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Introduction/Motivation

First-price auctions are a common auction format, but rarely occur in isolation:

• Multiple objects are often auctioned simultaneously

• Auctions are repeated regularly whenever new lots become available.

This is a problem for standard empirical methods when pay-offs are non-additive
across auctions. Consider a bidder with diminishing marginal returns:

1. If they previously won many lots, they will bid less aggressively in future

2. If many auctions occur simultaneously, they may only bid on a small subset

It is difficult to model both repeated and simultaneous auctions. Previous work,
including Gentry et al. (2018) and Jofre-Bonet and Pesendorfer (2003), focuses
on either a static multi-object model, or a dynamic single-object model.

→ It is a-priori unclear what effect these simplifications will have, and the
magnitude of the inaccuracy created on estimates and counterfactuals.

This paper develops an empirical model of bidding in this environment, combining
the models of Gentry et al. (2018) and Jofre-Bonet and Pesendorfer (2003)

Research Questions:
1. Is the model non-parametrically identified?
2. Is it computationally feasible to estimate such a model?
3. What is the inaccuracy of using a simpler single object or static model?

Model

I build an infinite horizon model of risk neutral bidders bidding in repeated simul-
taneous first-price auctions. The model has the following features:

• L lots are auctioned each period. At time t bidder i places bid bilt on lot l.

• There are 2L possible outcomes for bidder i at time t, denoted c ∈
{

1, ..., 2L
}

Combination outcomes include winning none, 1 lot, a different lot, 2 lots, etc.

• The state of the world at the beginning of period t is denoted st. The ex-post
state at the end of period t is denoted sct. This depends on the outcome c.

• If i wins lot l, they receive pay-off υilt. This value is known privately, and
drawn independently from distribution Fl.

• If i ends the period in state scit they receive deterministic pay-off j(scit)

• Players believe, given the state st, their bids bit, and others’ strategies, that:

1. They will win lot l with (marginal) probability Γl(bilt|st;σ−i)
2. The combination outcome will be c with probability Pc(bit|st;σ−i)

The Bellman equation for this problem is given by:

W (υ, s;σ−i) = max
b

{∑
l Γl(bl|s)(υl − bl) +

∑
cPc(b|s)[j(sci) + βV (sc)]

}
→Where the Continuation Value V (sc) = Eυ̃

[
W (υ̃, s̃;σ−i) |sc

]
This optimisation problems yields L First Order Conditions for optimal bidding:

0 =
∂Γl(bilt)

∂bl
(υilt − bilt)− Γl(bilt) +

∑
c

∂Pc(bit)

∂bl
[j(sci) + βV (sc)] (1)

Following Gentry et al. invert the FOCs (÷ by ∂Γl
∂bl

) for the Inverse Bid Function ξl

ξl(b|j + βV ; s) = bl +
Γl(bl)

∂Γl(bl)/∂bl
−
∑
c

∂Pc(b)/∂bl
∂Γl(bl)/∂bl

[j(sci) + βV (sc)] (2)

Identification

Given data
{
{bilt}i , st, sct

}
t are the distribution F and the deterministic pay-off j identified?

• As always beliefs Γ and P are identified through observed distributions of players bids.
• Gentry et al. (2018) Demonstrated that F is identified conditional on (j, β, V )
• I assume E[υilt|s] = 0, and normalise j(s0) = 0 (we only identify marginal pay-offs).

→ This, plus observed variation in the state variables is sufficient for identification.

Intuitively we consider how bidding changes with observed changes to the state. If the
bidder recently won, do they bid more / less aggressively than if they haven’t won recently?
Algebraically: ξl(bit|j + βV ; st) = υilt at the true j + βV . I show that there exists a unique
pay-off function j such that the moment equations E[ξl(bit|j + βV ; s)|s] = 0 for every s.

Geometrically, consider an L = 2 example, with 13 possible states in the diagram below.

• Beginning in state s0, if the bidder wins nothing their ex-post state is s0. If they win one
lot then sc = s1 or s2 depending on which lot. If they win both lots then sc = s4. From
each state, possible ex-post states are shown by the dotted arrows (ignoring self-loops).
• We want to identify the 12 marginal pay-offs of moving from s0 to various other states.

Each observation, beginning in a particular state, yields 2 pieces of information (two
bids). However, there are always 3 marginal pay-offs to identify.

The identification problem is as follows:

By adding two (red) edges from each state,
can we connect the graph, so the adjacency
matrix has rank 12? (yes we can)

→Overlapping possible ex-post states are key

We stitch together information across states

Even though there is no edge s0 → s4, this
marginal pay-off is identified using our obser-
vation from s2. Likewise s2→ s8.

s0

s1 s2

s3 s4 s5

s6 s7 s8 s9

s10 s11 s12

Estimation

The standard approach to estimating dynamic auctions comes from Jofre-Bonet and Pe-
sendorfer (2003). We write V (s) as a function of the observed distribution of bids and
transition functions only, before backing out j and F .

Unfortunately in the multi-object context we cannot write V (s) as a function of bids only.
However, by substituting the FOCs into the bellman equation we can write the continuation
value as a function of bids and the sum j(sci)+βV (sc), which I denote as the function k(sc):

V (s) = Eb

[∑
l

Γl(bl)
2

∂Γl(bl)/∂bl
+
∑
c[Pc(b)−

∑
l Γl(bl)

∂Pc(b)/∂bl
∂Γl(bl)/∂bl

] k(sc) |s
]

(3)

In fact, we can write both the first order conditions and the inverse bid functions as functions
of bids and this function k = j + βV . This suggests a natural 3 step estimator:

1. Estimate beliefs Γ and P from the distribution of bids.

2. Estimate k(s) by GMM - setting k̂ such that E[ξl(b|k, s)|s] = 0 for all s
That is, so that our identifying moment conditions hold for each observed state.

Then estimate F from the inverse bid functions.

3. Evaluate V using equation 3, bids, and k̂. Finally, back out ĵ = k̂ − βV̂

In step 2 we almost estimate the model as if it was a static model, before giving it a dynamic
interpretation at step 3. Given that step 3 is computationally very simple, the computational
intensity of the estimation procedure is little more than that from estimating a static multi-
object model. The results of a simulation study suggest this approach is effective.

Application

I investigate the extent of the inaccuracies from incorrectly estimating either a
static or single-object model. I apply the model to data from Michigan Depart-
ment of Transport’s procurement auctions for highway maintenance contracts:
• 10 years of data, with auction rounds taking place every 2-4 weeks.
• ≈ 45 auctions take place each round, with roughly 200 (potential) bidders.
• I investigate how a firm’s backlog of contracts impacts their cost function

→ Focusing on road paving projects

This setting (and data) has been used in numerous previous auction studies.
These previously employed either static or single-object models, and generally
found evidence of dynamics and complementarities across lots.

I compare estimates of the marginal cost function across three models:
i) Dynamic Multi-Object, ii) Dynamic Single-Object, iii) Static Multi-Object

We observe that costs are decreasing in the backlog.
→ This suggests firms take advantage of increasing returns to scale

When we compare the mis-specified models the costs are under-estimated.

The Static Multi-Object model:
Assuming myopic bidders ignores the option value of winning today vs in future:
• At low backlogs a firm that wins a contract today can afford to be more picky

about contracts in future, not worrying about having no work.
• This option value off-sets the high marginal cost, so bidders are willing to

bid more aggressively despite high marginal costs.

The Dynamic Single-Object model:
Assuming costs are independent across lots ignores the role of cost synergies:
• Low backlog firms bid aggressively on multiple lots to exploit returns to scale
• Aggressive bidding is mistaken for generally low costs, since we ignore that

they are trying to win multiple lots.
• This effect compounds as we underestimate the option value, ignoring that

firms can win multiple lots in future as well.

Conclusions:
1) Failing to account for both forward-looking behaviour and complementarities
across auctions can lead to inaccurate cost estimates, which will lead to inaccu-
rate counterfactuals and welfare conclusions.
2) Because the computational difficulty of estimating a dynamic multi-object
model is little more than estimating a static multi-object model, it is difficult to
justify not using the dynamic model.
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