Specification Testing with Prediction Criterion:

Causality, Prediction, and External Validity

2. Definition of Correct Model

Introduction

Model specification testing.

Regression analysis relies on the correctness of model specification.

e.g., Durbin—-Wu—Hausman test

e Correct model: orthogonality of the dependent variables and error term.

Prediction—based model specification test
Assume availability of train data {(X;,Y;)}/=, and test data {XJ}T—l

e Test data: the data that we want to predict the outcome.

* There are only covariates X, and the target variables are unobservable.

New definition of correct models.

Idea: If the model can predict target variables well, the model is correct.

Under the definition, we show
 The asymptotic distribution of the least squares under covariate shift.

e The asymptotic distribution of the test statistics.

1. Govariate Shift Problem

Data—generating process (DGP):

There are two stratified data:

X, Y) ~ p(x,y), X, Y) ~ q(x,y),

where Xi,Xj € R% and Y;, 17] € R. 17] IS unobservable.

Observations:

(K YNy ~p(y), (K} ~ 4@,

Furthermore, we put the following assumption on the conditional pdf:

p(x,y) = p(ylx)p(x),
q(x,y) = p(ylx)q(x).
* p(y|x) is invariant across the two data.
* p(x) and q(x) can be changed
* p(x) and g(x) have a common support.

This setting is called learning under covariate shift.

Linear model:
Assume a linear model of E[Y;|X;] as ZT (X;)B".

« Z(+) is a mapping from X; to some linear models.

Definition of correct model
Our model specification is defined from the viewpoint of prediction.

Parameter that minimizes the MSE over p(x,y) is defined as
do = argminb[Ep(x,y)[(Yi - ZT(Xi)b)Z]-
Parameter that minimizes the MSE over q(x,y) is defined as
. - Y
Yo = argminyE g, ) [(Y] — 7 (Xj)b) ] .

If @y = Yy, the model is specified correctly

If ay # yq. the model is misspecified.

By using this definition, consider the following hypothesis:

7‘[0: o = yOand .7'[1: 4 £) == Yo

If H, is rejected, the model specification is incorrect.

3. Covariate Shift Adaptation

However, we cannot observe Y.

Let us define a parameter estimated from {(X;,Y;)}/L, as
a = argminyE,.,)|(¥; — ZT(X;)b)?|,

where E\Ip(x,y) denotes the sample average of the samples from p(x, y).

Then, for{)?j}?ll, we define the following estimator:

_ o _ o 2
¥ = argminyE [(Yj —Z"(X)b) ]

P q(X;)
~ argmin,E (Y; — ZT(X;)b)? ]
g b%p(x,y) [ i ( l) p(Xi)
: : ~ q(X;)
* Thus, we approximate [Eq(x’y) by using IEp(x,y) and X

Let us denote the density ratio % by r*(x).

We can estimate the density ratio with machine learning methods.

e.g., ULSIF (Kanamori et al. (2012)).

Masahiro Kato, Cyberagent, Inc.

@A CyberAgent.
Al Lab

4. Double/Debiased Least Squares Estimator

Consider the asymptotic distribution of ¥.
e The density ratio is estimated by machine learning methods.

— The estimator does not satisfy Donsker’ s condition.

We use double/debiased machine learning to avid this problem.
* An estimator ¥ with a doubly robust form.
e (Cross—fitting.

Doubly robust estimator of the MSE over g(x,y):
Eq(x,y) l(YJ B ZT(XJ')b)Z]

~ By |((% = 2T (X)B)2 = (XD — ZT (X)) #(XD) | + Bqeoy | (F(K)) — 27(X;)b) 7|,

f(x) is some consistent estimator of f*(x) = E[Y; | x].

ax)
p(x)

7(x) is some consistent estimator of r*(x) =

We construct the empirical MSE by using cross—fitting.
Then, if n =m = N,

VN@ —v*) = ¥(0,%)

9. Hypothesis Testing

We construct the test statistics to investigate the hypothesis

}[O: o = Yo and :7'[1: ao +* Yo
A standard choice is to use Wald statistics.

We can construct Wald statistics by using the estimators @ and ¥.
The Wald statistics follows y?(k) distribution.

e k is the dimension of the linear model.
We conduct hypothesis testing using the test statistics.

e [If the null hypothesis reject, we can say that model is misspecified.
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