Stock Returns in Global Value Chains: The Role of Upstreamness and Downstreamness Rene Marian Flacke Nicole Branger

nicole.branger@wiwi.uni-muenster.de

1. Motivation

— Summary —

This paper studies how **upstreamness** and **downstreamness** affect **stock re**turns in global value chains. Up- and downstreamness measure the average distance from final consumption and primary inputs, respectively, and are computed from world input-output tables. We show that **downstreamness is a** key driver of expected returns around the globe, whereas upstreamness is **not**. Firms that are farthest away from primary inputs earn approximately 5% higher returns per year than firms that are closest. The effect is found within and across countries and suggests that investors perceive supplier dependence in global value chains as an **important source of risk**.

Upstreamness and Downstreamness

Vertical Supply Chain Perspective:

PrimaryFactors Petrochemical Automotive

FinalUse

Measure Positioning from Final Use: Upstreamness U

Firm A, Firm B Firm C, Firm D FinalUse

Measure Positioning from Primary Sector: **Downstreamness** D PrimaryFactors

Firm A, Firm D D3Firm C, Firm B

• Vertical supply chains define firms that are far away from primary inputs (i.e., high downstreamness) simultaneously as firms that are close to the final user (i.e., low upstreamness)

- However, this approach does not take into account the network structure of worldwide trade, as up- and downstreamness may not be inversely linked
- In the above example, Firm B (Firm D) has a high (low) up- and downstreamness at the same time, contradicting the plain vertical supply chain perspective

This Paper

Economic networks and macroeconomic fluctuations

- Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012), Atalay (2017): Productivity shocks propagate not only to first-order, but also to second- or higher-order connected downstream sectors
- \Rightarrow In sparse networks, not only first-order, but also higher-order connections should be considered; our metrics take all connections into account

Global value chain positioning

- McNerney, Savoie, Caravelli, Carvalho, and Farmer (2022): Supply shocks that originate at primary inputs accumulate while propagating downstream (i.e., to customers)
- \Rightarrow If microeconomic shocks propagate, the relative value chain position of industries could have first-order effects on their economic output

Trade linkages in asset pricing

- Gofman, Segal, and Wu (2020): U.S. firms with high upstreamness are more exposed to aggregate productivity shocks and therefore carry a risk premium
- \Rightarrow Since trade networks are global, economic analyses should be based on them

Our Approach

- \Rightarrow We study a large set of global value chains and discriminate between industries' global up- **and** downstreamness
- \Rightarrow We link these metrics to **international** stock market data

Data

Final sample

Upstreamness

We compute the (weighted) average position in value chains as:

Downstreamness

 VA_i to

We then iterate over (4) and compute the (weighted) average position in value chains as:

where $D_i \geq 1$ and larger values imply higher downstreamness of *i*.

rene.flacke@gmail.com

Paul Meyerhof

paul.meyerhof@wiwi.uni-muenster.de

Steffen Windmueller steffen.windmueller@tum.de

2. Data and Methodology

Trade data

- World input-output tables from WIOD project
- WIOTs cover 43 countries with 56 ISIC sectors each from 2000 to 2014
- Original data comes from national bureaus, covering >85% of global GDP
- Industries are categorized by ISIC Rev. 4 code

Stock market data

- U.S.: CRSP and CRSP/Compustat Merged
- International: TR Datastream and Worldscope

• Data overlaps with 27 countries and 53 business sectors • Final sample (01/2001 - 12/2015):

• 2,862,374 stock-month obs. for 36,786 firms

• 110,699 industry-month obs. for 767 industries (incl. controls)

Computation

We rewrite the input-output identities for industry i using industries' outputs (GO), output supplied to industry j (Z_{ij}), and output supplied to the final user (F_i):

$$GO_i = F_i + \sum_{j=1}^N Z_{ij} = F_i + \sum_{j=1}^N a_{ij} GO_j,$$
(1)

where the input coefficient $a_{i,j} = \frac{Z_{i,j}}{GQ_i}$ reflects the share of industry j's total inputs that are supplied by industry *i*. Then, we iterate over (1) at different positions:

$$GO_i = F_i + \sum_{j=1}^N a_{ij}F_j + \sum_{j=1}^N \sum_{k=1}^N a_{ij}a_{jk}F_k + \dots$$
(2)

$$U_{i} = 1 \times \frac{F_{i}}{GO_{i}} + 2 \times \sum_{j=1}^{N} \frac{a_{ij}F_{j}}{GO_{i}} + 3 \times \sum_{j=1}^{N} \sum_{k=1}^{N} \frac{a_{ij}a_{jk}F_{k}}{GO_{i}} + \dots$$
(3)

where $U_i \geq 1$ and larger values imply higher upstreamness of *i*.

Accordingly, we define the output coefficient $b_{j,i} = \frac{Z_{j,i}}{GO_i}$, which gives the share of industry j's gross output that is supplied to industry *i*, and reformulate the input-output identity using the value-added

$$GO_i = VA_i + \sum_{j=1}^N GO_j b_{j,i}.$$
(4)

$$D_{i} = 1 \times \frac{VA_{i}}{GO_{i}} + 2 \times \frac{\sum_{j=1}^{N} VA_{j}b_{j,i}}{GO_{i}} + 3 \times \frac{\sum_{j=1}^{N} \sum_{k=1}^{N} VA_{k}b_{k,j}b_{j,i}}{GO_{i}} + \dots,$$
(5)

Evolution of Up- and Downstreamness 2017)longer

We estimate

where $r_{i,t}$ is industry is monthly excess return, $U_{i,t-1}$ and $D_{i,t-1}$ are industry's up- and downstreamness in the previous year, and Z_i is a set of industry controls.

	$r_{i,t}-r_{f,t}$							
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
$\overline{U_{i,t-1}}$	0.012		-0.030	-0.030	-0.040	-0.013	-0.055	0.077
	(0.284)		(-0.689)	(-0.745)	(-0.929)	(-0.280)	(-1.294)	(1.043)
$D_{i,t-1}$		0.156^{**}	** 0.170**	* 0.170**	* 0.152**	** 0.240**	0.138**	0.149
		(2.786)	(2.950)	(3.429)	(2.661)	(2.427)	(2.503)	(0.703)
Observations	110699	110699	110699	110699	110699	110699	110699	110699
Adjusted R^2	0.361	0.361	0.361	0.361	0.406	0.360	0.615	0.381
Country FE	Yes	Yes	Yes	Yes	Yes	No	No	No
Month FE	Yes	Yes	Yes	Yes	No	Yes	No	No
Country \times Month FE	No	No	No	No	No	No	Yes	No
ISIC Sector \times Month FE	No	No	No	No	No	No	No	Yes
Estimator	OLS	OLS	OLS	OLS	FMB	OLS	OLS	OLS
Standard Errors	Month	Month	Month	Month & Industry	FMB	Month	Month	Month

Results

Main Findings

- The effect is found within and across countries
- year than industries that are closest

Robustness

- regressions

Interpretation

3. Empirical Evidence

- We find widening ranges for both up- and downstreamness
- In line with previous research, correlations are positive and grow from 0.34 in 2000 to 0.44 in 2014 (see, e.g. Miller and Temurshoev,
- Both upstream and downstream global value chains have become
- Up- and downstreamness must be studied simultaneously to identify the actual individual effect of any of the two variables

(6)

Industry-Level Panel Regressions

$r_{i,t} = \lambda_U U_{i,t-1} + \lambda_D D_{i,t-1} + \gamma' Z_{i,t} + \epsilon_{i,t}$

• Downstreamness is a key driver of expected returns around the globe, whereas upstreamness is

• Industries that are farthest away from primary inputs earn approximately 5% higher returns per

• We validate our empirical results by including various control variables, controlling for nonlinearities, equally-weighting firms within industries, and performing firm-level panel

 \Rightarrow In all our specifications, only downstreamness significantly explains international expected returns

• Investors perceive supplier dependence in global value chains as an important source of risk and expect higher returns on investments in firms that have longer upstream value chains than others • The analysis suggests that supply-side shocks propagate through input demand chains and accumulate when passing suppliers, making downstream firms particularly risky for investors