Short-Run Equilibrium of International Trade under Heterogeneous Discrete Firms with **Multiple Continuous Varieties**

Background Motivation

- Market integration (or Liberalization)
- Introduction of foreign entrants and their products
- Intensive competition • Lower markup of a product
- Product range adjustment

Figure 1. Illustration - Washer Market Integration

Research Question

How do discrete firms differentiated in productivity (=heterogeneous) response to the market integration between symmetric economies (= international trade) when they maintain own produc*tivity assigned in autarky* (=short-run)?

This Paper

- Objective
- Numerical exploration of market integration impact on an individual firm's decision on (1) markup of a product and (2) product range in the short-run
- Capturing "Head-to-head competition" making the integrated market pro-competitive
- Competition among the highest productive firms from each economy
- Overview
- 1st Part
- Base Framework: Nested CES demand + Monopolistic Competition
- Defining the concept of market integration in the short-run - Fixed productivity (No uncertainty)
- No entrants
- 2nd Part: Quantitative analysis with the newly defined short-run environment of market integration
- Implementing pro-competitive integrated market

Contribution

This work gives an idea about tractable firm-level optimailities for heterogeneous discrete firms producing multiple products

- **Discrete (Granular) Firms** vs. Continuous firms (Zero-measured)
- Focusing on transition vs. Focusing on equilibrium
- Fixed productivity at the moment of market integration vs. New random assignment

 \rightarrow We can figure out how the superstars adjust their markups and product ranges at the moment of market liberalization.

Model Structure

- Employed the general framework in Feenstra and Ma (2008)
- Integration between symmetric markets
- Set of firm-level productivity: Identical across regions
- Zero iceberg trade (transportation) cost, and zero fixed cost for exporting goods • Fixed wage w = 1: Consistent with symmetricity

Gyu Hyun Kim

Iowa State University

$$\sum_{f} S(\tau_f) = 1$$

$$\tau_f = \frac{\varphi^{ZCP}}{\varphi_f} = \left[\frac{\frac{\epsilon_f}{\epsilon_f - 1}}{\frac{\epsilon^{ZCP}}{\epsilon^{ZCP} - 1}}\right]^{-\frac{\sigma}{\sigma - 1}}$$

$$S\left(\tau_{f}\right) = 1 - \frac{1}{\left\{\left(\sigma - 1 + \frac{1}{1 - S^{ZCP}}\right)\left(\tau_{f}\right)^{-\frac{\sigma-1}{\sigma}} - \left(\sigma - 1\right)\right\}}$$

AEA/ASSA 2021

Profits

• Higher productive firms earns more profits. • Two opposite effects on profit \rightarrow No proportional to the market size -Larger market size $(R) \Rightarrow \Pi_f \uparrow$ -Smaller market share $(S_f) \Rightarrow \Pi_f \downarrow$ \rightarrow In this example of productivity set: (1) < (2) for all survivors

Range of Products

Numerical Results (Cont'd)

 $\Pi_f = \Pi(\tau_f) = \frac{\{S(\tau_f)\}^2}{1 + (\sigma - 1)\{1 - S(\tau_f)\}}R$

 Higher productive firms produce a broader range of products. • Two opposite effects on profit \rightarrow No proportional to the market size -Larger market size $(R) \Rightarrow N_f \uparrow$

-Smaller market share $(S_f) \Rightarrow$

 $N_f \downarrow$ directly and $N_f \uparrow$ indirectly via ϵ_f

-Two opposite effects on profit \rightarrow No proportional to the market size

• Resource are concentrated on the most productive firms (Firm 1s)

Price and Markup

 Higher productive firms set a higher markup and a lower price. • Only S_f affects markup of a product.

Thank You

Comments are always welcome!