Labor Mobility and Capital Misallocation in the Mutual Fund Industry

Maxime Bonelli

December 2020

Mutual funds

Mutual funds play a major role in the economy

(about 1/4 of all financial assets of U.S. households \approx \$20 trillion)

Mutual fund managers vary greatly in skills

(Berk and van Binsbergen, 2015: from 1962 to 2011 the median fund lost \$20k/month while the fund at the 90th percentile created \$750k/month)

 \Rightarrow The value added of the mutual fund industry for investors depends on the allocation of capital *across* fund managers

How capital matches skill

 $\textit{Capital} \rightarrow \textit{Managers}:$

How capital matches skill

 $Managers \rightarrow Capital:$

This paper

Main finding: Fund manager mobility across firms improves the capital allocation efficiency across managers

Manager level:

- ▶ the capital "mismatch" of a manager predicts her switching firms
- when a manager switches firms:
 - capital "mismatch" \downarrow by 30%
 - value added \uparrow by \$0.8 million/month

Aggregate level:

- Manager mobility affects mutual fund misallocation and productivity
- When a US state \uparrow non-compete clauses enforceability (\downarrow mobility)
 - capital misallocation across fund managers \uparrow by 9% to 12%
 - state-level value added of fund managers \downarrow by \$25 million/month

This paper

Main finding: Fund manager mobility across firms improves the capital allocation efficiency across managers

Manager level:

- the capital "mismatch" of a manager predicts her switching firms
- when a manager switches firms:
 - capital "mismatch" \downarrow by 30%
 - value added \uparrow by \$0.8 million/month

Aggregate level:

- Manager mobility affects mutual fund misallocation and productivity
- When a US state \uparrow non-compete clauses enforceability (\downarrow mobility)
 - capital misallocation across fund managers \uparrow by 9% to 12%
 - state-level value added of fund managers \downarrow by \$25 million/month

This paper

Main finding: Fund manager mobility across firms improves the capital allocation efficiency across managers

Manager level:

- the capital "mismatch" of a manager predicts her switching firms
- when a manager switches firms:
 - capital "mismatch" \downarrow by 30%
 - value added \uparrow by \$0.8 million/month

Aggregate level:

- Manager mobility affects mutual fund misallocation and productivity
- When a US state \uparrow non-compete clauses enforceability (\downarrow mobility)
 - capital misallocation across fund managers \uparrow by 9% to 12%
 - state-level value added of fund managers \downarrow by \$25 million/month

Literature

1. Capital-skill match

Berk & Green (2004), Fang et al (2014), Berk et al (2017), Song (2020)

- ▶ This paper: Manager mobility *across* firms improves capital-skill match
- 2. Labor market for fund managers
 - Khorana (1996), Chevalier & Ellison (1999), Acharya et al. (2016), Ellul et al. (2020)
- This paper: Labor market affects capital allocation
- Labor market frictions and aggregate productivity Hopenhayn & Rogerson (1993), Lagos (2006), Bryan & Morten (2019)
- ► This paper: Lower fund manager mobility ⇒ Lower productivity in the mutual fund industry

Literature

1. Capital-skill match

Berk & Green (2004), Fang et al (2014), Berk et al (2017), Song (2020)

- ► This paper: Manager mobility *across* firms improves capital-skill match
- 2. Labor market for fund managers

Khorana (1996), Chevalier & Ellison (1999), Acharya et al. (2016), Ellul et al. (2020)

- This paper: Labor market affects capital allocation
- 3. Labor market frictions and aggregate productivity

Hopenhayn & Rogerson (1993), Lagos (2006), Bryan & Morten (2019)

► This paper: Lower fund manager mobility ⇒ Lower productivity in the mutual fund industry

Literature

1. Capital-skill match

Berk & Green (2004), Fang et al (2014), Berk et al (2017), Song (2020)

- ► This paper: Manager mobility *across* firms improves capital-skill match
- 2. Labor market for fund managers

Khorana (1996), Chevalier & Ellison (1999), Acharya et al. (2016), Ellul et al. (2020)

- This paper: Labor market affects capital allocation
- Labor market frictions and aggregate productivity Hopenhayn & Rogerson (1993), Lagos (2006), Bryan & Morten (2019)
- ► This paper: Lower fund manager mobility ⇒ Lower productivity in the mutual fund industry

Roadmap

1. Model

- 2. Data
- 3. Manager mobility and capital misallocation
- 4. Non-compete agreements

The model

Each manager m is employed by a firm f_m and generates value added:

 \Rightarrow Optimal amount of capital $k_m^* = \arg \max_k v_m(k)$ s.t. $v_m'(k_m^*) = 0$

The match between capital and managers

Frictionless capital markets \Rightarrow Investors allocate capital to managers such that the marginal products of capital (MPK) are *equalized*:

 $\forall m, v'_m(k_m) = \lambda \implies$ No role for manager mobility

Capital market friction \Rightarrow MPK across managers can still be equalized through manager mobility:

- within firm $\Rightarrow v'_m(k_m) = \lambda_f$ (Berk et al, 2017)
- across firms $\Rightarrow \frac{\partial \lambda_f}{\partial f} = 0 \iff v'_m(k_m) = \lambda$

Manager mobility frictions \Rightarrow Dispersion in MPK

The match between capital and managers

Frictionless capital markets \Rightarrow Investors allocate capital to managers such that the marginal products of capital (MPK) are *equalized*:

 $\forall m, v'_m(k_m) = \lambda \implies$ No role for manager mobility

Capital market friction \Rightarrow MPK across managers can still be equalized through manager mobility:

- within firm $\Rightarrow v'_m(k_m) = \lambda_f$ (Berk et al, 2017)
- across firms $\Rightarrow \frac{\partial \lambda_f}{\partial f} = 0 \iff v'_m(k_m) = \lambda$

Manager mobility frictions \Rightarrow Dispersion in MPK

The match between capital and managers

Frictionless capital markets \Rightarrow Investors allocate capital to managers such that the marginal products of capital (MPK) are *equalized*:

 $\forall m, v'_m(k_m) = \lambda \implies$ No role for manager mobility

Capital market friction \Rightarrow MPK across managers can still be equalized through manager mobility:

- within firm $\Rightarrow v'_m(k_m) = \lambda_f$ (Berk et al, 2017)
- across firms $\Rightarrow \frac{\partial \lambda_f}{\partial f} = 0 \iff v'_m(k_m) = \lambda$

Manager mobility frictions \Rightarrow Dispersion in MPK

Data

- 1) CRSP Survivorship Bias Free Mutual Fund Database
- 2) Morningstar mutual funds data
- 3) S&P Capital IQ-People Intelligence: profiles of professionals with individual ID, company affiliation, office address

 \Rightarrow 5,500+ active equity fund managers with a track record of at least two years between 2000 and 2018:

- track fund managers across time, firms and locations
- monitor their performance and assets under management (AUM)
- about 20% of managers switch firms, with large changes in AUM (\$500 million on average, \$107 million at the median)

Manager value added function

- Gross alpha: $\alpha_m(k) = a_m b_m k$
- Estimate parameters a_m and b_m at the manager level (Pástor et al., 2015; Zhu ,2018)

Measuring misallocation

With estimates of a_m and b_m , one can compute a given manager's:

• optimal amount of capital k_m^* :

$$v_m'(k_m^*) = 0 \quad \Rightarrow \quad k_m^* = \frac{a_m}{2b_m}$$

marginal product of capital (MPK) for capital k:

$$v_m'(k) = a_m - 2b_m k$$

Two measures of manager-level misallocation:

- 1) absolute value of MPK (i.e., $v'_m(k) \neq 0$)
- 2) **\$Misallocation**: $|k_m k_m^*|$ (difference between actual and optimal AUM)

Measuring misallocation

With estimates of a_m and b_m , one can compute a given manager's:

• optimal amount of capital k_m^* :

$$v_m'(k_m^*) = 0 \quad \Rightarrow \quad k_m^* = \frac{a_m}{2b_m}$$

marginal product of capital (MPK) for capital k:

$$v_m'(k) = a_m - 2b_m k$$

Two measures of manager-level misallocation:

- 1) absolute value of MPK (i.e., $v'_m(k) \neq 0$)
- 2) **\$Misallocation**: $|k_m k_m^*|$ (difference between actual and optimal AUM)

Misallocation predicts switching

 $Switch_{m,t} = \beta \log(\textit{Misallocation}_{m,t}) + \gamma X_{m,t} + \delta_t + \lambda_m + \eta_{\textit{style}} + \theta_f + \epsilon_{m,t}$

	Switch							
	(1)	(2)	(3)	(4)	(5)	(6)		
log MPK		0.0004*** (0.0001)			0.0003**** (0.0001)			
log(Misallocation)			0.0003*** (0.0001)			0.0003*** (0.0001)		
log(TNA)	-0.0003**	-0.0004***	-0.0004***	-0.0005***	-0.0006***	-0.0006***		
	(0.0001)	(0.0001)	(0.0001)	(0.0001)	(0.0001)	(0.0001)		
log(#Funds)	-0.0037***	-0.0038***	-0.0038***	-0.0036***	-0.0036***	-0.0036***		
	(0.0005)	(0.0005)	(0.0005)	(0.0006)	(0.0006)	(0.0006)		
log(#Comanagers)	-0.0003	-0.0002	-0.0002	-0.0002	-0.0001	-0.0002		
	(0.0003)	(0.0003)	(0.0003)	(0.0003)	(0.0003)	(0.0003)		
Flow	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000		
	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)	(0.0000)		
log(Tenure)	0.0021***	0.0022***	0.0022***	0.0021***	0.0021***	0.0021***		
	(0.0002)	(0.0002)	(0.0002)	(0.0002)	(0.0002)	(0.0002)		
log(Experience)	-0.0030***	-0.0029***	-0.0029***	-0.0023***	-0.0023***	-0.0023***		
	(0.0004)	(0.0004)	(0.0004)	(0.0003)	(0.0003)	(0.0003)		
Internal.Realloc	0.0044***	0.0044***	0.0044***	0.0041***	0.0041***	0.0041***		
	(0.0004)	(0.0004)	(0.0004)	(0.0005)	(0.0005)	(0.0005)		
Retail.Share	0.0009	0.0009*	0.0009*	0.0007	0.0007	0.0007		
	(0.0006)	(0.0005)	(0.0005)	(0.0006)	(0.0006)	(0.0006)		
Time FE	Yes	Yes	Yes	Yes	Yes	Yes		
Manager FE	Yes	Yes	Yes	Yes	Yes	Yes		
Style FE	Yes	Yes	Yes	Yes	Yes	Yes		
Firm FE	No	No	No	Yes	Yes	Yes		
Observations	573,152	573,152	573,152	573,015	573,015	573,015		
R ²	0.02	0.02	0.02	0.04	0.04	0.04		

Switch \Rightarrow Misallocation drops

 $\log(\textit{Misallocation})_{m,t} = \beta\{\textit{Switch} \times \textit{Post}\}_{m,t} + \textit{Control}_{m,t} + \delta_t + \lambda_m + \eta_{\textit{style}} + \theta_f + \epsilon_{m,t}$

	log(\$Misallocation)									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Switch \times Post	-0.382*** (0.068)	-0.397*** (0.068)			-0.281*** (0.069)	-0.297*** (0.070)				
SwitchLowRetail $ imes$ Post			-0.086 (0.099)	-0.107 (0.099)			-0.142 (0.104)	-0.163 (0.104)		
SwitchHighRetail \times Post			-0.517*** (0.074)	-0.528*** (0.074)			-0.345*** (0.076)	-0.359*** (0.077)		
log(Experience)		0.127*** (0.021)		0.125*** (0.021)		0.091*** (0.021)		0.091*** (0.021)		
Time FE	Yes									
Manager FE	Yes									
Style FE	Yes									
Firm FE	No	No	No	No	Yes	Yes	Yes	Yes		
Observations R ²	573,153 0.75	573,153 0.76	573,153 0.75	573,153 0.76	573,016 0.80	573,016 0.80	573,016 0.80	573,016 0.80		

Switch \Rightarrow Value added increases

 $ValueAdded_{m,t} = \beta \{ Switch \times Post \}_{m,t} + Control_{m,t} + \delta_t + \lambda_m + \eta_{style} + \theta_f + \epsilon_{m,t} \}$

		Value Added										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
Switch $ imes$ Post	0.912*** (0.152)	0.932*** (0.154)			0.818*** (0.157)	0.838 ^{***} (0.162)						
SwitchLowRetail $ imes$ Post			0.564*** (0.168)	0.592*** (0.168)			0.405 ^{**} (0.197)	0.431** (0.199)				
SwitchHighRetail $ imes$ Post			1.070*** (0.179)	1.086*** (0.180)			1.010*** (0.184)	1.027*** (0.188)				
log(Experience)		-0.171** (0.074)		-0.169** (0.074)		-0.116 (0.081)		-0.114 (0.081)				
Time FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes				
Manager FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes				
Style FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes				
Firm FE	No	No	No	No	Yes	Yes	Yes	Yes				
Observations R ²	573,153 0.03	573,153 0.03	573,153 0.03	573,153 0.03	573,016 0.04	573,016 0.04	573,016 0.04	573,016 0.04				

Trend before vs after a firm switch

$$Y_{m,t} = \sum_{k} \beta_{k} \left\{ \text{Switch} \times \text{year } k \text{ to switch} \right\}_{m,t} + \delta_{t} + \lambda_{m} + \eta_{\text{style}} + \theta_{f} + \epsilon_{m,t}$$

Non-Compete Clauses (NCCs)

Switches might be correlated with unobserved variables

- ► NCCs: labor contract clauses ⇒ employee cannot join or found competitor within one-year of leaving
- Use staggered US state-level variations in NCCs enforceability as shocks to mobility costs
- \Rightarrow Diff-in-diff: Test whether in states where NCCs enforceability \uparrow :
 - 1) managers' mobility \downarrow
 - 2) capital misallocation across managers \uparrow
 - 3) sum of managers' value added \downarrow

Non-Compete Clauses (NCCs)

Switches might be correlated with unobserved variables

- ► NCCs: labor contract clauses ⇒ employee cannot join or found competitor within one-year of leaving
- Use staggered US state-level variations in NCCs enforceability as shocks to mobility costs
- \Rightarrow Diff-in-diff: Test whether in states where NCCs enforceability \uparrow :
 - 1) managers' mobility \downarrow
 - 2) capital misallocation across managers \uparrow
 - 3) sum of managers' value added \downarrow

States affected by NCCs law changes

NCCs enforcement changes

Average number of managers over the period

NCCs enforceability $\uparrow \Rightarrow \mathsf{mobility} \downarrow$

$$100 \times \left(\frac{\# \textit{Switches}}{\#\textit{Managers}}\right)_{s,t} = \beta \left\{\textit{Treated} \times \textit{Post}\right\}_{s,t} + \gamma X_{s,t-1} + \theta_s + \delta_t + \epsilon_{s,t}$$

	10	100 imes (#Switches/#Managers)								
	(1)	(2)	(3)	(4)						
Treated $ imes$ Post	-0.042** (0.016)	-0.046** (0.017)	-0.049*** (0.018)	-0.053*** (0.018)						
$\log(\#Managers)$			0.036 (0.024)	0.038 (0.023)						
$\log(\#Firms)$			0.060** (0.025)	0.057** (0.025)						
$\log(TNA)$			-0.008 (0.011)	-0.009 (0.011)						
$\log(\#Funds)$			-0.040 (0.027)	-0.038 (0.027)						
Drop NY, MA, CA	No	Yes	No	Yes						
Time FE	Yes	Yes	Yes	Yes						
State FE	Yes	Yes	Yes	Yes						
Observations R^2	9,488 0.14	8,804 0.13	9,451 0.14	8,770 0.13						

NCCs enforceability $\uparrow \Rightarrow$ misallocation \uparrow , value added \downarrow

 $Y_{s,t} = \beta \left\{ \text{Treated} \times \text{Post} \right\}_{s,t} + \gamma X_{s,t-1} + \theta_s + \delta_t + \epsilon_{s,t}$

	$100 \times d$	τ(MPK)	100 imes (MF)	PK 75 – 25)	Value Added		
	(1)	(2)	(3)	(4)	(5)	(6)	
Treated $ imes$ Post	0.021**	0.021**	0.045***	0.046 ^{***}	-26.940**	-25.860**	
	(0.009)	(0.009)	(0.015)	(0.015)	(12.799)	(11.708)	
$\log(\#Managers)$	-0.024	-0.024	-0.073**	-0.074**	16.327	10.306	
	(0.022)	(0.022)	(0.028)	(0.029)	(17.916)	(11.072)	
log(#Firms)	0.034	0.034	0.052	0.053	0.213	-9.063	
	(0.023)	(0.023)	(0.035)	(0.035)	(12.743)	(7.090)	
log(TNA)	0.024^{*}	0.024^{*}	0.029	0.029	-15.058*	-8.151**	
	(0.014)	(0.014)	(0.020)	(0.020)	(8.847)	(3.951)	
$\log(\#Funds)$	-0.002	-0.002	0.006	0.006	-2.423	-5.820	
	(0.023)	(0.023)	(0.029)	(0.030)	(9.197)	(5.833)	
Drop NY, MA, CA	No	Yes	No	Yes	No	Yes	
Time FE	Yes	Yes	Yes	Yes	Yes	Yes	
State FE	Yes	Yes	Yes	Yes	Yes	Yes	
Observations R^2	9,451	8,770	9,451	8,770	9,451	8,770	
	0.61	0.61	0.54	0.54	0.17	0.17	

Trend before vs after NCCs law changes

 $Y_{s,t} = \sum_{k} \beta_{k} \{ \textit{Treated} \times \textit{year } k \textit{ to treatment} \}_{s,t} + \textit{Control}_{s,t-1} + \delta_{t} + \theta_{s} + \epsilon_{s,t} \}$

Conclusion

 \rightarrow Skills go to capital: fund managers' mobility across firms is important to capital allocation efficiency in the mutual fund industry

 \rightarrow Inter-firm mobility frictions have real consequences:

- ▶ larger mismatch between capital and skill among mutual fund managers (capital misallocation ↑ by 10%)
- ▶ lower productivity in the mutual fund industry: state-level value added ↓ by \$25 million/month (= 79th percentile of its distribution)

Appendix

Frictionless capital markets

• Continuum of managers $m \in [0, M]$ with density $\mu(m)$

• Investors maximize the NPV of investment by allocating capital (\tilde{k}_m) to the different managers in the economy:

$$\tilde{k}_m = \arg\max_{k_m} \int_0^M \mu(i) \left[v_i(k_i) - W_i \right] di, \qquad (1)$$

$$\int_0^M \mu(i) \mathbf{k}_i di \le \mathbf{K}.$$
 (2)

$$\Rightarrow$$
 FOC: $v'_m(\tilde{k}_m) = \lambda$

(Quick) Derivation

Continuum of firms $f \in [0, F]$ employing managers and generating profit:

$$\int_0^M L_m(f) \left[v_m(k_m(f)) - W_m \right] dm,$$

- $L_m(f)$: mass of manager *m* employed by firm *f*
- $k_m(f)$: amount of capital managed by manager m in firm f
- ► W_m: compensation of manager m
- 1. Firm f chooses the amount of capital $k_m(f)$ to be managed by managers m, taking W_m and $L_m(f)$ as given $\Rightarrow v'_m(k_m(f)) = \lambda_f$
- 2. Firm f optimizes its labor demand $L_m(f)$, taking $k_m(f)$ from step 1.

$$\Rightarrow W_m = v_m(k_m(f)) - \lambda_f k_m(f)$$

3. Manager *m* chooses employer $f_m = \arg \max_f v_m(k_m(f)) - \lambda_f k_m(f)$ $\Rightarrow \frac{\partial \lambda_f}{\partial f} = 0 \iff v'_m(k_m(f_m)) = \lambda$

(Quick) Derivation

Continuum of firms $f \in [0, F]$ employing managers and generating profit:

$$\int_0^M L_m(f) \left[v_m(k_m(f)) - W_m \right] dm,$$

- $L_m(f)$: mass of manager *m* employed by firm *f*
- $k_m(f)$: amount of capital managed by manager m in firm f
- ▶ *W_m*: compensation of manager *m*
- 1. Firm f chooses the amount of capital $k_m(f)$ to be managed by managers m, taking W_m and $L_m(f)$ as given $\Rightarrow v'_m(k_m(f)) = \lambda_f$
- 2. Firm f optimizes its labor demand $L_m(f)$, taking $k_m(f)$ from step 1.

$$\Rightarrow W_m = v_m(k_m(f)) - \lambda_f k_m(f)$$

3. Manager *m* chooses employer $f_m = \arg \max_f v_m(k_m(f)) - \lambda_f k_m(f)$ $\Rightarrow \frac{\partial \lambda_f}{\partial f} = 0 \iff v'_m(k_m(f_m)) = \lambda$ Back

The Impact of Moving Costs

Assume that manager *m* faces cost $c_m(f)$ if moving to firm *f*

▶ manager $m \in [0, M]$ now chooses employer f_m s.t.

$$f_m = \arg \max_f v_m(k_m(f)) - \lambda_f k_m(f) - c_m(f)$$

$$\Rightarrow$$
 FOC (+ algebra)
 $rac{\partial \lambda_f}{\partial f} = -rac{\mathcal{C}(f_m)}{Q(f_m)},$

where

$$\mathcal{C}(f) = \int_0^M L_m(f) \frac{\partial c_m(f)}{\partial f} dm$$

 \Rightarrow introduction of a moving cost causes capital misallocation, i.e., there is a dispersion in marginal products of capital

Summary statistics (fund manager level)

	Obs	Mean	Sd	5%	25%	50%	75%	95%
TNA (mill)	573,154	1,029.3	3,054.6	10.3	50.2	197.3	734.9	4,765.8
#Funds	573,154	2.1	2.0	1.0	1.0	1.0	2.0	5.0
#Comanagers	573,154	3.7	5.6	0.0	1.0	2.0	4.0	14.0
Gross alpha (%)	573,154	-0.0	1.7	-2.3	-0.7	-0.0	0.6	2.2
Value Added (mill)	573,154	-0.8	16.4	-20.5	-1.3	-0.0	1.0	16.1
Flow (mill)	573,154	0.5	116.1	-35.6	-3.9	-0.3	1.1	29.1
Experience (years)	573,154	8.2	6.1	1.1	3.3	6.8	11.8	20.0
Tenure (years)	573,154	4.9	4.5	0.3	1.5	3.5	6.8	14.1

Summary statistics of skill parameters

Group	Avg. AUM	#Mgrs	Obs	$b_m(\times 10^4)$	$t(b_m)$	$a_m (\times 10^4)$						
						mean	std.	5%	25%	50%	75%	95%
1	27	559	32,107	0.612	2.81	8.30	45.79	-28.97	1.91	14.04	22.33	38.85
2	48	559	42,481	0.208	3.74	7.56	17.39	-17.04	0.22	8.13	13.86	33.33
3	78	559	46,219	0.131	3.59	6.69	23.77	-27.08	0.55	8.71	15.95	33.69
4	123	558	49,878	0.051	4.16	3.26	20.53	-29.11	-3.24	4.90	11.74	27.07
5	186	559	56,594	0.036	4.04	2.09	19.32	-25.76	-5.31	3.63	10.08	29.37
6	280	559	58,969	0.026	4.51	3.26	19.98	-26.38	-5.52	4.42	11.74	31.43
7	423	558	60,126	0.021	4.34	3.65	20.04	-30.70	-3.24	6.15	13.16	30.12
8	676	559	65,363	0.016	7.47	6.36	18.22	-25.94	0.37	8.33	14.25	30.42
9	1,220	559	68,009	0.007	5.95	4.62	15.97	-20.76	-1.24	5.77	11.93	26.28
10	4,984	558	79,044	0.003	4.09	9.69	18.66	-19.90	0.11	9.11	18.41	38.40

Back

Summary statistics (state level)

	Obs	Mean	Sd	5%	25%	50%	75%	95%
#Managers #Firms TNA (bill) #Funds Value Added (mill) #Switches 100 × (#Switches/#Managers)	9,488 9,488 9,488 9,488 9,488 9,488 9,488 9,488	60.3 20.0 62.1 50.0 -48.0 0.1 0.2	104.7 30.1 150.2 88.3 382.9 0.5 1.8	2.0 1.0 0.1 1.5 -466.2 0.0 0.0	5.0 3.0 0.9 4.2 -51.2 0.0 0.0	20.0 8.0 9.7 16.4 -0.7 0.0 0.0	64.0 22.0 48.0 56.3 14.4 0.0 0.0	297.0 81.0 365.1 209.4 238.6 1.0 0.4

Treated Vs. Control states

	Co	ntrol	Tre		
	Obs	Mean	Obs	Mean	t
#Managers #Firms TNA (bill) #Funds Value Added (mill) #Switches 100 × (#Switches/#Managers)	312 312 312 312 312 312 312 312	38.1 19.6 44.6 35.1 82.4 0.2 0.5	120 120 120 120 120 120 120	27.1 16.9 28.3 26.4 61.6 0.1 0.3	1.87 0.97 1.84 1.56 0.70 0.92 0.98

Non-Competes in the U.S. Labor Force

Source: Starr, Bishara and Prescott (2018), using nationally representative survey data on 11,505 labor force participants in the US in 2014

Figure A1: Incidence of noncompetes by industry and occupation

Industry