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Economists have long debated the driver(s)
of business cycles, attempting to answer this
question through the lens of structural vector
autoregressions (SVARs) and estimated DSGE
models (Galı́, 1999; Smets and Wouters, 2007).
More recently, a range of variance-maximizing
SVAR estimators have been used to identify
some of these potential drivers, including tech-
nology shocks (Francis et al., 2014), “news”
shocks (Barsky and Sims, 2011), and other at-
tempts to dissect the business-cycle anatomy
(Angeletos, Collard and Dellas, 2020). How-
ever, identification performance is poor when
shocks other than the target of interest also play
a nontrivial role in driving volatility at the tar-
geted horizon or frequency, thus confounding
the estimation. The result is that these identi-
fications capture a hybrid shock rather than a
dominant shock (Dieppe, Francis and Kindberg-
Hanlon, 2021).

We suggest a simple enhancement to sharpen
the variance-maximizing identification proce-
dure that reduces the influence of confound-
ing shocks. This enhancement is to include
theoretically-informed sign and elasticity re-
strictions in the identification stage of the VAR.

When applying our solution of combining
sign and magnitude restrictions in the frequency
domain, we establish the relevant importance of
different classes of shocks in driving the U.S.
business cycle. We find that “demand”-type
shocks, which drive up inflation and output, ex-
plain a roughly similar proportion of business-
cycle variation in GDP as “supply”-type drivers
of output, which lower inflation.
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I. An example of overlapping shocks in a
variance-maximizing identification

Variance-maximizing SVARs identify shocks
as those which dominate the variance of a partic-
ular variable of interest. However, the objective
variance of interest can take several forms; for
example, it can reflect the forecast error variance
at a specific horizon (Max-Share approach), or
it can reflect the variance within a particular fre-
quency domain (Spectral Max-Share approach),
reflecting business-cycle or longer-term vari-
ance. A reduced-form VAR can be used to com-
pute the objective variance, V (as a function of
the variance-covariance matrix of residuals Σu
and MA coefficient matrix D), modified appro-
priately to reflect either the forecast error vari-
ance at a targeted horizon, k.

V =

(
k−1

∑
τ=0

Dτ
ΣuDτ ′

)
Identifying the shock of interest involves the

Lagrangian for V :

L(α) = α
′(V )α−λ (α ′α−1)

whose first order conditions reduce to solving
for the eigenvector associated with the largest
eigenvalue of V .

The identified vector α , is then used to gener-
ate a single structural shock, Ãα , where Ã is the
Cholesky decomposition of Σu. Other structural
shocks are left undetermined.

While this approach seeks to identify a dom-
inant structural driver, it is a linear combination
of structural shocks that often accounts for the
largest share of variance. A simple New Keyne-
sian model is used to demonstrate how the vari-
ance maximizing methodology can erroneously
produce results combining the effects of a de-
mand shock and a supply-side shock, even when
the demand shock drives majority of the vari-
ance of output:
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ỹt =
−1
σ

(
it −Et [πt+1]−RNR

t
)
+Et [ỹt+1]+ηt

πt = κMCt +βEt [πt+1]

it = φyỹt +φππt

MCt = (σ +χ)yt − (1+χ)ϑt

Where ỹt is the output gap, it is the nomi-
nal interest rate, πt is inflation, MCt is marginal
costs, and RNR

t is the natural rate of interest. ηt
represents a demand (preferences) shock, while
ϑt reflects a supply-side shock, such as technol-
ogy.1

The solution to the model can be written as:[
ỹ
π

]
=

[
Ψyη Ψyϑ

Ψπη Ψπϑ

][
ηt
ϑt

]
Take the highly-simplified example in which

both η and ϑ have unit variance and in which
the empiricist is searching for the shock which
maximizes the initial impact variance of the out-
put gap (ỹ). In the case of a standard parame-
terization, where Ψyη > Ψyϑ , the demand shock
η drives the largest share of the variance of the
output gap. However, an eigenvalue-eigenvector
decomposition shows that the variance of ỹ on
impact is actually maximized by a combination
of η and ϑ (Appendix A.A1). More specifi-
cally, the “dominant” shock’s impact on ỹ will
be
√

Ψ2
yη +Ψ2

yϑ
, while the shock’s impact on π

will be (Ψyη Ψπη +Ψyϑ Ψπϑ )/(
√

Ψ2
yη +Ψ2

yϑ
),

rather than the true impact of Ψyη and Ψπη re-
spectively.

Note that this identification is equivalent to
the standard Cholesky identification solution in
this basic case, although maximization over
longer periods will deviate from this solution.
The smaller supply shock ϑ may exert consider-
able influence on the properties of the identified
shock. Notice for example, that even in cases
where the impact of ϑ on the output gap, Ψyϑ ,
is small, the bias to the inflation IRF can still
be large if the supply shock’s effect on inflation,

1σ is the inter-temporal elasticity of substitution, χ is the
Frisch elasticity of labor supply. κ is the slope of the Phillips
curve and is a function of the probability of not being able to
reset prices each period (θ ) and the discount rate (β ) :κ = (1−
θ)(1−βθ)/θ .

Ψπϑ , is large.2

In general, the researcher will not restrict her
search for the dominant driver of the initial im-
pact variance of the endogenous variables, but
rather the forecast error variance at longer hori-
zons, or the variance within a particular fre-
quency band. However, we argue that the same
principles shown above still apply; the identified
shock will capture a range of influences, in pro-
portion to their impacts at the chosen horizon or
frequency band.

In summary, without further identifying re-
strictions, the search for a dominant driver of a
variable of interest will be confounded by other
shocks.

II. Methodology

To sharpen identification, we propose a max-
imization procedure that imposes additional re-
strictions to reduce the influence of shocks that
are of less interest to the researcher. Our estima-
tion procedure is to maximize,

V (α) = α
′V α

subject to
α
′
α = 1

CL
R
′
α ≥ a

CNL1
R
′α

CNL2
R
′α
≥ b

Here, α is chosen as a linear combination of
the reduced-form innovations to the variance-
covariance matrix of the target variable of in-
terest (V ). It also satisfies the unit-length con-
straint, and is subject to the restriction that it
satisfies a set of linear inequality restrictions
(CL

R) and nonlinear inequality restrictions that
can be used to regulate the elasticity of the re-
sponse of variables relative to one another (CNL

R ).
With the inequality constraint, the problem is
solved using a constrained maximization algo-
rithm.3 Our approach differs from standard sign-

2Our concept of “confounding” shocks in variance-
maximizing restrictions has many parallels with the issue of
“masquerading” shocks that can lead to misleading results when
applying pure sign restrictions (Wolf, 2020).

3Additional iterative procedures have been identified which
solve constrained eigenvector-eigenvalue decomposition where
the linear constraints hold with equality at a. However, even in
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Figure 1. : Bias of the output gap and inflation impact response to the identified dominant driver of the output gap, with and
without restrictions

restricted identifications in that the draws that
satisfy the sign restrictions are not from a uni-
formly random distribution (Haar prior). In-
stead, the draws that are kept satisfy the sign re-
striction constraints and dominate the objective
variance function of interest.

III. Constrained Maximization: Applied to the
Simple New Keynesian Model

Taking the above New Keynesian model as an
example, it is possible to compare the IRF bias
that would result from an unconstrained variance
maximization identification with a constrained
maximization procedure that imposed sign and
elasticity restrictions. The unconstrained max-
imization procedure used to capture the domi-
nant driver of the output gap, η , is increasingly
biased for both the impact on ỹ and π as the stan-
dard deviation of ϑ increases (Figure 1). Even
when the variance of ϑ is low, the inflation re-
sponse is substantially negatively biased. This
bias could lead to erroneous conclusions that the
slope of the Phillips curve is flat, or even non-
existent, in response to the main business-cycle
driver of the model, a key finding of (Angeletos,
Collard and Dellas, 2020).

If the researcher instead imposes a priori
knowledge of the Philips curve relationship then
the bias is substantially lowered for all except
the smallest levels of interference from ϑ . The
restriction imposed is that inflation increases at
least one-third (i.e., b = 1

3 ) as much as the in-
crease of the output gap, consistent with stan-
dard model parameters. Applying elasticity re-
strictions that are too low or too high are also

this case a search algorithm is employed and the solution may
have multiple roots (Gander, Golub and von Matt, 1989).

found to reduce IRF biases for a wide range of
tolerances.4 In addition, the application of elas-
ticity restrictions is also found to sharpen iden-
tification in larger and more complex models
and when the objective variance is expressed in
frequency-domain form (Appendix A.A2).

IV. Constrained maximization: What drives
the U.S. business cycle?

We now apply this methodology to identify
the dominant driver of the variance of U.S. GDP
at business-cycle frequencies. V now takes a
more complicated form based on a transforma-
tion of the MA-coefficient matrix D to capture
business-cycle frequencies (ω):

V =

(
k−1

∑
τ=0

Dτ(e−iτω)ΣuDτ(eiτω)′

)

Here, k is set to 40 such that D admits a
long-term, but finite series with which to assess
the spectral density of the endogenous variables
(Dieppe, Francis and Kindberg-Hanlon, 2021).

We estimate a quarterly VAR over the pe-
riod 1953-2018 containing: log real GDP levels
per capita, the cumulative utilization-adjusted
TFP log difference series of Fernald (2014), to-
tal hours worked, the unemployment rate, the
share of investment in GDP, the share of con-
sumption in GDP, the consumption deflator, and
the Federal Funds rate of interest (Appendix

4Applying elasticity restraints that are too low perform at
least as well as the unrestricted case. Applying elasticity restric-
tions of up to 0.5 reduce bias in all cases for inflation, and reduce
the bias of the output gap impact in cases where ϑ explains at
least 20 percent of the variance of the output gap.
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Figure 2. : Targeting output at business-cycle frequencies, constrained and unconstrained: U.S Data

Note: 16th and 84th percentile error bands. Columns reflect the unconstrained shock which maximizes business-cycle frequency
variation of GDP; the shock where the impact on GDP is constrained to be positive, and the impact on inflation is at least 0.3 times the
GDP impact; and, the shock where the impact is constrained to be positive for GDP, but at least -0.3 times the GDP impact for inflation.

A.A3). The shock which maximizes GDP vari-
ation at business-cycle frequencies (6-32 quar-
ters) is identified, in some cases subject to con-
straints on the response of variables.

The results vary significantly when con-
straints on the response of inflation are intro-
duced (Figure 2). In the case of a constraint that
the initial impact on inflation is at least one-third
of the size of the impact on GDP combined with
a requirement that the GDP response is positive,
there is a less persistent response of GDP rel-
ative to the unconstrained case. Furthermore,
the response of interest rates is also positive in
the demand case, while TFP falls, in contrast
to the persistent rise in the unconstrained case
(Appendix A.A3). In the case of a constraint
that inflation falls by at least one-third of the in-
crease in GDP, the identified shock takes on the
properties of a positive supply-side innovation:
the GDP response is still positive at the 10-year
horizon, as is the response of TFP and consump-
tion, while interest rates rise very little.

The unconstrained identification produces a
hybrid of these two restricted identifications.
Even the restricted identifications may continue
to be subject to interference, and the imposition
of the one-third restriction on the reaction of the
inflation rate relative to output is still subject to
much debate in the literature. Nonetheless, we
argue that the restriction can be varied and still
be informative about the contributions of differ-
ent subsets of shocks to the business cycle.

V. How important are different drivers of the
business cycle?

Natural questions that arise from the restricted
maximizing shocks are: what proportion of
business-cycle variation in output do the newly
identified shocks explain relative to the uncon-
strained case? And, how sensitive are these
identified shocks to the elasticity restriction on
the response of inflation relative to output?

Both restricted shocks explain around half of
the business-cycle variance of GDP. That sug-
gests that both classes of shocks are broadly sim-
ilar in importance in driving the business cy-
cle (Table 1). As the elasticity restriction is in-
creased, the share of explained variance gradu-
ally falls, although only slightly; in the case of
the restriction requiring a positive response of
inflation, the share falls from 54 to 50 percent
as the elasticity is increased from 0.05 to 0.4,
while in the case of the negative restriction, it
falls from 53 to 50. Clearly, there is likely to be
continued overlap between the shocks contained
in either identification; it cannot be the case that
two independent shocks explain 50 percent or
more of the total business-cycle variation of out-
put. Nonetheless, the elasticity restrictions go
some way to reducing the degree to which differ-
ent classes of shocks are included. For example,
the unrestricted shock explains about 60 percent
of the business cycle variation of output.5

5Furthermore, we find that supply-side drivers of the
business-cycle are similarly important in driving long-run vari-
ation for GDP (Appendix A.A5).
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Table 1—: Contribution of identified shocks to business-cycle variation of GDP

Scale of restriction 0.05 0.1 0.2 0.3 0.4

Positive response of inflation 54 54 52 51 50
(48, 61) (48, 61) (46, 59) (46, 57) (46, 57)

Negative response of inflation 53 54 52 51 50
(47, 60) (48, 61) (45, 60) (45, 60) (45, 56)

Note: The median percent contribution of the SVAR-identified shock to business cycle frequency variation in GDP as the scale of the
inflation response to the identified shock relative to the GDP response is altered. 16th and 84th percentiles shown in brackets.

VI. Conclusion

This paper has highlighted potential short-
falls of employing variance-maximizing SVAR
identifications to identify dominant structural
drivers. It shows that the identified shock will
likely be a composite of shocks that can contain
very different properties. Even in cases where a
single shock dominates the variance of the tar-
get variable of interest, the impulse responses
for other variables can be significantly biased.
We propose additional restrictions that can be
employed to sharpen variance-maximizing iden-
tifications. Sign and elasticity restrictions are
shown in examples of model-generated data to
generate IRFs that are closer to the true dom-
inant structural shocks. In addition, they can
also be used to establish the properties of dif-
ferent categories of shock, for example, those
with “demand”-type properties and those resem-
bling supply shocks. However, these restrictions
rely on a priori knowledge of the structure of
the economy. When applied to a VAR estimated
on U.S. data, demand shocks, which raise out-
put and inflation, and supply shocks, which raise
output but lower inflation, account for a similar
proportion of the variance of GDP at business-
cycle frequency.
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APPENDIX

A1. Confounding nature of shocks in a simple New Keynesian model

In the New Keynesian model outlined in section I, the solution to the path of the endogenous
variables can be written as a function of the structural shocks, η and ϑ . Ψ is a 2× 2 matrix which
reflects the impact coefficients on the endogenous variables, ỹ and π .[

ỹ
π

]
=

[
Ψyη Ψyϑ

Ψπη Ψπϑ

][
ηt
ϑt

]
Where through the method of undetermined coefficients,

Ψπη =
−σκ̃

(1−βρη)(σ(1−ρη)+φy)+ κ̃(φπ −ρη)
,

Ψyη =
−σ(1−βρη)

(1−βρη)(σ(1−ρη)+φy)+ κ̃(φπ −ρη)
,

Ψπϑ =
−ΨNRκ̃

(1−βρϑ )(σ(1−ρϑ )+φy)+ κ̃(φπ −ρϑ )
,

Ψyϑ =
−(1−βρϑ )

(1−βρϑ )(σ(1−ρϑ )+φy)+ κ̃(φπ −ρϑ )
,

In the simulated IRF biases in section III, the following parameter values are used: β = 0.99,
σ = 1, χ = 1, θ = 0.66, φπ = 1.5, φỹ = 0.125, ρη = 0, and ρϑ = 0. ΨNR is equal to −σ

1+χ

σ+χ
and κ̃

is equal to (σ +χ)(1−θ)(1−βθ)/θ .
The structural shocks can be mapped to the reduced form impacts that would be observed by the

practitioner, and the variance maximizing shock determined as a function of these true underlying
impulses. We focus on the initial impact period in order to minimize the complexity of the algebra.
The reduced-form residuals are

εt =

[
ε

ỹ
t

επ
t

]
=

[
Ψyη Ψyϑ

Ψπη Ψπϑ

][
ηt
ϑt

]
Assuming uncorrelated structural shocks with unit variance, and the fact that E[ηtϑt ] = 0 the vari-

ance covariance matrix of residuals is

Σ =

[
Ψ2

yη +Ψ2
yϑ

Ψyη Ψπη +Ψyϑ Ψπϑ

Ψyη Ψπη +Ψyϑ Ψπϑ Ψ2
πη +Ψ2

πϑ

]
Let Ã be the Cholesky decomposition of Σ, using the fact that:

Σ =

[
a 0
b c

][
a b
0 c

]
=

[
a2 ab
ab b2 + c2

]

Ã =


√

Ψ2
yη +Ψ2

yϑ
0

Ψyη Ψπη+Ψyϑ Ψπϑ√
Ψ2

yη+Ψ2
yϑ

Ψπη Ψyϑ−Ψπϑ Ψyη√
Ψ2

yη+Ψ2
yϑ


Ã, can be combined with the selection matrix (s =

[
1 0

]
) to target the output gap, ỹ, in order to

form the matrix that is used to identify the dominant shock using the eigenvalue-eigenvector approach
of Faust (1998).
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V =

[1 0
]

√
Ψ2

yη +Ψ2
yϑ

0
Ψyη Ψπη+Ψyϑ Ψπϑ√

Ψ2
yη+Ψ2

yϑ

Ψπη Ψyϑ−Ψπϑ Ψyη√
Ψ2

yη+Ψ2
yϑ



′[1 0

]
√

Ψ2
yη +Ψ2

yϑ
0

Ψyη Ψπη+Ψyϑ Ψπϑ√
Ψ2

yη+Ψ2
yϑ

Ψπη Ψyϑ−ΨπaΨyη√
Ψ2

yη+Ψ2
yϑ




The eigenvalues of V are the vector [Ψ2
yη +Ψ2

yϑ
,0], while the eigenvector corresponding to the

largest eigenvalue is Γ1 =

[
1
0

]
. Notice, that the coefficients from both shocks appear in the eigenvalue,

and therefore, the structural rotation in the variance-maximizing approach to identification. The final
identification matrix, A−1, is equal to ÃΓ, where Γ is a matrix of eigenvectors in descending order
following the first column. The first column of Γ is the only shock of interest in this approach. The
relative impact of both shocks will determine how close we get to the true structural space (given
we have normalized both structural shocks to have unit variance). Notice also that the impact of the
dominant shock on inflation will also be increasingly biased in proportion to the size of Ψyϑ Ψπϑ

relative to Ψyη Ψπη .
The maximization problem will take a more complex form where the maximization targets domi-

nant shocks over an extended horizon (k) or frequency, in which case:

V =

[[
1 0

] k

∑
τ=0

Dτ Ã

]′[[
1 0

] k

∑
τ=0

Dτ Ã

]
The principle is the same however, with the final identified structural shock vulnerable to bias the

larger the share of variance driven by the shock that is not of interest.

A2. Constrained variance maximization in larger models

Sign and elasticity constraints can sharpen identification in larger and more complex models than
the simple two-variable model given in the main text, and when using a more complicated form for
V in the maximization problem. For example, the model of Smets and Wouters (2007) contains 7
shocks. Three of the shocks have characteristics of a typical “demand” shock, in the sense that they
generate a positive co-movement between output, prices, and interest rates, and three have “sup-
ply” shock characteristics, generating a negative relationship between output relative to inflation and
interest rates. The model also contains an additional monetary policy shock.6

Seven variables are included in the VAR, based on 1000 periods of simulated data from the Smets-
Wouters model: output, hours, wages, investment, consumption, interest rates, and inflation. In the
unconstrained case, the shock that dominates business-cycle variation in output is highly persistent;
the positive boost of output is accompanied by initial reductions in prices and interest rates (Figure
A1). It is also clearly a hybrid shock, as in the previous example, capturing elements of both the
demand and supply shocks shown in the blue and red lines respectively, although the latter appear
dominant. In the Smets-Wouters model, the supply-side shocks marginally dominate the business-
cycle frequency variance of GDP, accounting for around 60 percent.

Sign and elasticity constraints are then applied using our knowledge of the model. The Phillips
curve is very flat in the model and the output-inflation elasticity is estimated to be just 0.05. This
minimum elasticity is imposed on impact to isolate demand-drivers of output. To isolate the supply-
type drivers, a negative inflation-to-output elasticity is imposed. As some of the supply-type drivers
do not affect output on impact, the positive output restriction is imposed after one year. The smallest
inflation to output elasticity of the supply drivers in the model is 0.1, so this is imposed as a minimum
constraint.

6The “demand”-type shocks are an exogenous spending shock, a risk premia shock, and an investment-specific technology shock.
The “supply” shocks reflect neutral technology shocks, a price markup, and a wage markup shock.
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Figure A1. : Dominant driver of output in Medium-Scale New Keynesian model

Note: Note: Identified dominant driver of GDP in simulated data produced by the Smets-Wouters model. Blue lines show IRFs from
“demand” type shocks in the model, red lines show shocks from supply-type shocks in the model.

In each restricted identification, the impact response of output is larger than any one of the model’s
demand (blue) or supply (red) shocks (Figure A1). This reflects the identification capturing a com-
posite combination of the shocks of interest. For the positive and negative elasticity restricted cases,
the impact on GDP is smaller than in the unconstrained case, capturing a smaller subset of shocks,
and either less (demand) or more persistent (supply) IRFs than the unconstrained case. Second, the
restricted shocks more closely match the shocks of interest than in the unrestricted case, even where
no direct elasticity restriction is applied. For example, the response of interest rates is more positive
in the positive inflation restriction case, and more negative in the negative inflation restriction case
than in the unrestricted case. The response of hours is less persistent in the positive inflation restricted
case than the unrestricted case, more closely matching the underlying demand shocks.

A3. Data and complete IRFs in US VAR

The VAR estimated on U.S. data contains 8 variables, constructed from the Reserve Bank of St.
Louis’s FRED database (Table A1):

Table A1—: US data and FRED codes or source

Variable Code and transformation

GDP per capita log(A939RX0Q048SBEA)*100
Utilization-adj. TFP log(cumsum(Util-adj TFP/4))*100 Fernald (2014)
Hours per capita log(PRS85006023*(CE16OV/CivPop))*100
Unemployment rate UNRATE
Investment share of GDP log(100*((PCDG+GPDI)./GDP))*100
Consumption share of GDP log(100*((PCND+PCESV)./GDP))*100
Inflation (log(DPCERD3Q086SBEA)-log(lag(DPCERD3Q086SBEA))*100;
Interest rates FEDFUNDS

Only a subset of IRFs are shown in Figure 2 of the main text to conserve space. All IRFs under the
three identifications are shown below in Figure A2

A4. Employment-targeting shock

In Angeletos, Collard and Dellas (2020), the dominant driver of the unemployment rate at business
cycle frequencies is the focus of much of the paper, rather than GDP. Targeting unemployment rather
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Figure A2. : Targeting output at business-cycle frequencies, constrained and unconstrained: U.S. Data

Note: 16th and 84th percentile error bands. Columns reflect the unconstrained eigenvalue-eigenvector solution to the shock which
maximizes business-cycle frequency variation of real GDP; the maximizing shock where the impact on GDP is constrained to be
positive, and the impact on inflation is at least 0.3 times the GDP impact; and, the maximizing shock where the impact is constrained
to be positive for GDP, but at least -0.3 times the GDP impact for inflation.

than GDP yields IRFs which are more consistent with a “demand”-type shock. This may be because
demand shocks drive a larger proportion of business-cycle frequency variation in unemployment than
GDP. For example, in the Smets-Wouters model, the three demand shocks in the model account for
about 60 percent of the business cycle variation of unemployment, but just 40 percent of the variation
of GDP.

When targeting the shock that maximizes the business-cycle frequency variation of unemployment,
some differences and similarities emerge relative to the shock targeting GDP (Figure A3). First,
the unrestricted shock is inflationary, rather than initially deflationary, likely reflecting the increased
importance of demand-drivers in unemployment. Second, the shock where the ratio of the response of
inflation to GDP is constrained to be positive is also less persistent for GDP than in the unrestricted
case, while the negative restriction results in a more persistent impact. This second result is also
common to the GDP-targeting maximization.

A5. Do dominant business-cycle shocks also explain low-frequency variation of macroeconomic
variables?

Angeletos, Collard and Dellas (2020), using a main-business cycle shock targeting unemployment
(6-32q), find a disconnect between the dominant business-cycle and long-run drivers of the macroe-
conomy. Using the same VAR provided in the main text, it is also found that the unconstrained
unemployment-targeting business-cycle shock explains 42 percent of business-cycle variation of GDP
per capita, but just 10 percent of long-run variation (40+ quarters). However, we find this to be largely
the result of the contamination of the main business-cycle driver of unemployment with both demand
and supply side drivers.

In contrast, when we apply our methodology of including additional constraints in the maximiza-
tion problem, we find that supply-side components of the main business cycle shock driving unem-
ployment explain over 25 percent of both the business-cycle and long run variation of GDP for a
sufficiently large restriction on the inflation response relative to GDP. It is the demand components
of the shock which do not explain low frequency variation in GDP per capita, while driving a large
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Figure A3. : Targeting unemployment at business-cycle frequencies, constrained and unconstrained: U.S. Data

Note: 16th and 84th percentile error bands. Columns reflect the unconstrained eigenvalue-eigenvector solution to the shock which
maximizes business-cycle frequency variation of unemployment; the maximizing shock for unemployment where the impact on GDP is
constrained to be positive, and the impact on inflation is at least 0.3 times the GDP impact; and, the maximizing shock for unemployment
where the impact is constrained to be positive for GDP, but at least -0.3 times the GDP impact for inflation.

share of business-cycle variation (Table A2).

A6. Sign and magnitude restrictions without variance maximization

As we note in the main text, simple sign and magnitude restrictions without the conditioning as-
sumption of an objective maximization problem are simply drawn from a uniform distribution (Haar
prior). They therefore can provide very different IRFs than our constrained maximization identifi-
cation. Figure A4 shows the results of applying the same magnitude restrictions (demand: inflation
must rise by 0.3 times the impact on output, supply: inflation must fall by 0.3 times the impact on
output). The sign restrictions-only estimations mainly deliver uninformative impulse responses that
are indistinguishable from zero.
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Table A2—: Maximizing business cycle variation in unemployment: share of variance of GDP explained at business and long-
run frequencies.

Business cycle (6-32q)

Scale of restriction 0.05 0.1 0.2 0.3 0.4

Positive inflation 41 41 40 39 39
(32, 50) (32, 50) (32, 49) (30, 48) (31, 48)

Negative inflation 36 37 35 37 38
(28, 43) (29, 43) (25, 43) (25, 44) (28, 45)

Long-run (40+q)

Scale of restriction 0.05 0.1 0.2 0.3 0.4

Positive inflation 10 9 8 10 11
(4, 22) (4, 21) (3, 21) (3, 22) (4, 24)

Negative inflation 16 18 23 25 28
(8, 26) (8, 29) (8, 33) (11, 37) (12, 41)

Note: The median percent contribution of the dominant driver of business-cycle frequency variation in unemployment to business-cycle
and low-frequency variation in GDP as the restriction on the scale of the inflation response to the identified shock relative to the GDP
response is altered. 16th and 84th percentiles shown in brackets.

Figure A4. : Targeting output at business-cycle frequencies, constrained and unconstrained maximization compared to sign and
magnitude restrictions: U.S Data

Note: 16th and 84th percentile error bands. Columns reflect the unconstrained eigenvalue-eigenvector solution to the shock which
maximizes business-cycle frequency variation of real GDP; the maximizing shock where the impact on GDP is constrained to be
positive, and the impact on inflation is at least 0.3 times the GDP impact; and, the maximizing shock where the impact is constrained to
be positive for GDP, but at least -0.3 times the GDP impact for inflation. Final two columns reflect only sign and magnitude restrictions
that constrain the inflation response to be +0.3 and -0.3 of the GDP impact, respectively.


