Immigration and Worker-Firm Matching

Gianluca Orefice* and Giovanni Peri**

*University Paris-Dauphine, PSL, **University of California, Davis and NBER

Immigration and Firm Productivity: a new channel

Immigration and Productivity: three explored and one new channel.

- 1. Knowledge diffusion: Immigrants bring new skills at destination that may spur knowledge (Bahar and Rapoport 2018) or innovation (Hunt 2010).
- 2. <u>Comparative advantage</u>: Improved task allocation between immigrant and native workers within/across firms (Peri and Sparber 2009).
- 3. Technology adoption: Thanks to skilled immigrants (Lewis 2013).
- 4. <u>New channel</u>: Immigration as an injection of workers with **heterogeneous** and **unknown** abilities \Rightarrow screening becomes crucial for firms \Rightarrow *Positive Assortative Matching* (PAM, the right worker for the right task).

What do we do

- 1. Test whether a positive shock in the supply of migrant workers improves the strength of worker-firm PAM across French local labor markets.
- 2. Test whether migration shocks affect the reallocation of workers *across* firms *within* a local labor market channel for PAM.

Theoretical Mechanism: The idea

- ► Immigrants increase the *variance* of workers' ability (types) in the local labor market and give to firms the incentive to invest in screening to select the optimal worker.
- ► With a production function supermodular in the quality of firms and workers, improved screening effort will result in Positive Assortative Matching.
- ► A similar mechanism is illustrated for the effect of trade liberalization on the intensity of PAM by Helpman et al. (2010) and Davidson et al. (2008).

Empirical Strategy: Definition of types

Worker Type

- ▶ Baseline definition: Average lifetime wage of worker $i(\overline{w}_i)$ purged by worker's experience. Intended as the "revealed worker type".
- ► Rob Check: Worker's fixed effects from a mincerian wage regression à la Abowd, Kramarz and Margolis (1999).

Firm Type

- ► <u>Baseline definition</u>: Value Added per Worker (VAPW) as an intuitive measure of firm type.
- ► Rob Checks: (i) firm fixed effects from AKM regression, (ii) co-worker types (i.e. co-worker average lifetime wage), and (iii) TFP.

Empirical Strategy: Baseline specification

$$y_{d,t} = \beta_1 M Sh_{d,t} + \beta_2 X_{d,t} + \theta_d + \theta_{rt} + \epsilon_{d,t}$$

where:

- ► Subscripts *d* and *t* stand respectively for district and year.
- ► The dependent variable $y_{d,t}$ is in turn:
 - ▶ Rank correlation between firm and worker type (Dauth et al. 2018).
 - ▷ Strength of PAM= $(\pi_{HH} + \pi_{LL}) (\pi_{HL} + \pi_{LH})$, where π_{ij} is the share of workers of type i employed in firm with productivity j (Davidson et al. 2012).
- The main explanatory variable is the share of immigrants (M) in each district and year.
- $ightharpoonup heta_d$ and $heta_{rt}$ are district and region-by-year fixed effects.
- $ightharpoonup X_{d,t}$: (i) population, (ii) firm concentration, (iii) share of skilled workers.

Empirical Strategy: Instrumental Variable

Bartik type of instrument where the initial share of origin-specific migrants in the district is augmented by aggregate immigrant inflows at t:

$$\widehat{M}_{d,t} = \sum_{o} \frac{M_{d,o,1982}}{M_{o,1982}} * \widehat{M}_{o,t}$$

We use the predicted inflow of immigrants $(\widehat{M}_{o,t})$ based on supply-driven component of migration toward *similar* destination countries other than France (EU15). See Autor et al. (2013) \Rightarrow Validity of IV.

Data

► Matched Employer-Employee Data (DADS)

- DADS *Panel*: info on employed workers (all workers born in the month of October) ⇒ worker ID to recover the worker type.
- DADS *Poste*: info on <u>all</u> employed workers used to compute the population of immigrants in each French district.
- ► Firm Level Data (Ficus/Fare)
 - \triangleright Information on value added and employment \Rightarrow Value added per worker.
- ► French Census and LFS
 - Distribution of immigrants in 1982 by origin (shift-share IV).
- ▶ 92 French districts (no overseas); period 1995-2005.

Baseline 2SLS results

Dep Var:	Rank Correlation		Strength PAM		Firm Profit
	(1)	(2)	(3)	(4)	(5)
Immi Share	2.423**	5.105***	3.361***	4.718***	16.613**
	(1.191)	(1.722)	(1.184)	(1.619)	(7.560)
$X_{d,t}$	yes	yes	yes	yes	yes
Worker Type	Lifetime	AKM	Lifetime	AKM	
	wage		wage		
District FE	yes	yes	yes	yes	yes
Region-Year FE	yes	yes	yes	yes	yes
Observations	1,012	1,012	1,012	1,012	1,003
1 st stage coeff	0.121***	0.121***	0.121***	0.121***	0.122***
F-stat	16.18	16.18	16.18	16.18	15.00

Notes: Robust standard errors in parenthesis. *** p < 0,01; ** p < 0,05; *p < 0,1.

The Mechanism

Migration induces the re-allocation of high type workers from low to high type firms, and of low type workers from high to low type firms.

	# High-type movers				
	low to high type firm	high to low type firm			
	(1)	(2)			
Immi Share	31.126***	18.690			
	(12.790)	(11.570)			
	# Low-type movers				
	high to low type firm	low to high type firm			
	(1)	(2)			
Immi Share	36.544***	8.036			
	(13.635)	(11.564)			
Worker Type	Lifetime				
Firm Type	Value Added per Worker				
Observations	1,012	1,012			
First stage coeff	0.120***				
F-stat	16.18				
Partial R-squared	0.0	046			
		0.01			

Notes: Robust standard errors in parenthesis. *** p < 0,01; ** p < 0,05; *p < 0,1.

Conclusion

- ▶ Immigration improves the strength of assortative matching in the local labor market: a 1pp increase in the share of migrants implies 3.3 pp increase in the share of net assortative match.
- ► This effect is bigger in magnitude for districts with a more spread distribution of immigrants' types.
- ► Migration induces PAM through the reallocation of workers across-firms:
- ▶ Low-type workers move from high- to low-type firms.