Unconventional Monetary Policy and Household Credit Inequality

Ying Xu

Graduate Institute, Geneva (IHEID)

ying.xu@graduateinstitute.ch; https://sites.google.com/view/yingxu

Motivation

- Distributional effects of unconventional monetary policy:
- increases inequality (Bivens, 2015; Hohberger et al., 2020; Guerello, 2018)
- reduces inequality (Montecino et al, 2015; Domanski et al., 2016; Saiki and Frost, 2014)
- neutral (Bernanke, 2015)
- Credit inequality: Household credit inequality = $2 \times$ household income inequality in the Euro area (Cazenave-lacroutz, 2015)
- ECB asset purchase programmes (APP): A positive aggregate effect on household credit

Research Questions

- What is the distributional effect of the ECB Asset Purchase Programmes on household credit?
- What is the role of household asset portfolios in credit expansion and credit distribution? • What are the policy transmission channels that contribute to the distributional effect?

• mortgage

 $\beta_3 < 0$: APP \rightarrow housing price increases \rightarrow mortgage increases

• consumer credit

 $\beta_2 > 0$: APP \rightarrow overall easing of credit \rightarrow consumer credit increases

 $\beta_3 < 0$: APP \rightarrow mortgage available \rightarrow substitute expensive non-collateral debt (consumer credit) for property-based debt (mortgages) \rightarrow consumer credit decreases

Transmission Channels of UMP

- Two Channels: Credit Risk Channel, Credit Constraint Channel
- Empirical Strategy: recentered influence function (RIF) regression joint with the Oaxaca-Blindar decomposition method

Table 2: RIF Decomposition Results

Data

- Household-level data:
 - ECB Household Finance and Consumption Survey (HFCS): second wave (pre-APP period) and third wave (post-APP period), more than 138,000 observations from 17 countries in the Euro area.
- National-level data:
- ECB: housing price index, bank interest rates on deposits
- Datastream: stock market index

Cross-Quintile Analysis

$$credit_{ijt} = \sum_{q=1}^{4} \beta_{1,q} APP_t \times q. Wealth_{ijt} + \sum_{q=1}^{4} \beta_{2,q} q. Wealth_{ijt} + \beta_3 HC_{ijt} + \gamma_{jt} + \epsilon_{ijt}$$
(1)

 APP_t : dummy, =1 if post-APP period; =0, otherwise $q.Wealth_{ijt}$: dummies, wealth quintile q (1. $Wealth_{ijt} = 1$: the bottom 20% wealth group) HC_{ijt} : household characteristics (education, employment, income, access to credit card, access to overdraft facility, house ownership, age, and household type)

	Gini	Share by Top 10%	Share by Top 5%			
	(1)	(2)	(3)			
a. Overall	diff = 0					
Difference $(post - pre)$	0.174	0.715	0.219			
	(0.281)	(0.718)	(0.869)			
Composition Effects	0.104	0.188	0.444			
	(0.121)	(0.317)	(0.320)			
Structure Effects	0.070	0.527	-0.224			
	(0.257)	(0.653)	(0.819)			
b. Composition Effects						
Household characteristics	$\operatorname{sum}\beta<0$					
Edu	-0.032**	-0.085***	-0.096**			
	(0.012)	(0.033)	(0.038)			
Employ	-0.112***	-0.287***	-0.267***			
	(0.038)	(0.099)	(0.093)			
Credit constraint channel	$\operatorname{sum}\beta<0$					
Credit Card	-0.058***	-0.130***	-0.111**			
	(0.019)	(0.047)	(0.051)			
Overdraft	0.028**	0.055*	0.036			
	(0.013)	(0.031)	(0.032)			
Credit risk channel	$\operatorname{sum} \beta > 0$					
Wealth	0.058*	0.125*	0.211*			
	(0.031)	(0.064)	(0.112)			
Income	0.030	0.032	0.199			
	(0.038)	(0.084)	(0.144)			

Notes: Standard errors in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01. Coefficients are normalized to solve the problem of the base level choice associated with categorical variables, such as countries and household types.

• Policy Effect: APP \Rightarrow changes on distributions of components \Rightarrow contribute to credit inequality change

• Contributions of explanatory variables offset each other:

- credit constraint channel: UMP loosens credit constraints \Rightarrow decreases credit inequality after the APP.

Household Asset Portfolio: Property as the Key Driver

$$credit_{ijt} = \beta_1 asset_{ijt} + \beta_2 asset_{ijt} \times APP_t + \beta_3 HC_{ijt} + \gamma_{jt} + \epsilon_{ijt}, \tag{2}$$

$$credit_{ijt} = \beta_1 asset_{ijt} + \beta_2 asset_{ijt} \times APP_t + \beta_3 asset_{ijt} \times return_{jt} + \beta_4 HC_{ijt} + \gamma_{jt} + \epsilon_{ijt}, \quad (3)$$

 $asset_{ijt}$: shares of different asset categories within the household's total portfolio $return_{jt}$: the asset return for each asset category in country j in year t

Table 1: Household Portfolio and Asset Returns on Household Credit

- credit risk channel: UMP increases household income and wealth \Rightarrow increases credit inequality after the APP.

Extensions

Extension 1. Country heterogeneity

Figure 2: Country heterogeneity: Average household credit growth rates (%, 2014 Oct - 2016 Dec)

Extension 2. Debt Repayment Ability

Asset Type	Real Estate	Deposits	Stocks
	(1)	(2)	(3)
Dependent variable	a. N	ew Mortga	ges
share of asset type	0.077***	-0.041***	-0.083***
	(0.004)	(0.008)	(0.018)
share of asset type \times APP	0.006	-0.059***	-0.037
	(0.005)	(0.007)	(0.028)
share of asset type \times asset return	0.010***	0.002	0.001*
	(0.001)	(0.006)	(0.000)
Ν	115,819	110,476	115,819
Dependent variable	b. Co	onsumer Cr	edit
share of asset type	-0.034***	-0.032	-0.313***
	(0.007)	(0.024)	(0.047)
share of asset type \times APP	0.032***	-0.048***	0.047
	(0.009)	(0.018)	(0.061)
share of asset type \times asset return	-0.008***	-0.021	-0.001
	(0.001)	(0.015)	(0.002)
Ν	136,973	131,630	136,973

Conclusions

- Among all quintiles, the middle-wealth households increase the most their credit after APP implementation. • APP widens the credit gap between the top and the bottom of the distribution.
- APP affects household credit by boosting property prices and the higher property prices lead to credit expansion by property owners.
- The credit risk channel increases credit inequality and the credit constraint channel decreases credit inequality.