

The Dynamics of Storage Costs

Andrei Stancu[†], Lazaros Symeonidis^{*}, Chardin Wese Simen[‡], and Lei Zhao[§]

[†]Newcastle University Business School, Newcastle University
 *Essex Business School, University of Essex
 [‡]Management School, University of Liverpool
 [§]Finance Department, ESCP Business School, Paris Campus

Overview

We document that the monthly storage cost of oil averages 0.50% of the spot price and varies over time. We decompose the *basis*, defined as the ratio of the spread between the futures and spot prices over the spot price, into the storage cost (*scc*) and the adjusted convenience yield (*acyc*) channels. The *scc* dominates the mean of the *basis* and accounts for nearly half of its variations. We show that the *scc* predicts future inventory growth and is the main conduit through which the predictive power of the *basis* for oil spot returns arises.

Motivation

Basis Decomposition

Panel A: Unconditional			Panel B	Panel B: Backwardation			Panel C: Contango		
	SCC	acyc		SCC	acyc		SCC	acyc	
Mean	281.05%	181.05%	Mean	-9.70%	-109.70%	Mean	62.36%	-37.64%	
Variance	45.35%	54.65%	Variance	-3.45%	103.45%	Variance	76.34%	23.66%	

✓ The scc contributes about half of the variation in the basis. Challenge to the assumption that storage costs display very little variations in the time-series dimension (Gu et al., 2020; Ederington et al., 2021).

- ✓ Inventories play a central role in commodity theories, such as the theory of storage (Kaldor, 1939; Working, 1949).
- ✓ We know very little about the average cost of storing crude oil and its time series dynamics! No direct test in the literature
- ✓ Main **challenge** of existing research: Data availability!
- ✓ We use a novel dataset of the Louisiana Offshore Oil Port (LOOP) sour crude oil storage futures (SFC) to construct a new storage cost measure.
- \checkmark We seek to provide answers to several important questions, such as:
- 1. What is the cost of storing oil for 1-month?
- 2. Is the storage cost really **constant** as assumed by the literature?
- 3. What are the key **economic implications** of the storage cost for: (i) the futures–spot price spread (i.e. the **basis**)? (ii) the predictability of **inventory growth**? (iii) the **predictability of spot returns**?

Methodology

Cost-of-carry formula:

$$F_{t,t+1} = S_t + \underbrace{SFC_{t,t \to t+1}(1 + r_{t,t \to t+1})^{1/12}}_{\text{Storage Costs}} + E_t \left(\underbrace{X_{t,t \to t+1}}_{\text{Other Costs}} - \underbrace{CY_{t,t \to t+1}}_{\text{Convenience Yield}}\right)$$
Carrying Costs

Re-arranging, we obtain the basis:

 \checkmark The scc becomes dominant during contango periods, when the incentive to store is stronger.

Predictability of Inventory Growth

 $\% \Delta Inv_{t+1} = \alpha + \beta \times \% \Delta scc_t + \gamma \times Controls_t + e_{t+1}$

$\% \Delta scc_t$	0.020	0.021	0.020				
$\sqrt[n]{\Delta}$ erect $\times I$	(2.802)	(2.728)	(2.157)	0.042	0.042		
$70 \Delta SCC_t \times 1$ contango, t				(4.379)	(4.286)		
$\% \Delta scc_t \times I_{\text{backwardation},t}$				0.009	0.007		
				(1.877)	(1.376)		
$\% \Delta scc_t \times I_{\text{spare capacity} < q_{50}, t}$						0.045	0.048
						(3.641)	(3.541)
$\% \Delta scc_t \times I_{\text{spare capacity} > q_{50}, t}$						0.007	0.006
A						(1.440)	(0.929)
$\%\Delta acyc_t$			-0.001		-0.001		-0.001
			(-3.951)		(-3.288)		(-3.527)
$\%\Delta imports_t$			0.015		0.011		-0.011
			(0.499)		(0.379)		(-0.377)
$\%\Delta refinery_t$			-0.179		-0.204		-0.180
			(-1.864)		(-2.334)		(-2.060)
$\%\Delta production_t$			0.331		0.283		0.180
			(2.751)		(2.358)		(1.373)
$\%\Delta I_t$		-0.060	0.042	-0.138	-0.033	-0.016	0.066
		(-0.491)	(0.290)	(-1.001)	(-0.215)	(-0.143)	(0.539)
Adj R^2	0.071	0.053	0.130	0.091	0.176	0.106	0.187

✓ The scc has significant predictive ability for future inventory growth. The effect is stronger during contango periods.

Spot Return Predictability

 $basis_t = scc_t - acyc_t$

Dissecting the basis

 \checkmark Mean of the basis:

$$E(basis_t) = E(scc_t) - E(acyc_t)$$

$$100\% = \frac{E(scc_t)}{E(basis_t)} - \frac{E(acyc_t)}{E(basis_t)}$$

✓ **Variance** of the basis:

 $Var(basis_{t}) = Var(scc_{t} - acyc_{t})$ $100\% = \underbrace{\frac{Var(scc_{t}) - 2 \times Cov(scc_{t}, acyc_{t})}{Var(basis_{t})}}_{\text{Var} \text{Cont}_{scc}} + \underbrace{\frac{Var(acyc_{t})}{Var(basis_{t})}}_{\text{Var} \text{Cont}_{acuc}}$

Computation of core variables:

✓ Basis

 $basis_t = \frac{F_{t,t+1} - S_t}{S_t}$

✓ Storage Cost Channel

$$scc_t = \frac{SFC_{t,t \to t+1}(1 + r_{t,t \to t+1})^{1/12}}{S_t}$$

✓ Adjusted Convenience Yield Channel

 $acyc_t = scc_t - basis_t$

Data

✓ Storage Futures Contracts (SFC) from Refinitv Tick History

The theory of storage (Fama and French, 1987) implies that: $E_t(S_{t+1}) = F_{t,t+1}$. It can easily be shown that:

$$E_t \left(\underbrace{\frac{S_{t+1} - S_t}{S_t}}_{R_{t+1}} \right) = \frac{F_{t,t+1} - S_t}{S_t} = basis_t$$

We estimate predictive regressions (also including controls):

$$R_{t+1} = \alpha + \beta \times basis_t + \epsilon_{t+1} \quad (\text{Recall that } basis_t = scc_t - acyc_t)$$
$$R_{t+1} = \alpha + \gamma \times scc_t + \delta \times acyc_t + \epsilon_{t+1}$$

basis	2.241 (2.382)						
SCC	()	4.475		3.800	3.034		2.647
		(3.014)		(3.334)	(2.958)		(2.805)
acyc			-2.196	-1.420		-2.605	-2.335
			(-1.654)	(-1.292)		(-1.585)	(-1.445)
relbasis					-0.009	1.710	1.814
					(-0.014)	(1.102)	(1.207)
mom					-0.079	-0.105	-0.067
					(-1.458)	(-2.295)	(-1.354)
basmom					-0.050	-0.002	-0.013
					(-0.152)	(-0.006)	(-0.038)
Adj R^2	0.150	0.139	0.068	0.154	0.122	0.132	0.153

✓ The *scc*, rather than the *acyc*, is the main conduit through which the predictive power of the basis arises!
 ✓ The *scc* also predicts the returns of companies in the mid-stream segment of the oil industry.

 \Rightarrow Challenge to the conventional wisdom in the literature that the predictive power of the commodity futures basis is driven by the the convenience yield!

- Monthly expiration cycle
- Same maturity as the crude oil futures
- ✓ Gulf Coast Sour Crude Oil Futures from Refinitv Tick History
 - Sampling on the last trading day to obtain spot price
 - Sample period: January 2016 December 2019

 \Rightarrow The *scc* displays considerable time-series variation. Challenge to standard assumption by the literature!

Conclusions

✓ Using a novel dataset on LOOP sour crude oil storage futures, we construct a new measure of storage costs and explore its properties.

 \checkmark The level of the storage cost is economically large and varies over time and over different market states.

- \checkmark We decompose the basis into a storage cost channel (scc) and a convenience yield channel (acyc):
 - The scc dominates the level of the basis
 - It explains about 45% of variations in the basis
- \checkmark We document the information content of the scc for:
 - Future inventory growth
 - Future spot return

Contact Details

Andrei Stancu: andrei.stancu@newcastle.ac.uk
Lazaros Symeonidis: l.symeonidis@essex.ac.uk
Chardin Wese Simen: c.wese-simen@liverpool.ac.uk
Lei Zhao: lzhao@escp.eu