Introduction

Popular Location/Center Measures and Regression Methods

Given f(X) and f(Y | X)
@ Mean: E{X}
< Mean regression: E(Y | X)
@ Median/Quantile: Median/Quantile{ X'}
—— Median/Quantile regression: Qy |x(7)

@ Mode: Mode{X}

— [low about regression using mode Mode(Y | X)?
NOT TOO MUCH RESEARCH!

7 s - - -
— llow about regression with endogeneity using mode?
No.

Features of Modal Regression

@ No moment restriction, i.e., Cauchy distribution

© Detter for skewed data, i.e., mode return and Bayesian estimation
© Applicable to clustered /inhomogeneous data

@ Shorter prediction intervals

@ Suitable for truncated data

Q@ Robust to outliers and heavy-tailed distributions

Mean

Mean Qutliers

(1) ASYMMETRIC (11) SymMMETRIC WITH OUTLIERS

Definition of Endogeneity

@ Endogeneity is prevalent in economics and statistics, i.e., simultaneous causality
(education or prices), sample selection, and omitted variables.

@ Interpret the endogeneity in modal regression as the nonzero value of the condi-
tional mode of error term given covariates,

Mode(U | X) # 0.

@ Given instrumental variables Z such that X = h(Z,V), endogeneity in modal
regression implies that

V' is stochastically dependent on U.

@ [ndogeneity renders the modal regression inconsistent for estimating the causal
(structural) effects of covariates on the mode of outcomes.

@ Control function approach (Newey et al., 1999; Su and Ullah, 2008).
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Parametric Triangular System

@ For observations {Y;, X;, Zi};—, from random vector (Y, X, Z),
Y = X;8+ er;,{y + U; (structural equation),
X;=a+Zln+V; (reduced form equation),

where Mode(V; | Zi) = 0 (a.s.) and Mode(U; | Xi, Zi) # 0 (a.s.).

@ For identification, no constant is in the structural equation, and the standard
rank condition is satisfied (dim(Z2:) > 1, Z; = (Zf,i, sz,z-)j )-

REMARK

Release the strict parametric assumption,
Yi = g(Xi, Z1,:) + Ui (structural equation),
X; = h(Z;) + Vi (reduced form equation),

where g(-) and h(-) are real-valued (non-constant) functions.

@ With restriction of a mode independence of U; on Z; conditional on V;,

( Mode(Y; | Xi,Zi,V;) = ijuzl 17+Mode(m | Xi, Zi, Vi)

= X8+ Z! ,,7+Modp(m la+ Z ' n+V;, Z;, Vi)
=X,8+ Zl Y + Mode(U; | Vi, Z;)
= XiB + Z{ ;v + Mode(U; | Vi),

@ Define Mode(U; | Vi) =

m(V;) as a real-valued unknown function.

[ Yi = XiB+ Ziiy +m(Vi) + Ui — m(Vi)
\_V_/‘

< new error term

« 3% SEMIPARAMETRIC PARTIALLY LINEAR MoODAL REGRESSION

Motivation 1

@ Consider a two-period economy with two assets, one risk and one risk-free. Under
the modal maximization decision and time-separability,

max Modei (U(Cy) + BU(Ciy1)) = U(Cy) 4+ BU(Mode(Cryq)),

since Mode(U(C)) = U(Mode(C')) (INVARIANCE).

C, =W, — P,0— P/o,

@ The budget constraint is { f
Ct—l—l. == Xt+10 + Xt—l—lg

@ Define U(C) = . The Modal Euler Equation is

C( -

C
Mode ( ;f‘ |szt) = (gxI )/,

-t

«—— Modal Regression but with Endogeneity!

Estimation Procedure

@ Pirst Step is the construction of estimated residuals {Vi}i_,

Qula,m) = th&(X“ =t

where ¢(-) is chosen as a Gaussian kernel.
o Identification depends on whether the population moment conditions are sat-

isfied uniquely,

Zi (Xi—a—Zln .

]E (Eé ( h ) (XL — &= ZQ: Tr) |C‘k_(}:u,1r—1r{}) = [}1
1 X,—a—-Z'r -

£ (Ftﬁ) ( h ) (XL o Zi- ?T) |“_‘3‘fll:'ﬂ'_ﬂn) = 0.

LEMMA

If the partial derivative matriz of the above moment condition with respect to o and w
is full rank, local identification is achieved.

@ Second Step focuses a semiparametric partially linear modal regression.
Mode(Y; | Xz, 214, Vi) = XaB + Z{ v+ m(Vi) + 0p(1)

@ First Stage applies local linear technique to approximate m(f’g)

-

1 & Y; = Xif — ZL v — a1 — a2(Vi — v) Vi — v
j'.‘ kB kB - : K
Qu(B,v;1,02) = ——m Zcﬁ»( m >

i=1

@ Second Stage improves the convergence rates of the estimators of the para-
metric components using all data.

& (Y;- —m(Vi) — Xiff — Z’f,‘n)

nhs Z¢ hs

@ Third Stage improves the efficiency of the nonparametric part.

igb Y — Xif— ZF3 — a1 — az(Vi —v) K Vi v
h4hri 3 ha hr

Qn(B,7) =

Qn(ay, az) =

Motivation 2

Dependent variable is log wages; endogenous variable is years of schooling (ed76);
instrumental variable is living near a four-year college (Card, 2001).

In(Wage) = a+ed76 + W"'0 + U, Mode(U | ed76) # 0
ed76 =+ Z+W'0+V, Mode(U | V) # 0.

TaBLe: Estimates of Return to Schooling

Variables Two-Step Modal Naive Linear Modal Mean-2SLS

ed76 0.1331%** (0.0010)  0.0772%** (0.0005)  0.1315%* (0.0548)

Quantile (0.3) Quantile (0.5) Quantile (0.7)

ed76 0.1652%%* (0.0561)  0.1351%** (0.0790)  0.0945%* (0.0391)

Note: The standard error is calculated from Bootstrap based on mode value.
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Modal-Based Control Function

@ The fundamental principle: with symmetric data, modal regression line is iden-
tical to mean regression line.

@ (Local linear) mean estimator is sensitive to outliers and does not perform well
when the data have heavy-tailed distributions.

@ The existing robust techniques, including robust Huber’s estimation, can achieve
robustness by sacrificing some of the efficiency.

@ With the focus on modal regression for symmetric data, Mode(V; | Z;) = E(V; |
Zz') — 0., MOdE(U’i | X{, Zz) - E(fji | X.g, Zi) # {},

Mode(Y; | Xi, Z:, Vi) = B(Y; | X, Zi, Vi) = Xi + Z{ ;v + Mode(U; | V;),

Mode(X: | Zi) =B(X: | Zi) =a+ Z! w
@ Utilize the same kernel-based objective functions but with constant bandwidths

associated with error terms.

@ When there are outliers or the error distribution has heavy tails, the proposed
modal-based estimation performs better.

@ As asymptotically efficient as the mean estimation when there are no outliers
and the error is normally distributed.

With a Gaussian kernel, 1 — exp(—c2/2h?) ~ £2/(2h?)

IV Selection in First Step

@ For the first step, it may have a large set of instrumental variables to be used in
practice and face the dimensionality curse of many instruments.

@ Provide a modal adaptive lasso method to cull the weak instrumental variables
to get more robust results.

@ Penalized modal regression with an adaptive lasso is

X:—2z70
Q(0) = hch;( )—I—)m”'tf;o()”,

i=1
dz+1
where A, is a nonnegative regularization parameter, w o ) = Z w;|0;], and
j=1
w; = 1/10;]" with 0 <~ < 2. |0;|/]0;| converges to I(0; # 0) in probability.

@ Select A,, by a Consistent BIC-type procedure

X:—z:"o" log(nh®)
— " d
(M) e

where df,,, is the degrees of freedom of the fitted model.
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