Institutional Herding and Corporate Debt Issuance

Gi H. Kim Xu Li

Warwick Business School, University of Warwick

December 30, 2020

Outline

- Introduction
- 2 Design
- 3 Empirical Results
- 4 Summary

Motivation

- Institutional Herding in various settings
 - Equity markets (Lakonishok et al., 1992; Wermers, 1999)
 - Corporate bond markets (Cai et al., 2019)
 - International stocks markets (Choi and Skiba, 2015)
- Herding has impact on the information
 - Fundamental: price discovery
 - Imitation: excess price volatility
- Information plays significant role in determining debt structure
- Lack of evidence on how herding affects corporate debt decisions

Research Question

- Does institutional herding affect the firm's information environment?
 - Positive: fundamental herding → facilitate the price discovery
 - Negative: imitational herding

 disincentivize information collection or less price efficiency
- If so, does herding driven change in information efficiency influence the firm's debt decision?

Channel and Intuitions

- If herding brings about enhanced (or deteriorated) information efficiency of firms' securities,
- Bond financing gains an advantage (disadvantage) and becomes cheaper (more expensive): lower (higher) information premium
- Effect on the firm's choice of the timing and the means (bonds or loans) to raise new debt capital
- We conjecture if herding improves (deteriorates) information efficiency,
- (H1a) firms are more (less) likely to issue new bonds at the time of high mutual funds herding
- (H1b) Upon issuance, firms tend to opt for bonds (bank loans) over bank loans (bonds)

Channel and Intuitions

- (H2) The impact of herding is concentrated on buy-herding rather than sell-herding
 - Short sale constraints limit information processing (Diamond and Verrecchia, 1987)
 - Sell herding is more likely to be non-informationally driven (Sias, 2009; Cai et al. 2019) ⇒ incorporate more noisy information
- (H3) The impact is more pronounced for firms with greater information asymmetry and for times when the bond market is opaque

Literature and contribution

- Feedback effects of financial markets on corporates
 - Bond, Edmans, and Goldstein (2012)
 - Firm value: Roll, Schwartz, and Subrahmanyam (2009); Wang and Zhang (2015)
 - Debt structure: Chen et al. (2018); Cao et al.(2019)
- Institutional herding: Bikhchandani et al. (1992); Froot et al. (1992); Lakonishok et al. (1992); Sias (2004); Choi and Sias (2009)
- Information environment and financing decision: Li, Lin, and Zhan (2018)
- The role of capital supplier in firms raising debt capital: Massa, Yasuda, and Zhang (2013); Zhu (2019)

- Thomson Reuters Lipper eMAXX
 - Select US bond mutual funds: fund class "MUT" and country code "USA".
 - Obtain holdings of corporate bonds
- FISD: corporate bond issuance information
- Thomson Reuters DealScan
 - Bank loan information: we only select all term loans and line of credit.
- Compustat and CRSP dataset: firm's accounting data & stock return
- Our sample contains 47,267 firm-quarter observations from 1998Q2 to 2018Q1

Herding Measure (HM): Lakonishok et al. (1992)

$$HM_{i,t} = \underbrace{|p_{i,t} - E[p_{i,t}]|}_{TradingImbalance} - E[p_{i,t} - E[p_{i,t}]]$$
(1)

where

$$p_{i,t} = \frac{Num.ofBuy_{i,t}}{Num.ofBuy_{i,t} + Num.ofSell_{i,t}}$$
(2)

- $E[p_{i,t}]$ is the cross-sectional average of $p_{i,t}$ in quarter t
- A disproportionate number of institutions buying (selling) certain security in excess of the market-wide buying (selling) intensity in a given period

Herding Measure (HM): Lakonishok et al. (1992)

• Buy herding measure (BHM)

$$BHM_{i,t} = HM_{i,t}|p_{i,t} > E[p_{i,t}]$$

$$\tag{3}$$

• Sell herding measure (SHM)

$$SHM_{i,t} = HM_{i,t}|p_{i,t} < E[p_{i,t}]$$
 (4)

• We define herd firms $D(Herd_{i,t-1})$ if firms have non-zero HM in a quarter

Empirical Specification

• Logit regression with firm-quarter fixed effects

$$D(Bondlssuance_{i,t}) = \alpha + \beta_1 D(Herd_{i,t-1}) + \gamma X_{i,t-1}^{Firm} + \varepsilon_{i,t-1}$$
 (5)

$$D(\textit{BankLoan/BondChoice}_{i,t}) = \alpha + \beta_2 D(\textit{Herd}_{i,t-1}) + \gamma X_{i,t-1}^{\textit{Firm}} + \varepsilon_{i,t-1} \quad (6)$$

- If hypothesis 1 holds: a significantly positive β_1 and a significantly negative β_2
- Furthermore, we replace $D(Herd_{i,t-1})$ with $D(BuyHerd_{i,t-1})$ and $D(SellHerd_{i,t-1})$
- If Hypothesis 2 holds: β_1 and β_2 are only significant for $D(BuyHerd_{i,t-1})$
- Firm controls includes: market cap, Tobin's q, leverage, profitability, tangibility and etc..

BaseLine Results

Dependent Var:	D(BondIssuance)				D(Bank Loan/Bond Choice)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
D(Herd)	1.711***				-4.094***			
	(3.96)				(-2.78)			
D(Buy Herd)		1.348***		2.194***		-3.946***		-5.489***
		(4.61)		(4.76)		(-3.34)		(-3.44)
D(Sell Herd)			464	1.174***			1.406	-2.389
			(-1.61)	(2.60)			(1.17)	(-1.47)
Observations	46,105	46,105	46,105	46,105	7,676	7,676	7,676	7,676
Pseudo R-square	.147	.147	.146	.147	.203	.203	.202	.203
Quarter-Firm FEs	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Firm Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

- Herd group has 1.71% higher probability to issue new bonds next quarter (about 20% increase to the mean of issuance probability)
- Strongly concentrated in buy herding

Information uncertainty

Dependent Var:	D(BondIssuance)				D(Bank Loan/Bond Choice)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
D(Buy Herd)	1.449***	4.021***	.903***	.502*	-4.251***	-10.448***	-1.740	-1.506
	(4.92)	(6.74)	(2.77)	(1.64)	(-3.58)	(-4.60)	(-1.39)	(-1.19)
D(Buy Herd)#Excess_RetVol	1.212***				-3.089**			
	(4.08)				(-2.16)			
Excess_RetVol	568**				1.495			
	(-2.24)				(1.60)			
D(Buy Herd)#NumAnalyst		228***				.674***		
		(-6.23)				(4.68)		
NumAnalyst		.169***				602***		
		(4.23)				(-3.78)		
D(Buy Herd)#AFError			1.025***				-4.216***	
			(3.26)				(-3.26)	
AFError			717***				2.674***	
			(-2.90)				(2.76)	
D(Buy Herd)#BeforeTRACE				5.624***				-16.812**
				(7.23)				(-4.83)
BeforeTRACE				-3.382*				75.683***
				(-1.84)				(4.71)
Observations	46,105	40,168	39,024	46,105	7,676	6,996	6,836	7,676
Pseudo R-square	.148	.143	.142	.149	.204	.198	.197	.206
Quarter-Firm FEs	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Firm Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

- The impact of buy herding on debt issuance is more pronounced
 - for firms with greater information asymmetry
 - when bond market is less transparency before the TRACE

Bond Price Informativeness

Dependent Var: Drift	(1)	(2)	(3)
D(Herd)	060		
	(51)		
D(Buy Herd)		119**	
		119** (-2.12)	
D(Sell Herd)			.091
			(1.61)
Observations	22,078	22,078	22,078
Adj R-square	0.352	0.352	0.352
Firm-Quarter FEs	Yes	Yes	Yes

• Informativeness of bond price (Lewis and Schwert, 2018): $Drift_{k,t}$ for bond k in quarter t is defined by

$$Drift_{k,t} = |\prod_{i=1}^{N} (1 + r_{k,i}) - 1|$$
 (7)

 Buy herd group: lower drift ⇒ more bond price informativeness

Offering Yield Spread

Panel A			
Dependent Var: yieldspread (%)	(1)	(2)	(3)
D(Herd)	250***		
	(-3.34)		
D(Buy Herd)		108**	
		(-2.27)	
D(Sell Herd)			030
			(80)
Observations	4,022	4,022	4,022
Adj R-square	0.774	0.773	0.771
Firm Controls	Yes	Yes	Yes
Bond Controls	Yes	Yes	Yes
Quarter FEs	Yes	Yes	Yes
Industy FEs	Yes	Yes	Yes
Rating FEs	Yes	Yes	Yes

Identification: IV

- Repetitional herding: Fund managers imitate others ⇒ avoid the performance deviations
 - Trueman, 1994; Zwiebel, 1995; Graham, 1999; Dasgupta, Prat and Verardo, 2011b
- Jiang and Verardo (2018): inexperienced mutual funds (younger) managers are more likely to herd
- IV for $D(Herd_{i,t})$: NumInexperience_{i,t}
 - The number of inexperienced managers of mutual funds that holds the firm's existing bonds
 - Exclusion restriction: Career concern-based IV seems not much related to our dependent variable
- *Numlnexperience* as the number of mutual funds owners whose managers are in the lowest experience group
 - Sort managers experience into high-, median-, and low group quarterly

Identification: IV

	FirstStage	SecondStage	FirstStage	SecondStage
Dependent Variables	D(Herd)	D(BondIssuance)	D(Herd)	D(Bank/Bond Choice)
	(1)	(2)	(3)	(4)
NumInexperiene	.006***		.004***	
	(6.73)		(5.43)	
$D(\widehat{Herd})$.353***		448**
,		(3.774)		(-2.091)
Industry-Quarter FEs	Yes	Yes	Yes	Yes
R-square		0.035		0.086
Observations	30,859	30,859	6,512	6,512
First Stage F-Test	45.350		29.480	
Under Identification		23.643		20.568
Week Identification		336.759		51.238

- \bullet Firms owned by more inexperienced managers \Longrightarrow D(Herd) higher
- Second Stage: herd group ⇒ higher bond issuance probability/switch from bank to bond

Summary

- Mutual fund herding affect both bond issuance timing and the choice of bonds over loans
- The impact of herding is concentrated on buy-herding rather than sell-herding,
- Pronounced for firms with greater information asymmetry and for times when the bond market is opaque.
- Buy herding improves bond informativeness and firms enjoy lower offering yield spread
- Positive view of institutional herding: enhances information environment

Introduction Design Empirical Results Summary

Thank you for attending! Stay safe and take care