.012*´*	0.010***	
0	(0.006)	(0.004)	(0.006)	(0.004)	(0.005)	(0.004)	
Has airconditioning	-0.024***	-0.002	-0.023***	-0.001	-0.023***	-0.001	
5	(0.007)	(0.003)	(0.007)	(0.003)	(0.007)	(0.003)	
Has ensuite	-Ò.015*´*	-0.003	-Ò.016*´*	-0.003	-Ò.015*´*	-0.003	
	(0.007)	(0.005)	(0.007)	(0.005)	(0.007)	(0.005)	
Has garage	-0.028* ^{**}	-0.003	-0.027* ^{**}	-0.002	-0.027* ^{**}	-0.003	
0 0	(0.008)	(0.005)	(0.008)	(0.005)	(0.007)	(0.005)	
Constant	13.077* ^{**}	12.920* ^{**}	13.079***	12.923* ^{**}	13.080* ^{**}	12.922* ^{**} *	
	(0.030)	(0.013)	(0.030)	(0.013)	(0.030)	(0.013)	
Adjusted R ²	0.33	0.62	0.32	0.61	0.32	0.61	
N	9,602	9,602	9,753	9,753	9,958	9,958	

Approach 2: Estimated DiD models using the residuals from the first step hedonic regressions

	More expensive suburbs		Less expensive suburs		All suburbs	
	(1)	(2)	(3)	(4)	(5)	(6)
Treatment	0.031*** (0.006)	0.031*** (0.005)	-0.005 (0.007)	-0.006 (0.005)	0.009	0.011 (0.009)
Post	0.069***	0.069***	0.069***	0.069***	0.069***	0.069***
	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)	(0.004)
$Treatment \times post$	-0.059***	-0.059* **	0.008	0.009	-0.017	-0.021
	(0.012)	(0.010)	(0.018)	(0.014)	(0.019)	(0.019)
Constant	-0`.035***	-0`.035***	-0`.035***	-0`.035***	-0`.035* ^{**}	-0`.035* ^{**}
	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)	(0.002)
Adjusted R ²	0.04	0.04	0.04	0.04	0.04	0.04
N	9,602	9,602	9,753	9,753	9,958	9,958

4 A N

Approach 3: Estimated hedonic models

	Control	suburbs	Treatmen	t suburbs
	(Pre)	(Post)	(Pre)	(Post)
Missing lotsize	-0.136***	-0.039	-0.020	-0.033
Lotsize between 20	(0.037) 0.093***	(0.041) 0.087***	(0.066) 0.026	(0.064) 0.137*
& 40 percentile	(0.016)	(0.014)	(0.067)	(0.066)
Lotsize between 40	0.133***	0.113***	0.109	0.202**
& 60 percentile	(0.018)	(0.016)	(0.064)	(0.077)
Lotsize between 60	-0.106***	-0.092***	0.100	-0.096
& 80 percentile	(0.028)	(0.029)	(0.201)	(0.106)
Lotsize above 80	-0.109***	-0.148***	-0.227*´*	-0.283***
percentile	(0.018)	(0.024)	(0.081)	(0.076)
Missing bedroom	-0.179* ^{**}	-0.210***	-0.174* ^{**}	-Ò.164*´*
	(0.020)	(0.020)	(0.043)	(0.058)
1 bedroom	-0.422* ^{**}	-0.497* ^{**}	-0.556* ^{**}	-0.500* ^{**}
	(0.056)	(0.057)	(0.063)	(0.041)
2 bedroom	-0.157* ^{**}	-0.202* ^{**}	-0.217* ^{**}	-0.035 [´]
	(0.021)	(0.020)	(0.051)	(0.046)
4+ bedroom	0`.152****	0.156***	0.078***	0`.104**´*
	(0.011)	(0.011)	(0.019)	(0.027)
2 bathroom	0`.070****	0`.080****	Ò.053*́	0`.081**´*
	(0.010)	(0.009)	(0.023)	(0.017)
3+ bathroom	0`.169**́*	0`.166**´*	0`.194**´*	Ò.124* [*]
	(0.016)	(0.015)	(0.032)	(0.043)

Syed Hasan (Massey University)

January 3-5, 2021 24 /

• • • • • • • •

Approach 3: Estimated hedonic models

	Control	suburbs	Treatmen	t suburbs
	(Pre)	(Post)	(Pre)	(Post)
2 parking	0.055***	0.054***	-0.006	-0.003
	(0.007)	(0.008)	(0.015)	(0.009)
3+ parking	0.053***	0.052***	-0.005	0.003
	(0.008)	(0.008)	(0.015)	(0.022)
Has study	0.040***	0.026***	-0.026	0.048*
	(0.006)	(0.009)	(0.024)	(0.020)
Has separatedining	0.014**	0.014**	0.032	0.012
	(0.007)	(0.006)	(0.026)	(0.020)
Has heating	0.019***	-0.001	0.037*	0.054*
	(0.005)	(0.006)	(0.015)	(0.024)
Has airconditioning	0.002	-0.008*	0.046	0.011
	(0.005)	(0.004)	(0.028)	(0.014)
Has ensuite	0.009	-0.011	0.003	-0.028
	(0.008)	(0.008)	(0.021)	(0.018)
Has garage	-0.003	0.000	-0.036	0.006
	(0.006)	(0.007)	(0.021)	(0.013)
Constant	13.430***	13.465***	13.357***	13.254***
	(0.014)	(0.013)	(0.076)	(0.049)
Adjusted R ²	0.62	0.60	0.50	0.59
N	4,646	4,751	286	275

Syed Hasan (Massey University)

January 3-5, 202

イロト イポト イヨト イヨト

25 / 30

Approach 3: Estimated DiD model

	More expensive	Less expensive	All suburbs				
a. Using pre-announcement property characteristics							
Post	0.070***	0.070***	0.070***				
Treatment \times post	(0.004) -0.059*** (0.014)	(0.004) 0.015 (0.010)	(0.004) -0.015 (0.022)				
Constant	(0.014) 13.267*** (0.002)	(0.019) 13.261*** (0.002)	(0.022) 13.266*** (0.002)				
Adjusted R ² N	0.70 9,524	0.70 9,632	0.68 9,864				
b. Using post-annou	uncement property	characteristics					
Post	0.071^{***}	0.071^{***}	0.071^{***}				
$Treatment \times post$	-0.081***	0.001	-0.025				
Constant	13.256*** (0.002)	13.252*** (0.002)	(0.002) 13.255*** (0.002)				
Adjusted R ² N	0.67 9,680	0.67 9,874	0.65 10,052				

Syed Hasan (Massey University)

January 3.5. 20

イロト イポト イヨト イヨト

26 / 30

Approach 3: Placebo test

	More expensive	Less expensive	All suburbs
a. Using pre-announcement p	roperty characterist	ics	
Post (placebo)	0.053***	0.053***	0.053***
	(0.004)	(0.004)	(0.004)
Treatment $ imes$ post (placebo)	-0.003 (0.009)	-0.023 (0.032)	-0.016 (0.022)
Constant	13.236* ^{**}	13.231* ^{**}	13.236* ^{**}
	(0.002)	(0.002)	(0.002)
Adjusted R ²	0.54	0.51	0.51
N	9,752	9,900	10,096
b. Using post-announcement	property characteri	stics	
Post (placebo)	0.057***	0.057***	0.057***
	(0.006)	(0.006)	(0.006)
${\sf Treatment}\times{\sf post}\;({\sf placebo})$	-0.027	-0.037	-0.033 [*]
	(0.018)	(0.026)	(0.019)
Constant	13.211* ^{**}	13.205* ^{**}	13.211* ^{**}
	(0.003)	(0.003)	(0.003)
Adjusted R ²	0.40	0.40	0.39
N	9,524	9,632	9,864

Syed Hasan (Massey University)

January 3-5, 2021

イロト イヨト イヨト イヨト

3

Conclusion

- We investigated the announcement effect of public housing on property prices using a novel hedonic quality adjusted DiD method
- Our set up was facilitated by
 - A single unanticipated government announcement of new public housing in multiple locations in ACT, Australia
 - The fact that these locations included suburbs both more expensive and less expensive than the ACT suburbs

Conclusion (cont.)

- We found that the announcement of new public housing had a differential effect on neighbouring property prices
 - A negative impact (7% of prices) in more expensive suburbs
 - No impact in less expensive suburbs
- Our findings will make important contributions to policy/ decision making regarding the location of public housing

Policy implication

- We reconfirm that policymakers need to consider the negative external effect of public housing
- Locating public housing complexes to high-priced suburbs
 - would not be efficient
 - but may reduce inequality and segregation
- Efficiency vs. equity trade-off exists in the housing market[†]
- Our positive analysis may encourage planners to devise a mechanism for generating outcome that is socially desirable