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Introduction

Motivation

Instrumental Variable (IV)

A popular solution to deal with endogeneity in social sciences

Key assumptions for the IV approach

1 Relevance: Correlation between the endogenous explanatory variable
(EEV) and the IV

2 Exogeneity: No direct correlation between the potential outcome
variable and the IV

Parametric Example: Y = Dθ + U

Relevance: Cov(D,Z ) 6= 0;
Exogeneity: Cov(Z ,U) = 0 for an instrument Z .

Exogeneity could be difficult to justify.
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Introduction

Key Contributions

1 A nonparametric extension of Nevo and Rosen (2012)

SDC: Same direction of correlation

Cov(D,U)Cov(Z ,U) ≥ 0

LEI: Less endogenous instrument

|Corr(Z ,U)| ≤ |Corr(D,U)|

2 Building bridges between SDC and the literature

MTS-MIV: Monotone treatment selection and monotone IV (Manski
and Pepper, 2000, 2009)
Comonotone IV: Comonotonicity between D and Z
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Analytical Framework

Potential Outcome Model (POM)

Y =
T∑

d=1

Yd1 {D = d} (1)

Y : an outcome variable taking values in Y ⊂ R
D: a discrete endogenous treatment variable taking values in
D = {1, 2, . . . ,T}
Yd : a potential outcome that would have been observed if the
treatment D had externally been set to d

Z : an imperfect IV (IIV) in the sense that it may be correlated with
the potential outcome Yd with Z ∈ Z ⊆ R+

Leading example: Parental education (Kédagni and Mourifié, 2020;
Mourifié et al., 2020)
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Analytical Framework

Potential Outcome Model (POM)

Y =
T∑

d=1

Yd1 {D = d} (1)

The objects of interest:

Potential outcome means θd ≡ E[Yd ] <∞
Average treatment effects:

ATE (d , d ′) ≡ θd − θd′ , for d , d ′ ∈ D
ATE (d , d ′) may vary across (d , d ′)

Average treatment effect on the treated:

ATT (d , d ′) ≡ E[Yd − Yd′ |D = d ]

Average treatment effect on the untreated:

ATU(d , d ′) ≡ E[Yd − Yd′ |D = d ′]
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Analytical Framework

Identifying Assumptions

Assumption 1 (Bounded Support (BoS))

Supp(Yd |D 6= d) = Supp(Yd |D = d) =
[
y
d
, yd

]
The support of the counterfactual outcome is the same as that of the
factual

It is standard and similar to the usual bounded outcome assumption
considered in Manski (1990, 1994)

It does not require the support of the potential outcome Yd to be
uniform across all treatment levels d
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Analytical Framework

Identifying Assumptions

Assumption 2 (Same direction of correlation (SDC))

Cov (Yd ,D)Cov (Yd ,Z ) ≥ 0

It is equivalent to Assumption 3 in Nevo and Rosen (2012)

The correlation between the imperfect instrument Z and the potential
outcome Yd has weakly the same sign as the correlation between the
endogenous treatment D and the potential outcome

If either the treatment D or the instrument Z is exogenous, then SDC
holds

If D = Z , then SDC trivially holds
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Analytical Framework

Bridges to SDC

SDC is a weaker version of the concepts of MTS-MIV (Manski and
Pepper, 2000, 2009)

MTS: Monotone treatment selection (E [Yd |D = `] is monotone in `)
MIV: Monotone IV (E [Yd |Z = z ] is monotone in z)

SDC is weaker than a comonotonicity between Z and D (CoMIV)

MTS-MIV and CoMIV are two different sufficient conditions for SDC,
but neither implies the other
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Analytical Framework

Binarized MTS-MIV

In order to establish a connection between MTS-MIV and SDC, we
introduce an intermediate concept

Definition 1 (Binarized MTS-MIV)

The variable Z is a binarized MTS-MIV for D if for each d ∈ D,(
g+
d (j)− g−d (j)

) (
h+
d (z)− h−d (z)

)
≥ 0 for all j , z .

where g+
d (j) = E[Yd |D ≥ j ], g−d (j) = E[Yd |D < j ], h+

d (z) = E[Yd |Z ≥ z ],
and h−d (z) = E[Yd |Z < z ].
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Analytical Framework

Binarized MTS-MIV

Lemma 1

MTS-MIV in the same direction for D and Z implies that Z is a binarized
MTS-MIV for D.

Lemma 2

If Z is a binarized MTS-MIV for D, then Assumption SDC holds.
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Analytical Framework

Binarized MTS-MIV

Figure: Illustration of Lemmas 1 and 2
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Analytical Framework

CoMIV

Definition 2 (Comonotonicity)

Let (Ω,F) be a measurable space. Two random variables X1 and X2

defined on Ω are said to be comonotonic if(
X1(ω)− X1(ω′)

) (
X2(ω)− X2(ω′)

)
≥ 0 for all ω, ω′ ∈ Ω.

Definition 3 (Comonotone instrumental variable (CoMIV))

The variable Z is said to be a comonotone instrumental variable (CoMIV)
for the treatment D if Z and D are comonotonic.
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Analytical Framework

CoMIV

Lemma 3

The following results hold.

1 If D is a deterministic increasing function of Z (or vice versa), then Z
is a CoMIV for D.

2 Suppose D = h(Z ,V ), where h is increasing in both of its arguments,
and V represents unobserved heterogeneity. If Z and V are
comonotonic, then Z is a CoMIV for D.

For example, when D = 2Z + V and Z = eV , Z is a CoMIV for D

Lemma 4

If Z is a CoMIV for D, then Assumption SDC holds.
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Analytical Framework

CoMIV

Figure: Illustration of Lemma 4
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Analytical Framework

Example: Not MTS-MIV, but SDC

Example 1

Consider the following data generating process (DGP)
Y = 2D + U
D = 0 · 1 {V ∈ [0, 1]}+ 1 · 1

{
V ∈ (1, 3

2 ]
}

+ 2 · 1
{
V ∈ ( 3

2 , 5]
}

Z = 2D
U = 4V1 {V ∈ [1, 2]}+ V1 {V /∈ [1, 2]}

where V ∼ U[0,5].

The DGP does not satisfy MTS-MIV

The DGP satisfies binarized MTS-MIV
Thus, the DGP satisfies SDC by Lemma 1

The DGP also satisfies CoMIV
Thus, the DGP satisfies SDC by Lemma 4

Ban and Kédagni (2020) ASSA/AEA Meeting, Econometric Society Iowa State 16 / 49



Analytical Framework

Example: Not MTS-MIV, but SDC

Figure: Numerical illustration of a violation of MTS and MIV
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Analytical Framework

Example: Not MTS-MIV, but SDC

Figure: Numerical illustration of binarized MTS-MIV 1
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Analytical Framework

Example: Not MTS-MIV, but SDC

Figure: Numerical illustration of binarized MTS-MIV 2
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Analytical Framework

Example: Not MTS-MIV, but SDC

Figure: Numerical illustration of binarized MTS-MIV 3

Ban and Kédagni (2020) ASSA/AEA Meeting, Econometric Society Iowa State 20 / 49



Analytical Framework

Relationship between the Assumptions

Figure: Illustration of Example 1 and Assumptions
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Analytical Framework

Relationship between the Assumptions

Figure: Illustration of Supplementary Examples
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Analytical Framework

Identifying Assumptions

Assumption 3 (Less endogenous instrument (LEI))

| ρYdD |≥| ρYdZ |

where ρUV denotes the coefficient of correlation between two random
variables U and V .

It is the same assumption as Assumption 4 in Nevo and Rosen (2012)

The imperfect instrument Z is less correlated with the potential
outcome than is the endogenous treatment D

In the context of our empirical example, it reasonable to assume that
parental education is less correlated with the individual’s potential
wage than is the individual’s own education
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Analytical Framework

Identifying Assumptions

Assumption 4 (Monotone treatment response (MTR))

Yd ≥ Yd ′ for all d > d ′.

The potential outcome weakly increases with the level of the
treatment (Manski, 1997)

In the returns to schooling example, it implies that the wage that a
worker earns weakly increases as a function of the worker’s years of
schooling.
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Analytical Framework

Identifying Assumptions

Assumption 5 (Roy Selection (RS))

{D = d} ⇐⇒
{
Yd > Yd ′ for all d ′ 6= d

}
Agents choose the level of treatment that maximizes their potential
outcome (Roy, 1951)

This version implicitly assumes that agents have perfect foresight

Note that Assumption RS is not compatible with the MTS and MTR
assumptions, while Assumption SDC is
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Identification Results

Nevo and Rosen (2012)’s Approach

Consider the simple linear model:

Y = θD + U

From the model, we have

θOLS =
Cov(Y ,D)

Var(D)
= θ +

Cov(D,U)

Var(D)

θIV =
Cov(Y ,Z )

Cov(D,Z )
= θ +

Cov(Z ,U)

Cov(D,Z )

Under SDC,
Cov(D,U) ≥ 0, Cov(Z ,U) ≥ 0 or Cov(D,U) ≤ 0, Cov(Z ,U) ≤ 0

=⇒ θIV ≤ θ ≤ θOLS or θOLS ≤ θ ≤ θIV (if ρDZ < 0)

θ ≤ min{θOLS , θIV } or max{θOLS , θIV } ≤ θ (if ρDZ > 0)
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Identification Results

Identification under SDC

Assumption SDC is equivalent to

E
[
Yd D̃

]
E
[
Yd Z̃

]
≥ 0

where D̃ ≡ D − E[D] and Z̃ ≡ Z − E[Z ]

That is equivalent to: either

E
[
Yd D̃

]
≥ 0, (2)

E
[
Yd Z̃

]
≥ 0, (3)

or

E
[
Yd D̃

]
≤ 0, (4)

E
[
Yd Z̃

]
≤ 0. (5)

Ban and Kédagni (2020) ASSA/AEA Meeting, Econometric Society Iowa State 28 / 49



Identification Results

Identification under SDC

Inequality (2) implies that, for any α ∈ [0, 1), we have the following
inequalities

E
[
YdαD̃

]
≥ 0 and E

[
−YdαD̃

]
≤ 0,

They are equivalent to

E
[
Yd

(
1 + αD̃

)]
≥ E[Yd ] ≡ θd and E

[
Yd

(
1− αD̃

)]
≤ E[Yd ] ≡ θd ,

which we rewrite using the identity 1 {D = d}+ 1 {D 6= d} = 1 as

E
[
Y
(

1 + αD̃
)
1 {D = d}+ Yd

(
1 + αD̃

)
1 {D 6= d}

]
≥ θd , (6)

E
[
Y
(

1− αD̃
)
1 {D = d}+ Yd

(
1− αD̃

)
1 {D 6= d}

]
≤ θd , (7)

respectively, given that Y = Yd when D = d .
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Identification Results

Identification under SDC

Using Assumption BoS, we can bound the counterfactuals (second
terms of (6) and (7)) as follows:

Yd

(
1 + αD̃

)
1 {D 6= d} ≤

max
{
y
d

(
1 + αD̃

)
, yd

(
1 + αD̃

)}
1 {D 6= d}

Yd

(
1− αD̃

)
1 {D 6= d} ≥

min
{
y
d

(
1− αD̃

)
, yd

(
1− αD̃

)}
1 {D 6= d} .
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Identification Results

Identification under SDC

Therefore, the inequalities (6) and (7) imply that

E
[
f d

(
Y ,D, 1 + αD̃

) ]
≥ θd and E

[
f d

(
Y ,D, 1− αD̃

) ]
≤ θd

for any α ∈ [0, 1), where we define the function f d and f d as

f d (Y ,D, δ) ≡ 1 {D = d} δY + 1 {D 6= d}min
{
δy

d
, δyd

}
f d (Y ,D, δ) ≡ 1 {D = d} δY + 1 {D 6= d}max

{
δy

d
, δyd

}
.

Ban and Kédagni (2020) ASSA/AEA Meeting, Econometric Society Iowa State 31 / 49



Identification Results

Identification under SDC

Finally, we can then take the supremum and the infimum of the lower
and upper bounds over α, respectively, to obtain the following bounds
for θd :

I dSDC1 ≡

[
sup

α∈[0,1)

E
[
f d

(
Y ,D, 1− αD̃

) ]
, inf
α∈[0,1)

E
[
f d
(
Y ,D, 1 + αD̃

) ]]
.

which is implied by the inequality (2)

Ban and Kédagni (2020) ASSA/AEA Meeting, Econometric Society Iowa State 32 / 49



Identification Results

Identification under SDC

In the same manner, from (3), (4), and (5), we have

I dSDC2 ≡

[
sup

α∈[0,1)

E
[
f d

(
Y ,D, 1− αZ̃

) ]
, inf
α∈[0,1)

E
[
f d
(
Y ,D, 1 + αZ̃

) ]]
,

I dSDC3 ≡

[
sup

α∈[0,1)

E
[
f d

(
Y ,D, 1 + αD̃

) ]
, inf
α∈[0,1)

E
[
f d
(
Y ,D, 1− αD̃

) ]]
,

I dSDC4 ≡

[
sup

α∈[0,1)

E
[
f d

(
Y ,D, 1 + αZ̃

) ]
, inf
α∈[0,1)

E
[
f d
(
Y ,D, 1− αZ̃

) ]]
,
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Identification Results

Identification under SDC

Proposition 1

Under Assumptions BoS and SDC, the identification region for the
parameter θd is:

I dSDC ≡
(
I dSDC1 ∩ I dSDC2

)
∪
(
I dSDC3 ∩ I dSDC4

)
.

We relax the parametric linear assumption at the expense of the
bounded support assumption

The bounds derived in Proposition 1 may not be sharp
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Identification Results

Identification under SDC and LEI

Proposition 2

Under Assumptions BoS, SDC and LEI, the identification region for θd is:

I dLEI ≡
(
I dLEI1 ∩ I dSDC2

)
∪
(
I dLEI2 ∩ I dSDC4

)
.

where

I dLEI1 ≡

[
sup

α∈[0,1)

E
[
f d

(
Y ,D, 1− α

(
D̃σZ − Z̃σD

)) ]
,

inf
α∈[0,1)

E
[
f d
(
Y ,D, 1 + α

(
D̃σZ − Z̃σD

)) ]]

I dLEI2 ≡

[
sup

α∈[0,1)

E
[
f d

(
Y ,D, 1 + α

(
D̃σZ − Z̃σD

)) ]
,

inf
α∈[0,1)

E
[
f d
(
Y ,D, 1− α

(
D̃σZ − Z̃σD

)) ]]
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Inference

Inference of the set I dSDC

I dSDC =
(
I dSDC1 ∩ I dSDC2

)
∪
(
I dSDC3 ∩ I dSDC4

)
This is an intersection-union test as described in Berger (1982)

1 Construct confidence regions for the sets I dSDC1 ∩ I dSDC2 and
I dSDC3 ∩ I dSDC4 using the intersection bounds framework of
Chernozhukov et al. (2013) or Andrews and Shi (2013)

2 Take the union of the two confidence regions, which has at least the
same coverage rate as each confidence region (Berger and Hsu, 1996)
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Inference

Inference of the set I dSDC

If we draw U from the uniform distribution over [0, 1), independently
of the data (Y ,D,Z ), then we have

E
[
f d

(
Y ,D, 1− UD̃

) ∣∣∣U = α
]

= E
[
f d

(
Y ,D, 1− αD̃

) ]
Then, for instance, we have

I dSDC1 =

[
sup

α∈[0,1)
E
[
f d

(
Y ,D,1− UD̃

)∣∣∣U = α
]
,

inf
α∈[0,1)

E
[
f d

(
Y ,D, 1 + UD̃

) ∣∣∣U = α
]]

which takes the from of conditional moment inequalities
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Empirical Illustration

Data

A data set drawn from the National Longitudinal Survey of Young
Men (NLSYM)

This data includes 3,010 young men who were ages 24-34 in 1976

The outcome variable (Y ) is log hourly wage in cents (lwage)

The treatment variable (D) is education (educ) grouped in 4
categories:

1 less than high school (educ < 12 years)
2 high school (12 ≤ educ < 16)
3 college degree (16 ≤ educ < 18)
4 graduate (educ ≥ 18)

Imperfect IV (Z ) is parental education

An individual’s ability can be dependent on her parents’ ability, which
is correlated with parental education
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Empirical Illustration

Estimation

For practical reasons, we follow Ginther (2000) to trim the log wage

In theory, the outcome variable lwage is unbounded
Y = τ -quantile of lwage if lwage is less than or equal to its τ -quantile
Y = (1− τ)-quantile of lwage if lwage is greater than or equal to its
(1− τ)-quantile
Y = lwage otherwise
We set τ = 0.05

Two-sided confidence bounds on the potential average log wages
using the clr2bound command of Chernozhukov et al. (2015) in the
Stata software

The results with mother’s education as an IIV are presented
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Empirical Illustration

Estimated Confidence Intervals

Table: Confidence sets for parameters under SDC

Parameters 95% conf. LB 95% conf. UB

θ0 (< high) 5.53 6.86
θ1 (high) 5.89 6.66
θ2 (college) 5.65 6.88
θ3 (graduate) 5.55 6.94
θ0 − θ1 -1.13 0.97
θ2 − θ1 -1.01 0.98
θ3 − θ1 -1.11 1.05

* conf. LB: confidence lower bound; conf. UB: confidence upper bound.
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Empirical Illustration

Estimated Confidence Intervals

Table: Confidence sets for parameters under SDC and LEI

Parameters 95% conf. LB 95% conf. UB

θ0 (< high) 5.53 6.86
θ1 (high) 5.89 6.66
θ2 (college) 5.65 6.86
θ3 (graduate) 5.55 6.94
θ0 − θ1 -1.13 0.97
θ2 − θ1 -1.01 0.97
θ3 − θ1 -1.11 1.05

* conf. LB: confidence lower bound; conf. UB: confidence upper bound.
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Empirical Illustration

Estimated Confidence Intervals

Table: Confidence sets for parameters under SDC, LEI, and MTR

Parameters 95% conf. LB 95% conf. UB

θ0 (< high) 5.53 6.30
θ1 (high) 6.30 6.46
θ2 (college) 6.46 6.82
θ3 (graduate) 6.82 6.94
θ0 − θ1 -0.93 0.00
θ2 − θ1 0.00 0.52
θ3 − θ1 0.36 0.64

* conf. LB: confidence lower bound; conf. UB: confidence upper bound.
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Conclusion

Non-parametric bounds on the average treatment effect are derived
when an imperfect instrument is available

Nevo and Rosen (2012)’s identification results are extended

We show that the MTS-MIV restrictions introduced by Manski and
Pepper (2000, 2009), jointly imply the SDC assumption

We introduce the concept of comonotone IV, which also satisfies the
SDC assumption

The identified set takes the form of intersection bounds, which can be
implemented using the Chernozhukov et al. (2013) inferential method

We illustrate our methodology using the National Longitudinal Survey
of Young Men data to estimate returns to schooling
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Mourifié, I., Henry, M., and Méango, R. (2020). Sharp bounds and testability of a roy model of
stem major choices. Journal of Political Economy, 8(128):3220–3283.

Nevo, A. and Rosen, A. (2012). Identification with imperfect instruments. The Review of
Economics and Statistics, 94(3):659–671.

Roy, A. D. (1951). Some thoughts on the distribution of earnings. Oxford Economic Papers,
New Series, 3(2):135–146.

Ban and Kédagni (2020) ASSA/AEA Meeting, Econometric Society Iowa State 49 / 49


	Introduction
	Analytical Framework
	Identification Results
	Inference
	Empirical Illustration
	Conclusion
	Appendix
	References
	References


