(1) > 400,000 children die annually due to neonatal sepsis

Background

- Chlorhexidine Cord Care (CHX) costs only 0.23 USD/dose and prevents neonatal sepsis.
- 3 RCTs in South Asia find that CHX reduces neonatal mortality by 20-35%.
- 2 RCTs in East Africa find no evidence of effectiveness of CHX.

What we do

- (i) Estimate effectiveness of CHX in a real-world setting at scale.
- (ii) Use causal forests to assess treatment effect heterogeneity.
- (iii) Derive the optimal targeting policy and compare it to the current policies.

What we find

- (i) CHX reduces neonatal mortality by 43%.
- (ii) Treatment effect heterogeneity matches patterns across RCTs.
- (iii) Optimal policy targeting reduces neonatal mortality more than the current WHO policy.

(2) National roll-out of CHX in Nepal

(3) TWFE results: CHX reduces neonatal mortality by 1.8ppt

We estimate the following equation with OLS:

 $m_{idt} = \alpha + \beta CHX_{dt} + D'_d \Delta + T'_t \Gamma + X'_{idt} \Lambda + D'_d \Delta + T'_t \Gamma + X'_{idt} \Lambda + D'_d \Delta + T'_t \Gamma + X'_{idt} \Lambda + D'_d \Delta + T'_t \Gamma + X'_{idt} \Lambda + D'_d \Delta + T'_t \Gamma + X'_{idt} \Lambda + D'_d \Delta + T'_t \Gamma + X'_{idt} \Lambda + D'_d \Delta + T'_t \Gamma + X'_{idt} \Lambda + D'_d \Delta + T'_t \Gamma + X'_{idt} \Lambda + D'_d \Delta + T'_t \Gamma + X'_{idt} \Lambda + D'_d \Delta + T'_t \Gamma + X'_{idt} \Lambda + D'_d \Lambda$

Table 1. TWDE Regression results. Dependent variable: Mortality ≤ 1 m.

	A 11	A 11	P(home birth)	
	AII	All	<0.5	>0.5
	(1)	(2)	(3)	(4)
CHX	-0.018**	-0.007	0.001	-0.028**
	(0.007)	(0.007)	(0.009)	(0.011)
1[P(home birth)>0.5]		-0.001		
		(0.005)		
CHX \times 1[P(home birth)>0.5]		-0.021***		
		(0.008)		
CHX + CHX \times 1[P(home birth)>0.5]		-0.028***		
		(0.008)		
Observations	23,465	23,465	10,860	12,605
Control mean of dep. var	0.042	0.042	0.033	0.050
P-val (dif across sample)				0.031
Notes: Asterisks indicate significance at the following levels: *	p<0.1, ** p<0.05, an	d *** p<0.01.		

• We assess the role of negative TWFE weights based on de Chaisemartin & D'Haultfoeuille (2020)

Saving Neonatal Lives for a Quarter

Christine Valente ^{1,2}

¹University of Bristol

²IZA 3AIAE ⁴Center for Research on Environment, Health, and Population Activities

$+ \epsilon_{idt}$	(1)

(4) Causal forest results: significant treatment effect heterogeneity

Approach

1 Orthogonalize outcome and treatment using a regression forests.

2 Estimate causal forest on residualized treatment and outcome.

Omnibus test of causal forest fit

- Mean prediction =1 \Rightarrow ATE captured well.
- Differential prediction =1 \Rightarrow Heterogeneity captured well.

 Table 2. Causal Forest Fit & Doubly Robust Average Treatment Effects

A. Omnibus test for forest fit Mean Forest Prediction

Differential Forest Prediction

B. Doubly Robust Average Treatment Effects Full sample

Notes: Asterisks indicate significance at the following levels * p<0.1, ** p<0.05, and *** p<0.01. Note that the significance levels in panel A are for the one sided tests. Based on the causal forest implementation in R by Tibshirani et al (2021) Diagnostic test based on Chernozhukov, Demirer, Duflo, and Fernandez-Val (2020).

Table 3. Covariate means across quartiles of CATEs

Home delivery
Age: 15-19y
Age: 20-24y
Age: 25-29y
Age: 30-34y
Age: 35-39y
Age: 40-45y
Education: No education
Education: Primary
Education: Secondary
Education: Higher
Rural
Baseline NMR
Notes: The table shows covariate means for

or the first and fourth quartile of the sample based on the estimated CATEs. Baseline NMR is the district level neonatal mortality rate in the five years before treatment started.

Hans H. Sievertsen^{1,2,3} Mahesh C. Puri⁴

1.215***
(0.273)
0.806*
(0.525)

-0.022*** (0.004)

Qu	Jartile			
First	- Fou	rth	Difference	P-val
0.707	7 0.2	40	-0.467	< 0.001
0.283	3 0.0	88	-0.195	< 0.001
0.394	4 0.4	91	0.097	< 0.001
0.20	3 0.3	01	0.098	< 0.001
0.088	8 0.0	96	0.008	0.117
0.02	7 0.0	21	-0.006	0.036
0.00	5 0.0	02	-0.003	0.011
0.915	5 0.1	31	-0.784	< 0.001
0.08	1 0.1	48	0.067	< 0.001
0.00	4 0.5	42	0.538	< 0.001
0.00	1 0.1	79	0.179	< 0.001
0.596	6 0.2	29	-0.367	< 0.001
0.049	9 0.0	28	-0.022	< 0.001

(5) Heterogeneity patterns match results across RCTs

regions corresponding to RCTs.

Figure 3. Distribution of predicted CATEs across samples matching the RCT sites

(6) Optimal policy targeting reduces neonatal mortality more than current policies

Based on doubly robust scores from causal forest (Athey & Wager, 2021)

B. Unconstrained optimal policies Individual & district variables

District variables only

C. Constrained optimal policies Individual & district variables

District variables only

Notes: Asterisks indicate significance at the

• Use trained causal forest to predict treatment effects based on samples for periods and

Figure 4. Optimal policies

Table 4. Reduced mortality by the WHO policy and by optimal policies

	ATT	ATU	%treated	Δ NMR
	-0.038*** (0.007)	-0.013*** (0.004)	32.3	-0.012
	-0.028*** (0.004)	0.020 (0.018)	85.7	-0.024
	-0.029*** (0.004)	0.013 (0.015)	82.3	-0.024
	-0.051***	-0.008*	31.7	-0.016
	(0.009) -0.048***	(0.004) -0.012***	28.4	-0.014
following levels: * p<0.1. **	(0.008)	(0.004) *** p<0.01.		

A. Pre-defined policies WHO policy