Dynamic Privacy Choices

Shota Ichihashi

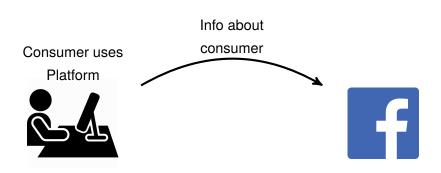
Bank of Canada

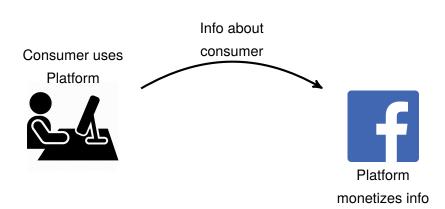
Econometric Society Winter Meeting Jan 3, 2021

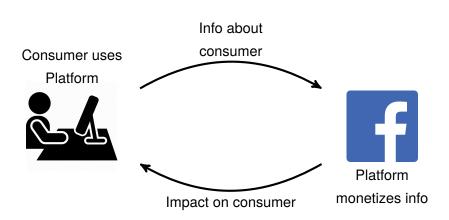
The views expressed are those of the author and do not necessarily reflect the views of the Bank of Canada.

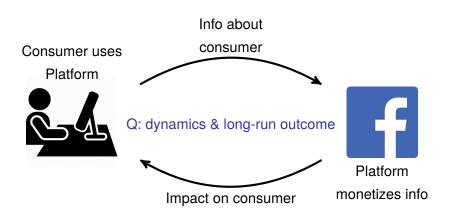
Motivation

Consumer uses









- 1. Model
- 2. Results
- 3. Relaxing Commitment Assumption
- 4. Literature

- 1. Model
- 2. Results
- 3. Relaxing Commitment Assumption
- 4. Literature

Time t = 1, 2, ...

Time
$$t = 1, 2, ...$$

Consumer

Time t = 1, 2, ...

Consumer

• Type $X \sim \mathcal{N}(0, \sigma_0^2)$, fixed, unobservable¹

¹If privately observable, focus on a "pooling" equilibrium.

Time t = 1, 2, ...

Consumer

- Type $X \sim \mathcal{N}(0, \sigma_0^2)$, fixed, unobservable¹
- Choose an activity level $a_t \in A \subset \mathbb{R}_+$
- A is finite, $\min A = 0$, and $\max A = a_{max} > 0$

¹If privately observable, focus on a "pooling" equilibrium.

Time t = 1, 2, ...

Consumer

- Type $X \sim \mathcal{N}(0, \sigma_0^2)$, fixed, unobservable¹
- Choose an activity level $a_t \in A \subset \mathbb{R}_+$
- A is finite, $\min A = 0$, and $\max A = a_{max} > 0$

Platform

• Privately observe a signal $X + \varepsilon_t$ with $\varepsilon_t \stackrel{iid}{\sim} \mathcal{N}\left(0, \frac{1}{a_t} + \gamma_t\right)$

¹If privately observable, focus on a "pooling" equilibrium.

Time t = 1, 2, ...

Consumer

- Type $X \sim \mathcal{N}(0, \sigma_0^2)$, fixed, unobservable¹
- Choose an activity level $a_t \in A \subset \mathbb{R}_+$
- A is finite, $\min A = 0$, and $\max A = a_{max} > 0$

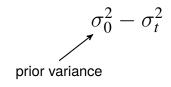
- ▶ Privately observe a signal $X + \varepsilon_t$ with $\varepsilon_t \stackrel{iid}{\sim} \mathcal{N}\left(0, \frac{1}{a_t} + \gamma_t\right)$
- γ_t : level of privacy protection in t

¹If privately observable, focus on a "pooling" equilibrium.

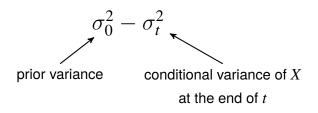
Platform's payoff in period t

$$\sigma_0^2 - \sigma_t^2$$

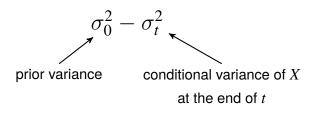
Platform's payoff in period t



Platform's payoff in period t

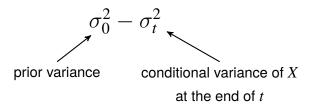


Platform's payoff in period t



More info better

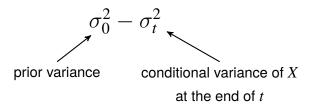
Platform's payoff in period t



More info better

• Increasing in (a_1, \ldots, a_t) and decreasing in $(\gamma_1, \ldots, \gamma_t)$

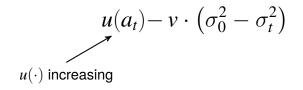
Platform's payoff in period t

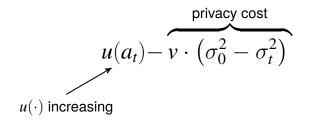


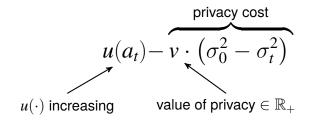
More info better

- Increasing in (a_1, \ldots, a_t) and decreasing in $(\gamma_1, \ldots, \gamma_t)$
- Discount future payoffs

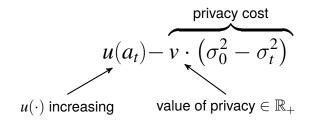
$$u(a_t) - v \cdot \left(\sigma_0^2 - \sigma_t^2\right)$$







Consumer payoff in period t



Discount future payoffs

Timing

1. Platform chooses a privacy policy $(\gamma_1, \gamma_2, \dots) \in \mathbb{R}^{\infty}_+$

• Signal
$$X + \varepsilon_t$$
 with $\varepsilon_t \sim \mathcal{N}\left(0, \frac{1}{a_t} + \gamma_t\right)$

2. Consumer chooses a_1, a_2, \ldots

Solution: SPE

- 1. Model
- 2. Results
- 3. Relaxing Commitment Assumption
- 4. Literature

Timing

1. Platform chooses a privacy policy $(\gamma_1, \gamma_2, \dots)$

• Signal
$$X + \varepsilon_t$$
 with $\varepsilon_t \sim \mathcal{N}\left(0, \frac{1}{a_t} + \gamma_t\right)$

2. Consumer chooses a_1, a_2, \ldots

Timing

1. Platform chooses a privacy policy $(\gamma_1, \gamma_2, \dots)$

• Signal
$$X + \varepsilon_t$$
 with $\varepsilon_t \sim \mathcal{N}\left(0, \frac{1}{a_t} + \gamma_t\right)$

2. Consumer chooses a_1, a_2, \ldots

Flow Payoffs

Consumer's period-t payoff

$$u(a_t) - v\left(\sigma_0^2 - \sigma_t^2\right)$$

Flow Payoffs

Consumer's period-t payoff

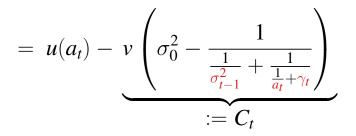
$$u(a_t) - v\left(\sigma_0^2 - \sigma_t^2\right)$$

$$= u(a_t) - v \left(\sigma_0^2 - \frac{1}{\frac{1}{\sigma_{t-1}^2} + \frac{1}{\frac{1}{a_t} + \gamma_t}} \right)$$

Flow Payoffs

Consumer's period-t payoff

$$u(a_t) - v\left(\sigma_0^2 - \sigma_t^2\right)$$



Marginal Privacy Cost

Marginal Privacy Cost

Lemma

 $\frac{\partial C_t}{\partial a_t}$ is decreasing in γ_t and increasing in σ_{t-1}^2 .

Marginal Privacy Cost

Lemma

 $\frac{\partial C_t}{\partial a_t}$ is decreasing in γ_t and increasing in σ_{t-1}^2 .

Marginal Privacy Cost

Lemma

 $\frac{\partial C_t}{\partial a_t}$ is decreasing in γ_t and increasing in σ_{t-1}^2 .

► Less privacy (lower σ_{t-1}^2) \rightarrow Lower marginal cost

Marginal Privacy Cost

Lemma

$$\frac{\partial C_t}{\partial a_t}$$
 is decreasing in γ_t and increasing in σ_{t-1}^2 .

- ► Less privacy (lower σ_{t-1}^2) \rightarrow Lower marginal cost
- Lower payoff \leftrightarrow Higher incentive to raise a_t

- 1. Platform chooses a privacy policy $(\gamma_1, \gamma_2, \dots)$
 - Signal $X + \varepsilon_t$ with $\varepsilon_t \sim \mathcal{N}(0, \frac{1}{a_t} + \gamma)$
- 2. Consumer solves

$$\max_{(a_t)_{t=1}^{\infty}}\sum_{t=1}^{\infty}\delta_C^{t-1}\left[u(a_t)-v\left(\sigma_0^2-\sigma_t^2(\boldsymbol{a}^t,\boldsymbol{\gamma}^t)\right)\right].$$

Reminder: $u(a) - v \cdot (\sigma_0^2 - \sigma_t^2)$

Reminder:
$$u(a) - v \cdot (\sigma_0^2 - \sigma_t^2)$$

Theorem

1.
$$\sigma_t^2 \to 0$$
 and $a_t^* \to a_{max}$ as $t \to \infty$
2. $\forall \tau \in \mathbb{N}, \exists v^* > 0$ s.t. $\forall v \ge v^*, \gamma_t^* > 0$ for $t = 1, \dots, \tau$

Reminder:
$$u(a) - v \cdot (\sigma_0^2 - \sigma_t^2)$$

Theorem

1.
$$\sigma_t^2 \to 0$$
 and $a_t^* \to a_{max}$ as $t \to \infty$
2. $\forall \tau \in \mathbb{N}, \exists v^* > 0$ s.t. $\forall v \ge v^*, \gamma_t^* > 0$ for $t = 1, \dots, \tau$

Reminder:
$$u(a) - v \cdot (\sigma_0^2 - \sigma_t^2)$$

Theorem

For any v and discount factors, in any equilibrium:

1.
$$\sigma_t^2 \rightarrow 0$$
 and $a_t^* \rightarrow a_{max}$ as $t \rightarrow \infty$

2. $\forall \tau \in \mathbb{N}, \exists v^* > 0 \text{ s.t. } \forall v \ge v^*, \gamma_t^* > 0 \text{ for } t = 1, \dots, \tau$

Reminder:
$$u(a) - v \cdot (\sigma_0^2 - \sigma_t^2)$$

Theorem

1.
$$\sigma_t^2 \to 0$$
 and $a_t^* \to a_{max}$ as $t \to \infty$
2. $\forall \tau \in \mathbb{N}, \exists v^* > 0$ s.t. $\forall v \ge v^*, \gamma_t^* > 0$ for $t = 1, \dots, \tau$

Reminder:
$$u(a) - v \cdot (\sigma_0^2 - \sigma_t^2)$$

Theorem

1.
$$\sigma_t^2 \to 0$$
 and $a_t^* \to a_{max}$ as $t \to \infty$
2. $\forall \tau \in \mathbb{N}, \exists v^* > 0$ s.t. $\forall v \ge v^*, \gamma_t^* > 0$ for $t = 1, \dots, \tau$

Reminder:
$$u(a) - v \cdot (\sigma_0^2 - \sigma_t^2)$$

Theorem

For any v and discount factors, in any equilibrium:

1.
$$\sigma_t^2 \to 0$$
 and $a_t^* \to a_{max}$ as $t \to \infty$
2. $\forall \tau \in \mathbb{N}, \exists v^* > 0$ s.t. $\forall v \ge v^*, \gamma_t^* > 0$ for $t = 1, \dots, \tau$

• Early: high MC \rightarrow high γ_t to encourage activity

Reminder:
$$u(a) - v \cdot (\sigma_0^2 - \sigma_t^2)$$

Theorem

1.
$$\sigma_t^2 \to 0$$
 and $a_t^* \to a_{max}$ as $t \to \infty$
2. $\forall \tau \in \mathbb{N}, \exists v^* > 0$ s.t. $\forall v \ge v^*, \gamma_t^* > 0$ for $t = 1, \dots, \tau$

- Early: high MC \rightarrow high γ_t to encourage activity
- Learning becomes easier over time

Reminder:
$$u(a) - v \cdot (\sigma_0^2 - \sigma_t^2)$$

Theorem

1.
$$\sigma_t^2 \to 0$$
 and $a_t^* \to a_{max}$ as $t \to \infty$
2. $\forall \tau \in \mathbb{N}, \exists v^* > 0$ s.t. $\forall v \ge v^*, \gamma_t^* > 0$ for $t = 1, \dots, \tau$

- Early: high MC \rightarrow high γ_t to encourage activity
- Learning becomes easier over time
- No value of stopping data collection
 - E.g., $\gamma_t = \infty$ after some period?
 - Committing to erode privacy \rightarrow higher activity today

Generalization

Platform's payoff is strictly increasing in $(a_t, -\sigma_t^2)$

Generalization

Platform's payoff is strictly increasing in $(a_t, -\sigma_t^2)$

Proposition

A sufficiently patient platform induces the long-run privacy loss:

$$\lim_{\delta_P \to 1} \lim_{t \to \infty} \sigma_t^2 = 0 \quad \text{and} \quad \lim_{\delta_P \to 1} \lim_{t \to \infty} a_t^* = a_{max}.$$

Generalization

Platform's payoff is strictly increasing in $(a_t, -\sigma_t^2)$

Proposition

A sufficiently patient platform induces the long-run privacy loss:

$$\lim_{\delta_P \to 1} \lim_{t \to \infty} \sigma_t^2 = 0 \quad \text{and} \quad \lim_{\delta_P \to 1} \lim_{t \to \infty} a_t^* = a_{max}.$$

- High activity if high γ_t or low σ_t^2
- Activity-driven platforms benefit from collecting data

Implications

Implications

1. Privacy paradox (cf. Acquisti et al. 2016)

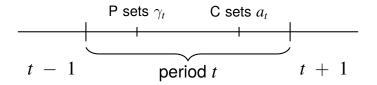
Implications

- 1. Privacy paradox (cf. Acquisti et al. 2016)
- 2. Rational addiction (Becker and Murphy, 1988)

- 1. Model
- 2. Results
- 3. Relaxing Commitment Assumption
- 4. Extension: Competition
- 5. Literature

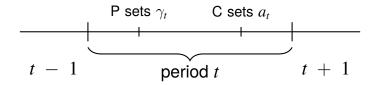
Relaxing Commitment Assumption

Platform with "one-period commitment"



Relaxing Commitment Assumption

Platform with "one-period commitment"



Assumption

Binary activity level: $A = \{0, a_{max}\}.$

Consumer-Worst Outcome

Full characterization in the paper

Proposition (informal)

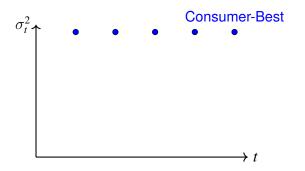
There is a "consumer-worst" eqm such that:

- 1. The outcome is the same as long-run commitment.
- 2. Platform strategy is greedy.
- If σ_0^2 is small, the eqm is unique.

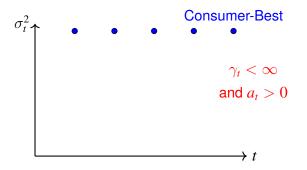
Proposition

Proposition

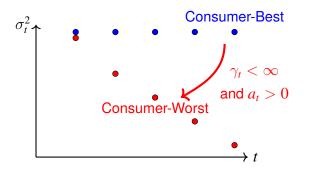
Proposition



Proposition



Proposition



Introducing a New Digital Product

Two firms

- Existing firm with a low σ_0^2 (e.g., data from other services)
- New firm with a high σ_0^2

Which firm has higher willingness to launch a new digital service?

New firm faces a higher marginal value of info

But, platform-worst eqm \rightarrow only the existing firm can collect info

Inefficiency: Data go to a firm that already has a lot of data

Literature (not exhaustive!)

Platform data collection: Acemoglu et al. (2019); Bergemann et al. (2019); Choi et al. (2018); Garratt and van Oordt (2019)

Competition with data: Cornière and Taylor (2020); Prufer and Schottmüller (2017); Hagiu and Wright (2020)

Switching cost, barrier to entry: Farrell and Shapiro (1988); Klemperer (1995); Fudenberg and Tirole (2000)

Signal-jamming: Holmstrom (1999)

- A dynamic model of a platform collecting consumer data
- Key: decreasing marginal privacy cost
- Long-run privacy loss with high activity level
- Weaker commitment: optimistic belief prevents data collection
- Data-driven advantage due to lower MC of privacy loss