Motivation

Adoption of New Technology and Better Farming Practices Have Challenges

- Farmers in developing countries usually lack access to vital resources and services
- Agricultural extension services are important to overcome these deficiencies (including technical training)
 - Can reduce poverty by providing information and transferring knowledge to farmers (Anderson and Feder 2004, Nakasone et al. 2014)
- However, traditional extension services have high fixed and recurrent financial costs (Quizon et al. 2001, ICRAF 2018)
- These limit their scalability and efficiency

Rapid Expansion of ICTs Offers Great Potential

- ICT-based solutions may be an effective way of knowledge delivery in rural settings
 - Radio, television, computer, mobile phones, etc.
 - May help increase farmers' awareness of best practices
- Mobile phones are one of the fastest-growing and most widespread forms of ICT
- The roll-out of extension programs through ICTs is still in an early stage
- Little research is available regarding such programs' impacts (Nakasone et al. 2014)
 - Voice messages (Cole and Fernando 2021)
 - SMS messages (Fafchamps and Minten 2012, Casaburi et al. 2019)

Research Question

Is Technical Training Through A Mobile App An Effective Method?

- We provide farmers technical training through an easy-to-use mobile application
 - Certain kinds of information may be too complicated to convey by text or voice (Fabregas et al. 2019)
 - Our mobile app addresses this issue by providing information and demonstrations through videos
 - The app records what, when, and how long a farmer watched each video in our app
- We also provided aspirational videos via the same app
 - Aspiration videos may enhance farmers' psychological well-being (Ridley et al. 2020)
 - They could also facilitate or complement learning among farmers (Fabregas et al. 2019)
- We conduct an experiment to examine whether the training improves farmers' knowledge and the quality of their farm product

Effective Training Through a Mobile App Evidence from a Randomized Field Experiment

Kenn Chua¹, Qingxiao Li¹, Khandker Wahedur Rahman², Xiaoli Yang³ ¹University of Minnesota, ²BIGD, BRAC University, ³Shenyang Agricultural University

Study Setting and Intervention

Study Setting

- Our study takes place in the city of Beizhen in Liaoning, China
 - China has the most mobile app downloads in the world
 - Cost of accessing the internet is low and 98% of rural villages have internet coverage
- We partner with the Beizhen government
 - Beizhen is a famous grape town and the largest grape fresh storage base in China
 - The Government is interested in improving the price small grape farmers receive and commissioned Shenyang Agricultural University (SAU) to find ways to improve the grape quality
- SAU developed training modules that would help farmers improve grape sweetness

Intervention

- Technical videos only (T1)
 - A series of videos on grape farming techniques to increase grape quality (1 to 3 minutes in length)
 - Curated to be relevant to the farmers' particular needs at each stage of the grape-growing period
- Technical videos and aspiration videos (T2)
 - T1 videos plus aspirational videos promoting the practice of growing of high-quality grapes
 - Aspiration videos feature established farmers with stories of their successful experience raising the quality of their grapes
- Placebo videos (C)
 - Only videos featuring the local history of the grape industry and natural landscapes of the region
 - Released to all farmers at different points throughout the study period

Mobile App Interface

17 37 4 and also	8.11 【技术】着色期葡萄病害防治	19:51 🥌 🕚 🙇 3.0/\/s 🗇 🎢 奈 団 '
明牙依叶期	8.10 [國子] 富七孙七葡萄國	< 详情
开花结果期		Later and the second
	8.7 [技术]着色期肥的管理	1.111 D
景实膨大期	8.6 [技术] 葡萄着色期水的管理	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
呆实看包期	8.5 [技术]看包期裂录的预防及处理	
	8.4 [技术]着色期维红药剂的选择	8.17 【技术】雨季注意事项
	8.3 [因子]富屯孙屯葡萄园场景	2020.8.17北鎮葡萄协会副会长孙志成,向广大 种植户讲解连续雨天葡萄种植注意事项。

Empirical Strategy

Intent-to-treat (ITT) effect:

 $y_{iz} = \beta_0 + \beta_1 T 1_z + \beta_2 T 2_z + X'_{iz} \delta + \varepsilon_{iz}$

- y_{iz} is the outcome measured at endline for farmer *i* in zu z
- $T1_{z}$ is technical training only arm
- $T2_z$ is technical training and aspiration arm
- X'_{iz} includes baseline characteristics
- Cluster SEs by zu (level of treatment).

Treatment-on-the-treated (TOT) effect :

First Stage: $k_{iz} = \alpha_0 + \alpha_1 D_z + X'_{iz} \lambda + v_{iz}$ Second Stage: $y_{iz} = \beta_0 + \beta_1 \hat{k}_{iz} + X'_{iz} \delta + \varepsilon_{iz}$

- k_{iz} is farmer i's score on our test at endline
- $D_z \in \{T1_z, T2_z\}$ is an indicator variable for treatment status for the respective treatment groups
- Estimation of TOT is restricted only to a treatment group and the control group

R		ilte
	こうし	1113

Table 1: Impact on Test Score						
	(1)	(2)				
	Standardized	Standardized				
	Test Score	Test Score				
	(All 10 questions)	(Repeated 5 questions)				
Technical videos only (T1)	0.520***	0.371***				
• ()	(0.097)	(0.095)				
Technical videos and aspiration videos (T2)	0.451***	0.413***				
	(0.102)	(0.083)				
Observations	687	687				
Control-group mean	0.000	0.000				
T1=T2 (p-value)	0.492	0.572				
<i>Notes</i> : All regressions include test score at baseline. Heteroskedastic *** p<0.01 ** p<0.05 * p<0.1	city-robust standard errors, clustered by	zu, in parentheses.				
Table 2: TO	T Effect on Sweetness					
	(1) (2)					
	Sweetness (T1)	Sweetness (T2)				
Standardized Test Score	0.554*	0.218				
	(0.294)	(0.241)				
Observations	467	466				
Control-group mean	0.000	0.000				
Notes: All outcome variables are standardized with respect to control group. All regressions include self-assessed grape quality at baseline.						

Heteroskedasticity-robust standard errors, clustered by zu, in parentheses. *** p<0.01 ** p<0.05 * p<0.1

Table 3: Impact on Farmers' Belief on Their Product					
	(1) Sweetness	(2) Count	(3) Weight		
Technical videos only (T1)	0.474***	0.173*	0.213**		
	(0.092)	(0.103)	(0.105)		
Technical videos and aspiration videos (T2)	0.510***	0.039	0.149		
	(0.086)	(0.093)	(0.106)		
Observations	687	687	687		
Control-group mean	0.000	0.000	0.000		
T1=T2 (p-value)	0.666	0.202	0.576		
Notes: All regressions include test score at baseline. Heteroskedas	sticity-robust standard errors	, clustered by zu, in parenthe	Ses.		
^{mm} p<0.01 ^{mm} p<0.05 ^{mm} p<0.1					

Technical training through our mobile app improves knowledge Technical test score ↑ 0.52 SDs

It also helps farmers enhance the quality of their produce

Cost of our whole experiment, including developing the app and watch bonuses

Extension Education, 8(1).

Kenn Chua: chuax025@umn.edu Qingxiao Li: lixx5376@umn.edu Khandker Wahedur Rahman: kwrahman@gmail.com Xiaoli Yang: yangxiaoli@syau.edu.cn

Result Summary

• Farmers believe that their grapes are sweeter - Sweetness assessment ↑ 0.51 SDs - May help increase farmers' awareness of improved practices

• Helps them enhance the quality of their produce - Treatment-on-the-treated (TOT): Grape sweetness ↑ 0.55 SDs

• Larger effects for higher percentage of videos watched

Take Away

Providing training through apps is an effective delivery method • Farmers can learn technical skills through a mobile app

• Can be an effective alternative to traditional extension service

• Technical videos only: \$27.5 per farmer

Technical videos and aspiration videos: \$31.7 per farmer

• Average cost diminishes the longer the farmers use the app

References

Anderson, J. R., & Feder, G. (2004). Agricultural Extension: Good Intentions and Hard Realities. The World Bank Research Observer, 19(1), 41–60

Casaburi, L., Kremer, M., & Ramrattan, R. (2019). Crony Capitalism, Collective Action, and *ICT: Evidence from Kenyan Contract Farming*. Working paper.

Cole, S. A., & Fernando, A. N. (2021). 'Mobile'izing Agricultural Advice Technology Adoption Diffusion and Sustainability. *The Economic Journal*, 131(633), 192–219.

Fafchamps, M., & Minten, B. (2012). Impact of SMS-Based Agricultural Information on Indian Farmers. The World Bank Economic Review, 26(3), 383-414.

Ferroni, M., & Zhou, Y. (2012). Achievements and Challenges in Agricultural Extension in India. Global Journal of Emerging Market Economies, 4(3), 319–346.

Nakasone, E., Torero, M., & Minten, B. (2014). The Power of Information: The ICT Revolution in Agricultural Development. Annual Review of Resource Economics, 6(1), 533–550.

Quizon, J., Feder, G., & Murgai, R. (2001). Fiscal Sustainability of Agricultural Extension: The Case of the Farmer Field School Approach. Journal of International Agricultural and

Contact