Moral Hazard under Contagion

Boli Xu (Northwestern University, Ph.D. student)

Motivation

- This paper studies partnerships where
- -partners can exit at any time
- -partners who have exited still enjoy some free-riding benefits as long as remaining partners keep contributing to the partnership
- -free-riding makes it harder for remaining partners to operate the partnership; they may thus choose to exit as well

• Key trade-off

- -free-riding vs. contagion of defections it may trigger
- Real-world examples

Contact Info: bolixu2022@u.northwestern.edu **Paper available at:** https://ssrn.com/abstract=3847105

Model Result (2 Players)

- Stage 2: second mover's optimal exit threshold $x^* = \frac{r-\mu}{r} \frac{\gamma}{\gamma-1} \beta c$
- Stage 1: a canonical stopping game
- -before any player exits: flow payoff is $X_t c$
- -the one who exits first gets $F(X_t)$, the remaining player gets $S(X_t)$
- Theorem 1: Pareto-undominated MPE (for Stage 1) is unique
- -Curse of productivity: (\exists parameters) $V(X_t)$ is non-monotonic

- -European Super League
- -public protests
- group lending programs
- ...

Paper in a Nutshell

Dynamic moral hazard in teams + Irreversible defections

Main Findings

- 1. Curse of productivity: increasing the output of the partnership may strictly harm all the players
 - intuition: a larger output is a double-edged sword
 - -it generates higher revenue to the players
 - -but also exacerbates the free-riding problem, because remaining players have larger incentives to keep operating the partnership • a novel channel that high productivity can be detrimental
- 2. Partnership's ability to cooperate is non-monotonic in its group size

Exit Contribute Exit Contribute

Model Setup (N Players)

• Denote n_t as the number of players still contributing at time t • Flow payoff if *Contribute* = $X_t - \beta_{n_t}c$ -assumption: $\beta_1 \ge \beta_2 \ge \dots \ge \beta_{N-1} \ge \beta_N$ • Flow payoff if $Defect = \alpha_{n_t} X_t$

Model Result (N Players)

• N-player cooperative outcome \triangleq the outcome when N players jointly decide when to terminate the project (social optimal) -not necessarily an equilibrium: players may free-ride others

• intuition:

- -n 1 players cannot cooperate $\xrightarrow{\text{maybe}} n$ players can cooperate * when there are n players, one's initial exit will trigger more to exit since n - 1 players cannot cooperate
- * hence, gain from free-riding < loss from contagious defections
- -*n* players can cooperate $\xrightarrow{\text{maybe}} n + 1$ players cannot cooperate
- * when there are n + 1 players, one's initial exit will not trigger more to exit since *n* players can cooperate
- * hence, gain from free-riding > loss from contagious defections
- vs. static setting: large size exacerbates free-riding (Olson, 1965)

Model Setup (2 Players)

- Continuous time $t \in [0, \infty)$
- 2 players (i = 1, 2) run a joint project
- $-\Pi_i = \int_0^\infty e^{-rt} \pi_{it} dt$ where π_{it} is the flow payoff
- Flow payoff at time t

		Contribute		-	Defect		
. •1	4	77	T 7	77	$\overline{\mathbf{O}}$	T Z	

- Theorem 2: the group sizes that sustain a cooperative equilibrium are $\{n^{(1)}, n^{(2)}, ...\}$, where $n^{(0)} = 1$ and $n^{(k)} = \min\{n : \frac{\beta_{n^{(k-1)}}}{\beta_{n^{-1}}} \ge \beta^*\}$
- -cooperation sustainability is non-monotonic in group size -example: when $\beta_n = \frac{N}{n}$ and $\beta^* = 2.2$, cooperation-sustaining group sizes are $3 (= \lceil \beta^* \rceil), 7 (= \lceil 3 * \beta^* \rceil), 16 (= \lceil 7 * \beta^* \rceil), ...$

Other Findings

- 1. Why some leaders (implicitly) commit not to exit before others?
- Prop'n 1: Such a commitment may lead to Pareto improvement -intuition: gain from avoiding pre-emption > loss from abandoning the option to exit first
- 2. How if partners' defections are reversible?
 - Prop'n 2: When returning to the partnership is costless, first-best outcome is achievable by a grim trigger strategy
 - -consistent with repeated games wisdom: free-riding can be eliminated in teams that operate over time (McMillan, 1979)
 - -irreversibility reintroduces the free-riding problem

Contribute
$$X_t - c, X_t - c$$
 $X_t - \beta c, \alpha X_t$
Defect $\alpha X_t, X_t - \beta c$ $0, 0$

- $-X_t > 0$: project's flow output, follows $\frac{dX_t}{X_t} = \mu dt + \sigma dZ_t$
- $-\beta > 1$: the reliance parameter
- $-\alpha \in (0, 1)$: the free-riding parameter
- Timeline (à la Murto & Valimaki, 2013)
- -Stage 1: given that no one exited yet, *i* choose *exit region* $\mathcal{X}^i \subseteq \mathcal{X}$ * if both intend to exit at the same time: flip a coin so that only one of them exits successfully (each w.p. $\frac{1}{2}$) * one player exits at Stage 1 and becomes the *first mover* -Stage 2: the second mover chooses exit region $\mathcal{X}^s \subseteq \mathcal{X}$

3. How if players' inputs are homogeneous and substitutable? • Prop'n 3: Easier to sustain cooperation.

Related Literature

- Dynamic moral hazard in teams
- -Dynamic contribution games
- Stochastic stopping games
- -Real options games
- Voluntary partnerships
- Farsightedness in cooperative games