Nonparametric Bounds on Treatment Effects with Imperfect Instruments

Kyunghoon Ban and Désiré Kédagni

Department of Economics
Iowa State University

ASSA 2021 Virtual Conference - Econometric Society

Table of Contents

(1) Introduction

(2) Analytical Framework
(3) Identification Results
(4) Inference
(5) Empirical Illustration

6 Conclusion

Motivation

- Instrumental Variable (IV)
- A popular solution to deal with endogeneity in social sciences

Motivation

- Instrumental Variable (IV)
- A popular solution to deal with endogeneity in social sciences
- Key assumptions for the IV approach
(1) Relevance: Correlation between the endogenous explanatory variable (EEV) and the IV
(2) Exogeneity: No direct correlation between the potential outcome variable and the IV

Motivation

- Instrumental Variable (IV)
- A popular solution to deal with endogeneity in social sciences
- Key assumptions for the IV approach
(1) Relevance: Correlation between the endogenous explanatory variable (EEV) and the IV
(2) Exogeneity: No direct correlation between the potential outcome variable and the IV
- Parametric Example: $Y=D \theta+U$
- Relevance: $\operatorname{Cov}(D, Z) \neq 0$;
- Exogeneity: $\operatorname{Cov}(Z, U)=0$ for an instrument Z.

Motivation

- Instrumental Variable (IV)
- A popular solution to deal with endogeneity in social sciences
- Key assumptions for the IV approach
(1) Relevance: Correlation between the endogenous explanatory variable (EEV) and the IV
(2) Exogeneity: No direct correlation between the potential outcome variable and the IV
- Parametric Example: $Y=D \theta+U$
- Relevance: $\operatorname{Cov}(D, Z) \neq 0$;
- Exogeneity: $\operatorname{Cov}(Z, U)=0$ for an instrument Z.
- Exogeneity could be difficult to justify.

Key Contributions

(1) A nonparametric extension of Nevo and Rosen (2012)
(2) Building bridges between SDC and the literature

Key Contributions

(1) A nonparametric extension of Nevo and Rosen (2012)

- SDC: Same direction of correlation
- $\operatorname{Cov}(D, U) \operatorname{Cov}(Z, U) \geq 0$
- LEI: Less endogenous instrument
- $|\operatorname{Corr}(Z, U)| \leq|\operatorname{Corr}(D, U)|$
(2) Building bridges between SDC and the literature

Key Contributions

(1) A nonparametric extension of Nevo and Rosen (2012)

- SDC: Same direction of correlation
- $\operatorname{Cov}(D, U) \operatorname{Cov}(Z, U) \geq 0$
- LEI: Less endogenous instrument
- $|\operatorname{Corr}(Z, U)| \leq|\operatorname{Corr}(D, U)|$
(2) Building bridges between SDC and the literature
- MTS-MIV: Monotone treatment selection and monotone IV (Manski and Pepper, 2000, 2009)
- Comonotone IV: Comonotonicity between D and Z

Table of Contents

(1) Introduction

(2) Analytical Framework

(3) Identification Results

(4) Inference
(5) Empirical Illustration

6 Conclusion

Potential Outcome Model (POM)

$$
\begin{equation*}
Y=\sum_{d=1}^{T} Y_{d} \mathbb{1}\{D=d\} \tag{1}
\end{equation*}
$$

- Y : an outcome variable taking values in $\mathcal{Y} \subset \mathbb{R}$
- D : a discrete endogenous treatment variable taking values in $\mathcal{D}=\{1,2, \ldots, T\}$
- Y_{d} : a potential outcome that would have been observed if the treatment D had externally been set to d
- Z : an imperfect IV (IIV) in the sense that it may be correlated with the potential outcome Y_{d} with $Z \in \mathcal{Z} \subseteq \mathbb{R}^{+}$
- Leading example: Parental education (Kédagni and Mourifié, 2020; Mourifié et al., 2020)

Potential Outcome Model (POM)

$$
\begin{equation*}
Y=\sum_{d=1}^{T} Y_{d} \mathbb{1}\{D=d\} \tag{1}
\end{equation*}
$$

- The objects of interest:
- Potential outcome means $\theta_{d} \equiv \mathbb{E}\left[Y_{d}\right]<\infty$
- Average treatment effects:
- $\operatorname{ATE}\left(d, d^{\prime}\right) \equiv \theta_{d}-\theta_{d^{\prime}}$, for $d, d^{\prime} \in \mathcal{D}$
- $\operatorname{ATE}\left(d, d^{\prime}\right)$ may vary across $\left(d, d^{\prime}\right)$
- Average treatment effect on the treated:
- $\operatorname{ATT}\left(d, d^{\prime}\right) \equiv \mathbb{E}\left[Y_{d}-Y_{d^{\prime}} \mid D=d\right]$
- Average treatment effect on the untreated:
- $\operatorname{ATU}\left(d, d^{\prime}\right) \equiv \mathbb{E}\left[Y_{d}-Y_{d^{\prime}} \mid D=d^{\prime}\right]$

Identifying Assumptions

Assumption 1 (Bounded Support (BoS))

$$
\operatorname{Supp}\left(Y_{d} \mid D \neq d\right)=\operatorname{Supp}\left(Y_{d} \mid D=d\right)=\left[\underline{y}_{d}, \bar{y}_{d}\right]
$$

- The support of the counterfactual outcome is the same as that of the factual
- It is standard and similar to the usual bounded outcome assumption considered in Manski $(1990,1994)$
- It does not require the support of the potential outcome Y_{d} to be uniform across all treatment levels d

Identifying Assumptions

Assumption 2 (Same direction of correlation (SDC))

$$
\operatorname{Cov}\left(Y_{d}, D\right) \operatorname{Cov}\left(Y_{d}, Z\right) \geq 0
$$

- It is equivalent to Assumption 3 in Nevo and Rosen (2012)
- The correlation between the imperfect instrument Z and the potential outcome Y_{d} has weakly the same sign as the correlation between the endogenous treatment D and the potential outcome
- If either the treatment D or the instrument Z is exogenous, then SDC holds
- If $D=Z$, then SDC trivially holds

Bridges to SDC

- SDC is a weaker version of the concepts of MTS-MIV (Manski and Pepper, 2000, 2009)
- MTS: Monotone treatment selection $\left(\mathbb{E}\left[Y_{d} \mid D=\ell\right]\right.$ is monotone in ℓ)
- MIV: Monotone IV $\left(\mathbb{E}\left[Y_{d} \mid Z=z\right]\right.$ is monotone in $\left.z\right)$
- SDC is weaker than a comonotonicity between Z and D (CoMIV)
- MTS-MIV and CoMIV are two different sufficient conditions for SDC, but neither implies the other

Binarized MTS-MIV

- In order to establish a connection between MTS-MIV and SDC, we introduce an intermediate concept

Definition 1 (Binarized MTS-MIV)

The variable Z is a binarized MTS-MIV for D if for each $d \in \mathcal{D}$,

$$
\left(g_{d}^{+}(j)-g_{d}^{-}(j)\right)\left(h_{d}^{+}(z)-h_{d}^{-}(z)\right) \geq 0 \text { for all } j, z
$$

where $g_{d}^{+}(j)=\mathbb{E}\left[Y_{d} \mid D \geq j\right], g_{d}^{-}(j)=\mathbb{E}\left[Y_{d} \mid D<j\right], h_{d}^{+}(z)=\mathbb{E}\left[Y_{d} \mid Z \geq z\right]$, and $h_{d}^{-}(z)=\mathbb{E}\left[Y_{d} \mid Z<z\right]$.

Binarized MTS-MIV

Lemma 1
MTS-MIV in the same direction for D and Z implies that Z is a binarized MTS-MIV for D.

Lemma 2

If Z is a binarized MTS-MIV for D, then Assumption SDC holds.

Binarized MTS-MIV

Figure: Illustration of Lemmas 1 and 2

CoMIV

Definition 2 (Comonotonicity)

Let (Ω, \mathcal{F}) be a measurable space. Two random variables X_{1} and X_{2} defined on Ω are said to be comonotonic if

$$
\left(X_{1}(\omega)-X_{1}\left(\omega^{\prime}\right)\right)\left(X_{2}(\omega)-X_{2}\left(\omega^{\prime}\right)\right) \geq 0 \text { for all } \omega, \omega^{\prime} \in \Omega
$$

Definition 3 (Comonotone instrumental variable (CoMIV))

The variable Z is said to be a comonotone instrumental variable (CoMIV) for the treatment D if Z and D are comonotonic.

CoMIV

Lemma 3

The following results hold.
(1) If D is a deterministic increasing function of Z (or vice versa), then Z is a CoMIV for D.
(2) Suppose $D=h(Z, V)$, where h is increasing in both of its arguments, and V represents unobserved heterogeneity. If Z and V are comonotonic, then Z is a CoMIV for D.

- For example, when $D=2 Z+V$ and $Z=e^{V}, Z$ is a CoMIV for D

Lemma 4

If Z is a CoMIV for D, then Assumption SDC holds.

CoMIV

SDC

Figure: Illustration of Lemma 4

Example: Not MTS-MIV, but SDC

Example 1

Consider the following data generating process (DGP)

$$
\begin{aligned}
& \left\{\begin{aligned}
Y & =2 D+U \\
D & =0 \cdot \mathbb{1}\{V \in[0,1]\}+1 \cdot \mathbb{1}\left\{V \in\left(1, \frac{3}{2}\right]\right\}+2 \cdot \mathbb{1}\left\{V \in\left(\frac{3}{2}, 5\right]\right\} \\
Z & =2 D \\
U & =4 V \mathbb{1}\{V \in[1,2]\}+V \mathbb{1}\{V \notin[1,2]\}
\end{aligned}\right. \\
& \text { where } V \sim \mathcal{U}_{[0,5]} .
\end{aligned}
$$

- The DGP does not satisfy MTS-MIV
- The DGP satisfies binarized MTS-MIV
- Thus, the DGP satisfies SDC by Lemma 1
- The DGP also satisfies CoMIV
- Thus, the DGP satisfies SDC by Lemma 4

Example: Not MTS-MIV, but SDC

Figure: Numerical illustration of a violation of MTS and MIV

Example: Not MTS-MIV, but SDC

$$
\mathrm{h}_{\mathrm{d}}^{+}(\mathrm{k}) \text { and } \mathrm{h}_{\mathrm{d}}^{-}(\mathrm{k}), \mathrm{d}=0
$$

Figure: Numerical illustration of binarized MTS-MIV 1

Example: Not MTS-MIV, but SDC

$\mathrm{g}_{\mathrm{d}}^{+}(\mathrm{j})$ and $\mathrm{g}_{\mathrm{d}}^{-}(\mathrm{j}), \mathrm{d}=1$

$\mathrm{h}_{\mathrm{d}}^{+}(\mathrm{k})$ and $\mathrm{h}_{\mathrm{d}}^{-}(\mathrm{k}), \mathrm{d}=1$

Figure: Numerical illustration of binarized MTS-MIV 2

Example: Not MTS-MIV, but SDC

Figure: Numerical illustration of binarized MTS-MIV 3

Relationship between the Assumptions

Figure: Illustration of Example 1 and Assumptions

Relationship between the Assumptions

Figure: Illustration of Supplementary Examples

Identifying Assumptions

Assumption 3 (Less endogenous instrument (LEI))

$$
\left|\rho_{Y_{d} D}\right| \geq\left|\rho_{Y_{d} Z}\right|
$$

where $\rho_{U V}$ denotes the coefficient of correlation between two random variables U and V.

- It is the same assumption as Assumption 4 in Nevo and Rosen (2012)
- The imperfect instrument Z is less correlated with the potential outcome than is the endogenous treatment D
- In the context of our empirical example, it reasonable to assume that parental education is less correlated with the individual's potential wage than is the individual's own education

Identifying Assumptions

Assumption 4 (Monotone treatment response (MTR))

$$
Y_{d} \geq Y_{d^{\prime}} \text { for all } d>d^{\prime}
$$

- The potential outcome weakly increases with the level of the treatment (Manski, 1997)
- In the returns to schooling example, it implies that the wage that a worker earns weakly increases as a function of the worker's years of schooling.

Identifying Assumptions

Assumption 5 (Roy Selection (RS))

$$
\{D=d\} \Longleftrightarrow\left\{Y_{d}>Y_{d^{\prime}} \quad \text { for all } d^{\prime} \neq d\right\}
$$

- Agents choose the level of treatment that maximizes their potential outcome (Roy, 1951)
- This version implicitly assumes that agents have perfect foresight
- Note that Assumption RS is not compatible with the MTS and MTR assumptions, while Assumption SDC is

Table of Contents

(1) Introduction

(2) Analytical Framework
(3) Identification Results
(4) Inference
(5) Empirical Illustration
(6) Conclusion

Nevo and Rosen (2012)'s Approach

- Consider the simple linear model:

$$
Y=\theta D+U
$$

- From the model, we have

$$
\begin{aligned}
\theta^{O L S} & =\frac{\operatorname{Cov}(Y, D)}{\operatorname{Var}(D)}=\theta+\frac{\operatorname{Cov}(D, U)}{\operatorname{Var}(D)} \\
\theta^{I V} & =\frac{\operatorname{Cov}(Y, Z)}{\operatorname{Cov}(D, Z)}=\theta+\frac{\operatorname{Cov}(Z, U)}{\operatorname{Cov}(D, Z)}
\end{aligned}
$$

Nevo and Rosen (2012)'s Approach

- Consider the simple linear model:

$$
Y=\theta D+U
$$

- From the model, we have

$$
\begin{aligned}
\theta^{O L S} & =\frac{\operatorname{Cov}(Y, D)}{\operatorname{Var}(D)}=\theta+\frac{\operatorname{Cov}(D, U)}{\operatorname{Var}(D)} \\
\theta^{I V} & =\frac{\operatorname{Cov}(Y, Z)}{\operatorname{Cov}(D, Z)}=\theta+\frac{\operatorname{Cov}(Z, U)}{\operatorname{Cov}(D, Z)}
\end{aligned}
$$

- Under SDC,
$\operatorname{Cov}(D, U) \geq 0, \operatorname{Cov}(Z, U) \geq 0$ or $\operatorname{Cov}(D, U) \leq 0, \operatorname{Cov}(Z, U) \leq 0$

$$
\Longrightarrow \quad \begin{array}{cl}
\theta^{I V} \leq \theta \leq \theta^{O L S} \text { or } \theta^{O L S} \leq \theta \leq \theta^{I V} & \left(\text { if } \rho_{D Z}<0\right) \\
\theta \leq \min \left\{\theta^{O L S}, \theta^{I V}\right\} \text { or } \max \left\{\theta^{O L S}, \theta^{I V}\right\} \leq \theta & \left(\text { if } \rho_{D Z}>0\right)
\end{array}
$$

Identification under SDC

- Assumption SDC is equivalent to

$$
\mathbb{E}\left[Y_{d} \tilde{D}\right] \mathbb{E}\left[Y_{d} \tilde{Z}\right] \geq 0
$$

where $\tilde{D} \equiv D-\mathbb{E}[D]$ and $\tilde{Z} \equiv Z-\mathbb{E}[Z]$

- That is equivalent to: either

$$
\begin{align*}
& \mathbb{E}\left[Y_{d} \tilde{D}\right] \geq 0 \tag{2}\\
& \mathbb{E}\left[Y_{d} \tilde{Z}\right] \geq 0 \tag{3}
\end{align*}
$$

or

$$
\begin{align*}
& \mathbb{E}\left[Y_{d} \tilde{D}\right] \leq 0 \tag{4}\\
& \mathbb{E}\left[Y_{d} \tilde{Z}\right] \leq 0 \tag{5}
\end{align*}
$$

Identification under SDC

- Inequality (2) implies that, for any $\alpha \in[0,1$), we have the following inequalities

$$
\mathbb{E}\left[Y_{d} \alpha \tilde{D}\right] \geq 0 \text { and } \mathbb{E}\left[-Y_{d} \alpha \tilde{D}\right] \leq 0
$$

- They are equivalent to
$\mathbb{E}\left[Y_{d}(1+\alpha \tilde{D})\right] \geq \mathbb{E}\left[Y_{d}\right] \equiv \theta_{d}$ and $\mathbb{E}\left[Y_{d}(1-\alpha \tilde{D})\right] \leq \mathbb{E}\left[Y_{d}\right] \equiv \theta_{d}$, which we rewrite using the identity $\mathbb{1}\{D=d\}+\mathbb{1}\{D \neq d\}=1$ as

$$
\begin{align*}
& \mathbb{E}\left[Y(1+\alpha \tilde{D}) \mathbb{1}\{D=d\}+Y_{d}(1+\alpha \tilde{D}) \mathbb{1}\{D \neq d\}\right] \geq \theta_{d}, \tag{6}\\
& \mathbb{E}\left[Y(1-\alpha \tilde{D}) \mathbb{1}\{D=d\}+Y_{d}(1-\alpha \tilde{D}) \mathbb{1}\{D \neq d\}\right] \leq \theta_{d}, \tag{7}
\end{align*}
$$

respectively, given that $Y=Y_{d}$ when $D=d$.

Identification under SDC

- Using Assumption BoS, we can bound the counterfactuals (second terms of (6) and (7)) as follows:

$$
\begin{aligned}
Y_{d}(1+\alpha \tilde{D}) \mathbb{1}\{D \neq d\} & \leq \\
& \max \left\{\underline{y}_{d}(1+\alpha \tilde{D}), \bar{y}_{d}(1+\alpha \tilde{D})\right\} \mathbb{1}\{D \neq d\} \\
Y_{d}(1-\alpha \tilde{D}) \mathbb{1}\{D \neq d\} & \geq \\
& \min \left\{\underline{y}_{d}(1-\alpha \tilde{D}), \bar{y}_{d}(1-\alpha \tilde{D})\right\} \mathbb{1}\{D \neq d\} .
\end{aligned}
$$

Identification under SDC

- Therefore, the inequalities (6) and (7) imply that

$$
\mathbb{E}\left[\bar{f}_{d}(Y, D, 1+\alpha \tilde{D})\right] \geq \theta_{d} \text { and } \mathbb{E}\left[\underline{f}_{d}(Y, D, 1-\alpha \tilde{D})\right] \leq \theta_{d}
$$

for any $\alpha \in[0,1)$, where we define the function \underline{f}_{d} and \bar{f}_{d} as

$$
\begin{aligned}
& \underline{f}_{d}(Y, D, \delta) \equiv \mathbb{1}\{D=d\} \delta Y+\mathbb{1}\{D \neq d\} \min \left\{\delta \underline{y}_{d}, \delta \bar{y}_{d}\right\} \\
& \bar{f}_{d}(Y, D, \delta) \equiv \mathbb{1}\{D=d\} \delta Y+\mathbb{1}\{D \neq d\} \max \left\{\delta \underline{y}_{d}, \delta \bar{y}_{d}\right\}
\end{aligned}
$$

Identification under SDC

- Finally, we can then take the supremum and the infimum of the lower and upper bounds over α, respectively, to obtain the following bounds for θ_{d} :

$$
I_{S D C 1}^{d} \equiv\left[\sup _{\alpha \in[0,1)} \mathbb{E}\left[\underline{f}_{d}(Y, D, 1-\alpha \tilde{D})\right], \inf _{\alpha \in[0,1)} \mathbb{E}\left[\bar{f}_{d}(Y, D, 1+\alpha \tilde{D})\right]\right] .
$$

which is implied by the inequality (2)

Identification under SDC

- In the same manner, from (3), (4), and (5), we have

$$
\begin{aligned}
& I_{S D C 2}^{d} \equiv\left[\sup _{\alpha \in[0,1)} \mathbb{E}\left[\underline{f}_{d}(Y, D, 1-\alpha \tilde{Z})\right], \inf _{\alpha \in[0,1)} \mathbb{E}\left[\bar{f}_{d}(Y, D, 1+\alpha \tilde{Z})\right]\right], \\
& I_{S D C 3}^{d} \equiv\left[\sup _{\alpha \in[0,1)} \mathbb{E}\left[\underline{f}_{d}(Y, D, 1+\alpha \tilde{D})\right], \inf _{\alpha \in[0,1)} \mathbb{E}\left[\bar{f}_{d}(Y, D, 1-\alpha \tilde{D})\right]\right], \\
& I_{S D C 4}^{d} \equiv\left[\sup _{\alpha \in[0,1)} \mathbb{E}\left[\underline{f}_{d}(Y, D, 1+\alpha \tilde{Z})\right], \inf _{\alpha \in[0,1)} \mathbb{E}\left[\bar{f}_{d}(Y, D, 1-\alpha \tilde{Z})\right]\right],
\end{aligned}
$$

Identification under SDC

Proposition 1

Under Assumptions BoS and SDC, the identification region for the parameter θ_{d} is:

$$
I_{S D C}^{d} \equiv\left(I_{S D C 1}^{d} \cap I_{S D C 2}^{d}\right) \cup\left(I_{S D C 3}^{d} \cap I_{S D C 4}^{d}\right)
$$

- We relax the parametric linear assumption at the expense of the bounded support assumption
- The bounds derived in Proposition 1 may not be sharp

Identification under SDC and LEI

Proposition 2

Under Assumptions BoS, SDC and LEI, the identification region for θ_{d} is:

$$
I_{L E I}^{d} \equiv\left(I_{L E I 1}^{d} \cap I_{S D C 2}^{d}\right) \cup\left(I_{L E I 2}^{d} \cap I_{S D C 4}^{d}\right) .
$$

where

$$
\begin{aligned}
& I_{L E / 1}^{d} \equiv\left[\sup _{\alpha \in[0,1)} \mathbb{E}\left[\underline{f}_{d}\left(Y, D, 1-\alpha\left(\tilde{D} \sigma_{Z}-\tilde{Z} \sigma_{D}\right)\right)\right],\right. \\
& \left.\qquad \inf _{\alpha \in[0,1)} \mathbb{E}\left[\bar{f}_{d}\left(Y, D, 1+\alpha\left(\tilde{D} \sigma_{Z}-\tilde{Z} \sigma_{D}\right)\right)\right]\right] \\
& I_{L E I 2}^{d} \equiv \\
& \equiv \sup _{\alpha \in[0,1)} \mathbb{E}\left[\underline{f}_{d}\left(Y, D, 1+\alpha\left(\tilde{D} \sigma_{Z}-\tilde{Z} \sigma_{D}\right)\right)\right],
\end{aligned}
$$

$$
\left.\inf _{\alpha \in[0,1)} \mathbb{E}\left[\bar{f}_{d}\left(Y, D, 1-\alpha\left(\tilde{D} \sigma_{Z}-\tilde{Z} \sigma_{D}\right)\right)\right]\right]
$$

Table of Contents

(1) Introduction

(2) Analytical Framework
(3) Identification Results
4. Inference
(5) Empirical Illustration
(6) Conclusion

Inference of the set $I_{S D C}^{d}$

$$
I_{S D C}^{d}=\left(I_{S D C 1}^{d} \cap I_{S D C 2}^{d}\right) \cup\left(I_{S D C 3}^{d} \cap I_{S D C 4}^{d}\right)
$$

- This is an intersection-union test as described in Berger (1982)
(1) Construct confidence regions for the sets $I_{S D C 1}^{d} \cap I_{S D C 2}^{d}$ and $I_{S D C 3}^{d} \cap I_{S D C 4}^{d}$ using the intersection bounds framework of Chernozhukov et al. (2013) or Andrews and Shi (2013)
(2) Take the union of the two confidence regions, which has at least the same coverage rate as each confidence region (Berger and Hsu, 1996)

Inference of the set $I_{S D C}^{d}$

- If we draw U from the uniform distribution over $[0,1$), independently of the data (Y, D, Z), then we have

$$
\mathbb{E}\left[\underline{f}_{d}(Y, D, 1-U \tilde{D}) \mid U=\alpha\right]=\mathbb{E}\left[\underline{f}_{d}(Y, D, 1-\alpha \tilde{D})\right]
$$

- Then, for instance, we have

$$
\begin{aligned}
& I_{S D C 1}^{d}=\left[\sup _{\alpha \in[0,1)} \mathbb{E}\left[\underline{f}_{d}(Y, D, 1-U \tilde{D}) \mid U=\alpha\right]\right. \\
&\left.\inf _{\alpha \in[0,1)} \mathbb{E}\left[\bar{f}_{d}(Y, D, 1+U \tilde{D}) \mid U=\alpha\right]\right]
\end{aligned}
$$

which takes the from of conditional moment inequalities

Table of Contents

(1) Introduction

(2) Analytical Framework
(3) Identification Results
(4) Inference

(5) Empirical Illustration

6 Conclusion

Data

- A data set drawn from the National Longitudinal Survey of Young Men (NLSYM)
- This data includes 3,010 young men who were ages 24-34 in 1976
- The outcome variable (Y) is log hourly wage in cents (/wage)
- The treatment variable (D) is education (educ) grouped in 4 categories:
(1) less than high school (educ <12 years)
(2) high school $(12 \leq e d u c<16)$
(3) college degree ($16 \leq$ educ <18)
(9) graduate (educ ≥ 18)
- Imperfect IV (Z) is parental education
- An individual's ability can be dependent on her parents' ability, which is correlated with parental education

Estimation

- For practical reasons, we follow Ginther (2000) to trim the log wage
- In theory, the outcome variable /wage is unbounded
- $Y=\tau$-quantile of Iwage if Iwage is less than or equal to its τ-quantile
- $Y=(1-\tau)$-quantile of Iwage if Iwage is greater than or equal to its $(1-\tau)$-quantile
- $Y=$ I wage otherwise
- We set $\tau=0.05$
- Two-sided confidence bounds on the potential average log wages using the clr2bound command of Chernozhukov et al. (2015) in the Stata software
- The results with mother's education as an IIV are presented

Estimated Confidence Intervals

Table: Confidence sets for parameters under SDC		
Parameters		95% conf. LB
95%		
$\theta_{0}(<$ high $)$	5.53	6.86
θ_{1} (high)	5.89	6.66
θ_{2} (college)	5.65	6.88
θ_{3} (graduate)	5.55	6.94
$\theta_{0}-\theta_{1}$	-1.13	0.97
$\theta_{2}-\theta_{1}$	-1.01	0.98
$\theta_{3}-\theta_{1}$	-1.11	1.05

* conf. LB: confidence lower bound; conf. UB: confidence upper bound.

Estimated Confidence Intervals

Table: Confidence sets for parameters under SDC and LEI

Parameters	95% conf. LB	95% conf. UB
θ_{0} ($<$ high)	5.53	6.86
θ_{1} (high)	5.89	6.66
θ_{2} (college)	5.65	6.86
θ_{3} (graduate)	5.55	6.94
$\theta_{0}-\theta_{1}$	-1.13	0.97
$\theta_{2}-\theta_{1}$	-1.01	0.97
$\theta_{3}-\theta_{1}$	-1.11	1.05

* conf. LB: confidence lower bound; conf. UB: confidence upper bound.

Estimated Confidence Intervals

Table: Confidence sets for parameters under SDC, LEI, and MTR

Parameters	95% conf. LB	95% conf. UB
θ_{0} (high)	5.53	6.30
θ_{1} (high)	6.30	6.46
θ_{2} (college)	6.46	6.82
θ_{3} (graduate)	6.82	6.94
$\theta_{0}-\theta_{1}$	-0.93	0.00
$\theta_{2}-\theta_{1}$	0.00	0.52
$\theta_{3}-\theta_{1}$	0.36	0.64

* conf. LB: confidence lower bound; conf. UB: confidence upper bound.

Table of Contents

(1) Introduction

(2) Analytical Framework
(3) Identification Results
(4) Inference
(5) Empirical Illustration
(6) Conclusion

Conclusion

- Non-parametric bounds on the average treatment effect are derived when an imperfect instrument is available
- Nevo and Rosen (2012)'s identification results are extended
- We show that the MTS-MIV restrictions introduced by Manski and Pepper (2000, 2009), jointly imply the SDC assumption
- We introduce the concept of comonotone IV, which also satisfies the SDC assumption
- The identified set takes the form of intersection bounds, which can be implemented using the Chernozhukov et al. (2013) inferential method
- We illustrate our methodology using the National Longitudinal Survey of Young Men data to estimate returns to schooling

Table of Contents

(7) References

References

Andrews, D. W. K. and Shi, X. (2013). Inference based on conditional moment inequalities. Econometrica, 81:609-666.
Berger, R. L. (1982). Multiparameter hypothesis testing and acceptance sampling.
Technometrics, 24:295-300.
Berger, R. L. and Hsu, J. C. (1996). Bioequivalence trials, intersection-union tests and equivalence confidence sets. Statistical Science, 11(4):283-319.
Chernozhukov, V., Kim, W., Lee, S., and Rosen, A. M. (2015). Implementing intersection bounds in stata. Stata Journal, 15(1):21-44.
Chernozhukov, V., Lee, S., and Rosen, A. M. (2013). Intersection bounds: Estimation and inference. Econometrica, 81(2):667-737.
Ginther, D. K. (2000). Alternative estimates of the effect of schooling on earnings. The Review of Economics and Statistics, 82(1):103-116.
Kédagni, D. and Mourifié, I. (2020). Generalized instrumental inequalities: Testing the instrumental variable independence assumption. Biometrika, 107(3):661-675.
Manski, C. F. (1990). Nonparametric bounds on treatment effects. American Economic Reviews, Papers and Proceedings of the Hundred and Second Annual Meeting of the American Economic Association, 80(2):319-323.

References (cont.)

Manski, C. F. (1994). The selection problem. in Advances Economics, Sixth World Congress, C. Sims (ed.), Cambridge University Press, 1:143-170.
Manski, C. F. (1997). Monotone treatment response. Econometrica, 65(6):1311-1334.
Manski, C. F. and Pepper, J. (2000). Monotone instrumental variables: With an application to the returns to schooling. Econometrica, 68:997-1010.
Manski, C. F. and Pepper, J. (2009). More on monotone instrumental variables. Econometrics Journal, 12:S200-S216.
Mourifié, I., Henry, M., and Méango, R. (2020). Sharp bounds and testability of a roy model of stem major choices. Journal of Political Economy, 8(128):3220-3283.
Nevo, A. and Rosen, A. (2012). Identification with imperfect instruments. The Review of Economics and Statistics, 94(3):659-671.
Roy, A. D. (1951). Some thoughts on the distribution of earnings. Oxford Economic Papers, New Series, 3(2):135-146.

