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Abstract

Researchers have discovered abundant evidence that mutual fund performance is

predictable in the cross-section ex post. This paper studies the ex ante predictabil-

ity of 12 well-known predictors for fund performance from investors’ perspective.

Exploiting two types of fund picking strategies with either rule-based approach or

machine learning methods, I find that utilizing machine learning can deliver supe-

rior real-time economic gains for investors with fund short-term performance being

the primary driver underlying predictability. Moreover, using a novel approach to

decomposing fund performance, I discover that investors’ flow response to predictor-

implied performance exhibits strong variations across predictors. These results sug-

gest ex ante predictability as the compensation for employing costly algorithms to

search for skilled managers.
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1 Introduction

The rapid growth of asset management industry over recent years has been accom-

panied with an increasing demand from households for diversified investment portfolios.

As shown in Figure 1, the percentage of U.S. households owning mutual funds has grown

from a negligible 5.7% in 1980 to almost 46% in 2020, and actively managed funds re-

main important accounting for 60% of the U.S. total net assets in 2020. Consequently,

the request for investors such as households to distinguish mutual funds with superior

performance has become an increasingly relevant and critical issue for their financial

well-being.

At the same time, researchers have discovered a bunch of predictors suggesting that

outperforming actively managed mutual funds can be identified with lagged information

variables using full sample information1. A natural and relevant question henceforth

arises: is it possible for investors to employ available predictors for better fund selection

in real time, without knowing which predictor works ex ante? And a further question is: to

what degree de facto do investors take advantage of any potential predictive information

when choosing actively managed mutual funds? In this paper, I address these issues by

conducting a comprehensive study of the economic benefits using 12 well-known fund

performance predictors from the investors’ perspective in real time.

Studies in existing literature mainly focus on discovering new predictors without

accounting for the joint predictive power of existing predictors. This paper attempts to

bridge the gap by utilizing two types of strategies to study investors’ gains in using per-

formance predictors: rule-based strategies and machine learning based strategies. The

baseline rule-based strategies are modified from the approaches in Pesaran and Timmer-

mann (1995) and Cooper et al. (2005) which have been used for predicting future stock

returns. They are straightforward to understand but still require demanding computing

1 See Hendricks et al. (1993), Carhart (1997), Chen et al. (2004), Kacperczyk et al. (2005, 2006),
Kacperczyk and Seru (2007), Cremers and Petajisto (2009), Barras et al. (2010), Amihud and
Goyenko (2013), Kacperczyk et al. (2014), Doshi et al. (2015), Cremers and Pareek (2016), Harvey
and Liu (2018, 2019), Barras et al. (Forthcoming) for instance.
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power to implement2. On the other hand, machine learning methodologies have been re-

cently used by researchers to uncover patterns not detected by traditional OLS method.

For instance, in the asset pricing literature, Gu et al. (2020) compares various machine

learning methods for better measurement of equity risk premia, and Kozak et al. (2020)

imposes economically-driven prior to identify characteristic-based principal components

that can explain the cross-section of stock returns. For other asset classes, Bali et al.

(2021) and Goyenko and Zhang (2021) use machine learning methods to study the cross-

predictability between either corporate bonds and stocks, or options and stocks. One

main advantage of using machine learning methods for predicting future fund perfor-

mance is that they allow more flexible specifications for the relation between future fund

performance and predictors, especially when we have limited knowledge on the specific

sources of managerial skills3.

Table 1 lists the 12 predictors studied in this paper (expense ratio, turnover, fund

flow, fund size, one-year return, Carhart alpha, one-month return, return gap, active

share, R-squared, active weight, and fund duration) classified into three categories4:

characteristics, performance, and activeness. These predictors have been found to predict

performance in their respective full sample in the original studies. The question in mind

is whether an investor would have chosen those predictors for fund selection without ex

post knowledge that those predictors would work. Is it possible for an investor in real-

time to identify these predictors among a group of alternatives, or is the evidence that

the outperforming funds can be screened out only due to the clarity of hindsight? This

paper provides an answer to this question.

In my analysis, the investor may employ any of the 12 predictors individually or

2 There have been plenty of studies such as Lo et al. (2000) on using technical rules for predicting
stock returns.

3 Kacperczyk et al. (2016) develops a theory of managers’ optimal attention allocation over business
cycles to identify skilled fund managers, and Kacperczyk et al. (2014) provides more evidence on the
time-varying nature of skills. However, the exact functional form underlying the relation between
performance and skills imperfectly captured by observed variables is not well-understood.

4 Another category of predictors related to fund liquidity management found in Simutin (2014) and
Boguth and Simutin (2018) has not been included in the current version of the paper due to limited
number of funds in earlier periods.
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a combination of them based on either rule-based strategies or machine learning strate-

gies. One distinguishing feature of these strategies is that by examining combinations of

predictors, specific fund skill embedded in one predictor can be isolated by controlling

for other performance indicators. For instance, Amihud and Goyenko (2013) shows that

among low R-squared funds, those with higher past Carhart four-factor alpha have better

future performance. Another notable feature of these strategies is that I do not need to

put additional ex ante restrictions on which of the 12 variables investors would like to use

for fund selection. For instance, would it be a good decision to invest in a fund with high

risk-adjusted alpha or a fund that is the most active, or choose neither and just invest

in a passive market portfolio instead? For rule-based strategies, I identify the potential

fund selection rules as cross-sectional sorts of all actively managed U.S. domestic equity

funds based on the 12 predictors, while for machine learning I form strategies based on

predictions from machine learning algorithms.

I test for investors’ gains from performance predictability by analyzing whether

a simulated real-time fund portfolio outperforms different benchmark stock portfolios

after fees. For rule-based strategies, the real-time portfolio is constructed each year by

choosing the fund selection rules that perform best during the prior in-sample period. I

examine real-time simulations based on the mean monthly return criterion5. The results

indicate that one version of the rule-based real-time portfolio is able to beat the market

in real time but generates no alpha relative to Carhart four-factor model. In contrast,

regression-based machine learning with variable selection feature (LASSO and elastic

net) can also deliver outperformance not only relative to the market benchmark (with

annualized alpha of 1.68%) but also compared to Carhart four factors (with annualized

alpha of 1.32%). Across all methods, short-term performance (one-month return) is

found to be the primary predictor for performance forecasting. Further inspecting the

real-time machine learning portfolio, I find that through variable selection, elastic net

or LASSO portfolios only take advantage of predictive information from predictors when

5 Results for other criteria including buy-and-hold dollar return and Sharpe ratio will be incorporated
in future version of the paper.
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predictability is strong, and switch to passive market portfolio by ignoring all predictors

when overall predictability is weak. This feature essentially trades off some positive

gains for less volatility in real-time portfolio. However, other regression-based machine

learning methods cannot beat the market. These results suggest that robo-advisors using

machine learning algorithms with variable selection feature can add value to fund picking

by investors.

Moreover, my paper further examines whether in reality investors attend to those

well-known predictors constructed with publicly available information when evaluating

mutual funds. I find that conditional on investors’ usage of CAPM, investors react to

the components of CAPM alpha implied by predictors in different ways, and investor

attention to predictive information embedded in predictors is stronger among aggressive

growth funds where those predictors are found to work well.

My findings help to resolve the ongoing debate with regards to what degree the

asset management industry is informationally efficient. While Berk and Green (2004)

argues that investors have perfect foresight for discovering skilled managers such that no

real-time predictability exists ex ante, Gârleanu and Pedersen (2018) contends that there

exist costs to acquire information for investors to identify skilled managers. My results

suggest that real-time predictability exists not due to lack of investor attention to publicly

available predictive information, instead the magnitude of any real-time excess gain found

in this paper can be seen as a search cost an average investor needs to incur using intensive

search algorithms to find skilled managers in the asset management industry.

A large body of previous research has been devoted to finding outperforming funds

in the cross-section with full-sample ex post information (Chen et al., 2004, Kacperczyk

et al., 2006, Cremers and Petajisto, 2009). My study contributes to this literature by

assessing the real-time predictive power in an extensive and more flexible setup by eval-

uating multiple predictors simultaneously. Another strand of related literature is on

mutual fund investors’ flow response to returns (Ippolito, 1992, Chevalier and Ellison,

1997, Sirri and Tufano, 1998). This literature has found that fund flows tend to be a
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convex function of past performance. Barber et al. (2016) and Berk and van Binsber-

gen (2016) argue that investors are most likely to use the Capital Asset Pricing Model

(CAPM) to risk-adjust fund performance. My paper is also related to the literature on

investor learning and return predictability. Lewellen and Shanken (2002) argues that in-

vestor learning may distort empiricists’ test for market efficiency and demonstrate how in-

sample stock predictability emerges in absence of real-time predictability through investor

learning. Martin and Nagel (Forthcoming) further shows that with many predictors, out-

of-sample performance instead of in-sample performance is a more proper validation for

asset pricing tests if investors learn about predictors. More closely related to my paper,

Baks et al. (2001) and Avramov and Wermers (2006) show that skeptical prior beliefs of

mean-variance investors can identify funds that predict alpha ex ante while Avramov and

Wermers (2006) finds that if investors do not believe in fund return predictability, their

optimal fund portfolios would not have positive out-of-sample performance. However,

those papers do not examine any real-time predictability of specific predictors as part

of investors’ information set. Given my results that variable selection machine learning

methods6 are able to identify superior mutual funds ex ante while other approaches can-

not, it would be interesting to recover investor beliefs in the asset management industry

given the ex ante predictability I discover in this paper. Last but not least, my paper

contributes to the household finance literature (see Campbell (2006)) by demonstrating

investors’ gains using either rule-based approaches or machine learning methods, given

increasing popularity among households in diversified investment vehicles such as mutual

funds.

My paper also complements recent examinations of the out-of-sample predictability

of the cross-section of mutual fund performance. Jones and Mo (2021) finds that after

the original sample periods, the predictive power of 27 mutual fund predictors have

fallen by around a half. They find that increases in arbitrage activities and mutual fund

competition tend to be the main reasons for the drop in predictability beyond the original

6 In Bayesian setup, variable selection with L1 regularization corresponds to the Laplace prior.
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sample periods. Both Jones and Mo (2021) and my study highlight a marked difference

between ex ante and ex post performance predictability. However, my paper differs in

motivations and aims to answer to what degree investors can benefit from using fund

predictors without knowing whether they would work, instead of comparing predictor

performance before and after original sample periods. In essence, my empirical test

is out-of-sample but at the same time incorporates an additional layer by considering

selection for predictors or predictive information to be used by investors.

Contemporaneous works by Li and Rossi (2020), DeMiguel et al. (2021), and Kaniel

et al. (2021) also examine fund performance using machine learning algorithms and find

that machine learning helps to distinguish outperforming funds. Li and Rossi (2020) con-

siders fund performance predictors based on fund stock holdings while DeMiguel et al.

(2021) focuses on fund characteristics and performance measures. My paper shows that

among three groups of predictors (fund characteristics, performance, and holding-based

activeness measures), one-month short-term return is the primary driver that contributes

to selecting outperforming funds in real time. This short-term fund momentum is fur-

ther confirmed in Kaniel et al. (2021). However, beyond machine learning algorithms,

a human-like rule-based portfolio approach is studied in my paper to see whether a rel-

atively simple approach allowing for nonlinear interactions helps to find outperforming

funds for investors in real time. I find that this simple approach can generate outperfor-

mance relative to the market via significant exposure to stock momentum factor. More

importantly, my paper finds that investors tend to incorporate predictive information

embedded in predictors to allocate capital across mutual funds, suggesting they may use

those predictors to find skilled managers, which are new to the literature. These results

together suggest that real-time return predictability exists in the competitive asset man-

agement industry not due to lack of attention from investors to use those predictors when

choosing mutual funds but instead as a compensation for using complex algorithms which

requires significant computing power to implement. In this regard, my paper provides

empirical support for Gârleanu and Pedersen (2018) which argues that investors need to
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incur search costs to find skilled managers in an informationally efficient market.

The rest of the paper is organized as follows. Section 2 introduces the rule-based

approach and machine learning methods used for predicting future fund performance in

this paper. Section 3 describes the mutual fund data and the sample selection criteria.

Section 4 illustrates the in-sample predictive power of each of the 12 predictors. Section

5 examines the performance of real-time portfolios constructed based on rule-based and

machine learning strategies and evaluates investors’ gains from using those predictors.

Section 6 explores investors’ flow response to the predictive information embedded in

predictors. Section 7 concludes.

2 Methodology

Given the paper’s objective is to examine investors’ benefits in using various pre-

dictive information for fund selection, statistical tools that are adequately sophisticated

to accommodate predictive variables in large scale are necessary to help investors obtain

a comprehensive view on any predictive relation before making value-creating investment

decisions. On the other hand, methods that are over-complicated may deliver results

lack of robustness and credibility for fund investors, due to additional model risk7. Two

types of methods stand out for achieving the trade-off between sophistication and ro-

bustness: rule-based portfolio sorting and regression-based machine learning. Rule-based

portfolio sorting approach shares the same economic spirit as standard portfolio sort-

ing approach but extends the standard one by incorporating interactions among many

predictors. Regression-based machine learning methods are variants of standard least

squares approach after accounting for correlations either among predictors or between

predictors and the forecasting target (i.e., fund performance). In the following subsec-

tions, I describes each type of methods and their respective advantages in predicting fund

7 This can be less an issue for more sophisticated institutional investors who have the capacity to
understand and employ more complex methods in predicting fund performance. However, unso-
phisticated investors may be more concerned about potential model risk.
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performance.

2.1 Rule-Based Portfolio Sorting Approach

For the rule-based portfolio sorting approach, I adapt the recursive two-way port-

folio sorting procedure proposed in Cooper et al. (2005) to evaluate the real-time perfor-

mance of combinations of 12 predictors from January 1995 to December 2016. Specifically,

I form one-way and two-way dependent quintile sorts from those 12 predictors at the end

of each month and select single best performing rule (i.e., a combination of predictors

and quintiles) that is shown to perform the best in a given in-sample period for investors

to form real-time portfolio in the following year. I adopt an expanding window8 starting

with a six-year in-sample period and then expand the in-sample window by one-year as

the evaluation moves forward. The reason I use dependent sort is to control for cor-

relations between different predictors such that for a pair of correlated predictors, one

predictor does not drive out the predictive power of the other one. The one-way sorts

yield 12 × 5 = 60 rules, and the two-way sorts add A2
12 × 25 = 3, 300 more. In total, I

assess 3, 360 fund selection rules.

Another variant of the portfolio sorting approach is to consider a fraction of rules

instead of using one single rule. The advantage of using multiple combinations is to av-

erage out potential noises introduced with using only one rule9. This can be potentially

helpful since even though mutual funds are diversified portfolios, distinguishing outper-

forming funds among alternative portfolios using multiple rules can be more informative

to capture fund manager’s skill in generating abnormal returns. In order to select the

best fraction of rules, I split the in-sample period into two samples: a training sample

and a one-year validation sample. The initial training sample is therefore five years out

of the initial six-year in-sample period. The purpose of setting up a validation sample is

to avoid over-fitting the in-sample period by selecting a fraction of rules only to perform

8 Expanding window provides additional years for training models compared to rolling window.
9 Recall a rule is either a single predictor quintile or a combination of quintiles of two predictors.
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well in the sample but not out of the sample. Similar to the machine learning methods

introduced in the following subsection, I treat the percent of rules to be selected as a

hyperparameter which is determined in the validation period so that the selected rules

based on the chosen fraction of rules would perform the best for the validation period.

The range of percentage of rules is 0.1%, 0.2%, 0.5%, and 1%, which corresponds to 3, 7,

17, and 34 rules respectively10.

2.2 Machine Learning Methods

Machine learning methodologies have been recently used by researchers to uncover

patterns not detected by traditional methods. For instance, in the asset pricing literature,

Gu et al. (2020) compares various machine learning methods for better measurement of

equity risk premia, and Kozak et al. (2020) imposes economically-driven prior to mo-

tivate elastic net method and identifies characteristic-based principal components that

can explain the cross-section of stock returns. In this section, I describe six regression-

based machine learning methods that are relatively intuitive to understand and have been

widely used for forecasting with many predictors.

The six machine learning methods can classified into two categories based on each

method’s specific purpose: penalized linear and dimension reduction. To fix idea, consider

a simple performance generating process by fund manager’s skill as follows:

ri,t+1 = Et[ri,t+1] + εi,t+1, (1)

where

Et[ri,t+1] = g∗(xi,t; θ). (2)

ri,t+1 is the net-of-fee return investors would realize by investing fund i in month t + 1,

10 Two alternative criteria (buy-and-hold dollar return and Sharpe ratio) to select rules to construct
real-time fund portfolio will be included in future version of the paper as robustness check.
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which can be decomposed into an expected performance component plus noise. My ob-

jective is to model the unknown expected component Et[ri,t+1] as a function of observable

predictors that maximizes the expected performance for a mutual fund investor at t+ 1.

I denote those predictors as a M-dimensional vector xi,t, and assume the conditional ex-

pected return g∗(·) as a flexible function of these predictors. The following subsections

present different methods and their advantages in estimating Et[ri,t+1].

2.2.1 Penalized Linear

The most familiar model I consider as a benchmark is the linear model for expected

return g∗(xi,t; θ) = x′i,tθ with the following objective function:

L(θ) =
1

NT

N∑
i=1

T∑
t=1

(ri,t+1 − g∗(xi,t; θ))2 (3)

For comparison, this loss function is firstly minimized to get the benchmark OLS esti-

mator. Note that I assume θ is the same constant across all funds for a given in-sample

estimation period T and predictor vector xi,t captures all skill heterogeneity across funds.

Penalized linear models still assume a linear form for expected performance but

combine the original loss function with an additional penalty term:

L(θ; ·) = L(θ) + φ(θ; ·), (4)

where I consider the general elastic net penalty which takes the following form:

φ(θ;λ, ρ) = λ(1− ρ)
M∑
m=1

|θm|+
1

2
λρ

M∑
m=1

θ2m. (5)

The elastic net (EN) penalty involves two nonnegative hyperparameters, λ and ρ. Specif-

ically, the case when ρ = 0 corresponds to the least absolute shrinkage and selection

operator (LASSO) with only L1 penalty. This penalty acts for variable selection where

it allows coefficients on predictive variables to be exactly zero. In this sense, LASSO
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imposes sparsity so that only the most important variables are selected. On the other

hand, the case when ρ = 1 corresponds to the ridge regression which only uses L2 penalty.

Although ridge regression does not impose sparsity as LASSO to push coefficients to be

exactly zeros, it shrinks unduly large coefficients towards zero. This shrinkage feature

is particular useful when predictors are correlated where standard OLS gives unstably

large estimates with substantial estimation errors. The case in between when 0 < ρ < 1

therefore incorporates both sparsity and shrinkage among predictors.

As shown in Table 1, fund performance predictors examined in this paper can

be classified into three groups: characteristics-based, performance-based, and activeness

measures. Given such group structure, it is desirable to have all coefficients within a group

to be nonzero or zero simultaneously. On the other hand, I would like to incorporate

sparsity within each group as well. Simon et al. (2013) proposes a penalty term that

allows sparsity across groups and within each group. For J groups of predictors, the

penalty term can be specified as

φ(θ;α) = λ
J∑
j=1

[(1− α)‖θj‖2 + ‖θj‖1] , (6)

where θj is a vector of coefficients corresponds to the j-th group of predictors.

2.2.2 Dimension Reduction

Although shrinkage helps deal with correlated predictors, a more direct and simple

approach is to transform the predictor space such that the transformed predictors are

orthogonal to each other. Principal component regression (PCR) and partial least squares

(PLS) serve this purpose well.

PCR involves two steps. In the first step, it extracts principal components from ex-

isting predictors as a smaller set of linear combinations that best preserve the covariance

structure among original predictors. In the second step, a few leading components are

used in standard predictive regression as in OLS. The problem with PCR is that it does
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not incorporate any information on the covariance relation between predictors and the

target performance measures or returns. PLS solves this issue by first estimating each

predictor’s contribution to predicting target performance and then forming linear com-

bination of those predictors using each predictor’s contribution as weight. A successful

application of PLS to estimating overall equity market risk premia can be found in Kelly

and Pruitt (2013).

Mathematically, rewrite the linear model ri,t+1 = x′i,tθ+εi,t+1 as a vectorized version:

R = Xθ + E, (7)

where R is the NT × 1 vector of ri,t+1, X is the NT ×M matrix of stacked predictors

xi,t, and E is a NT × 1 vector of residuals εi,t+1.

Both PCR and PLS reduce the dimensionality of the predictor space by transforming

the original predictor space into a smaller number of K linear combinations of predictors.

R = (XΩK)θK + Ẽ. (8)

ΩK is M×K matrix with columns w1, w2, . . . , wK . Each wj is the set of linear combination

weights used to create the jth predictive components, and θK is a K × 1 vector.

PCR chooses the combination weights ΩK recursively such that the jth linear com-

bination solves

wj = arg max
w

Var(Xw), s.t. w′w = 1, Cov (Xw,Xwl) = 0, l = 1, 2, . . . , j − 1. (9)

On the other hand, PLS searches K linear combinations of predictors X such that

the new combinations have maximal predictive relation with the performance measure.
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Specifically, the chosen weight to construct the jth PLS component is found by solving

wj = arg max
w

Cov(R,Xw), s.t. w′w = 1, Cov (Xw,Xwl) = 0, l = 1, 2, . . . , j − 1

(10)

Eventually, after finding the solution for ΩK , θK is estimated by OLS regression using R

on XΩK .

3 Data and Sample Selection

The mutual fund sample ranges from 1994 to 201611. Fund monthly returns and

characteristics are from Center for Research in Security Prices (CRSP) survivor-bias-free

mutual fund database. Fund quarterly holdings are extracted from Thomson Reuters

(former CDA/Spectrum) s12 file. I use MFLINKS constructed in Wermers (2000) to

merge fund returns and holdings data. When a fund has multiple share classes, I construct

the TNA-weighted average of CRSP net returns, expenses, turnover ratio, and other

characteristics for each fund.

Since my analysis focuses on actively managed U.S. domestic equity funds, I ex-

clude international, municipal bonds, bond and preferred, and balanced funds based on

CDA/Spectrum investment objective code. I further classify actively managed funds us-

ing Lipper, Strategic Insight and Wiesenberger code. The final sample includes three

fund styles (aggressive growth, growth, and growth and income) and the rest of funds are

grouped as one style. Evans (2010) finds that mutual fund incubation introduces biases

in fund performance. I therefore put three additional filters as to control for such biases:

(1) only funds with total net asset no less than $15 millions are included; (2) observations

preceding a fund’s first offer date as reported in CRSP are eliminated; (3) observations

with missing fund names are not included. The Online Appendix provides further details

11 Specifically, the predictor sample is from December 1994 to Novemeber 2016 and the corresponding
return period is from January 1995 to December 2016. The sample ends in 2016 since I require
complete information of all 12 predictors in my sample and two of the 12 predictors examined in
this paper (active share and duration) is only available up to September 2015.
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regarding the cleaning procedure for mutual fund data. The full sample period for fund

characteristics and performance predictors are from December 1994 to November 2016.

The 12 predictors assessed in this paper and their definitions are laid out in Table 1 and

212.

For performance evaluation, I obtain information variables measuring economic con-

ditions including lagged values of one-month T-bill yield from Ken French’s website, div-

idend yield of the CRSP value-weighted NYSE/AMEX stock index, term spread (mea-

sured by the difference between yields on 10-year treasuries and three-month T-bills),

and default spread (measured by the yield difference between Moody’s Baa-rated and

Aaa-rated corporate bonds) from FRED.

Table 3 presents the summary statistics of fund characteristics at the end of each

year from 1994 to 2016. I require that a fund with information on all 12 predictors

to be included for any cross-section in my sample. There is a secular pattern that the

average size of actively managed funds usually peaked before any economic downturn,

and the number of funds do not increase significantly over the years. Moreover, in more

recent years, actively managed equity funds have experienced declines in average turnover

as their average size increases over time, suggesting that even actively managed funds

have become increasingly passive throughout past few years. As actively managed funds

become more passive, it would be more difficult to detect active outperforming funds in

real time using the activeness measures discovered in previous literature.

Table 4 provides summary statistics of the 12 predictors from December 1994 to

November 201613. I consider these 12 predictors since their construction does not require

hard-to-obtain fund information from investor’s perspective. The descriptive statistics

in Panel A are computed as time-series averages of monthly statistics in each cross-

section, except the first-order autocorrelation coefficient. On average, funds earn a slightly

negative net-fee one-year Carhart alpha as found in previous studies (Carhart, 1997, Fama

12 See Appendix A for the construction details of some of the 12 performance predictors.
13 Since holdings are reported to the SEC and a three-month delay is imposed for investors to use

holding-based predictors including return gap, active share, active weight, and fund duration.
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and French, 2010). It is worth mentioning that all predictors are highly persistent for a

given fund, suggesting that they act as potential proxies for skills as argued in the original

studies. Panel B shows the contemporaneous pairwise Pearson correlations between the 12

predictors. Consistent with the time-series pattern shown in Table 3, in the cross-section,

larger funds are generally less active with lower turnover, lower active share and active

weight, higher return R-squared, and longer equity holding duration. As expected, within

either performance-based or activeness category, predictors are correlated with each other.

For instance, two measures of managerial activeness (active share and active weight)

are highly positively correlated as expected for actively managed equity funds. And R-

squared, regarded as an opposite measure to activeness, has strongly negative correlations

with both active share and active weight. Finally, fund duration has a negative correlation

with active share, while a slightly positive correlation with active weight, which is in

general consistent with the concept that funds with infrequent rebalancing (i.e., high

duration funds) tend to be less active. Overall, the summary statistics of predictors are

consistent with existing findings in previous studies.

4 In-Sample Performance of Individual Predictors

Before examining the real-time predictability of predictors, I first validate the in-

sample performance of each individual predictor using full sample information from De-

cember 1994 to November 2016. I construct the in-sample Carhart four-factor alpha

spread of each individual predictor. Specifically, at the end of each month, funds are

grouped into quintiles based on the predictor value in current month. I compute the

next-month return spread between funds within the highest quintile and funds within

the lowest quintile for a given predictor. Portfolios are rebalanced at monthly frequency.

Table 5 illustrates the full-sample unconditional performance of predictor-sorted fund

portfolios using the standard Carhart four-factor (C4) model (Carhart, 1997) as the
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benchmark:

RH
P,t −RL

P,t = αP + βP (RM,t −Rf,t) + sPRSMB,t + hPRHML,t +mPRMOM,t + εP,t, (11)

where RH
P,t−RL

P,t is the return spread between the highest quintile and the lowest quintile

fund portfolio based on predictor P .

Consistent with previous studies, Panel A in Table 5 shows that with equal-weighting,

fund size, one-year Carhart alpha, one-month return, active share, R-squared, and ac-

tive weight are significant predictors for the following month fund performance in the

full sample, and the predictive signs are consistent with original studies. Panel B with

value-weighting shows a slightly different picture from Panel A. With value-weighting, low

expense funds have significantly better future performance than high expense funds. And

high turnover funds now perform significantly worse than low turnover funds. For other

activeness measures, with value-weight schemes active share does not predict future fund

performance by itself. Moreover, fund duration now becomes a significant predictor for

performance14. In summary, for each weighting scheme, six out of 12 predictors generate

economically significant Carhart alpha spread between highest and lowest quintiles fund

portfolios within the full sample.

5 Real-Time Performance of Predictors

A drawback of evaluating each predictor separately is that it ignores covariance

structure among multiple predictors. For instance, as shown in Table 5, weighting schemes

matter for some of the predictors given that fund size is correlated with most of other

predictors. Moreover, even if predictors are found to perform well to distinguish best per-

forming funds relative to worst funds, it is not suitable for a typical mutual fund investor

who can only long a fund portfolio instead of shorting. Moreover, we still know rela-

14 Cremers and Petajisto (2009) find that active share lacks statistically significant predictive power
for fund performance in the cross-section though a later study (Cremers and Pareek, 2016) find that
conditional on fund duration, active share predicts performance significantly.
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tively little on whether the best performing funds selected by predictors can outperform

a passive market portfolio in real time.

This section assesses the ex ante real-time predictive power of mutual fund perfor-

mance predictors to resolve these issues with rule-based approaches and machine learning

methods outlined in Section 2. For the rule-based approach, I first characterize the op-

timal fund selection rules that are determined in-sample, and then evaluate a real-time

fund portfolio with two standard evaluation frameworks.

5.1 Rule-Based Portfolio Sorting Approach

In this subsection, I implement two versions of the rule-based portfolio sorting

approach described earlier. The first version (Rule 1 henceforth) only selects the single

best-performing rule and involves no validation for how many rules to be selected within

each in-sample period. The in-sample period is 1995-2000 and the last in-sample period is

1995-2015, with expanding window for each year. The corresponding out-of-sample year is

from 2001 to 2016. The second version (Rule 2 henceforth) considers a one-year validation

period within each in-sample period for tuning the hyperparameter (i.e., fraction of rules

selected) to avoid potential over-fitting problems using in-sample information. More

precisely, I split the in-sample period into a training period and a one-year validation

period. The first in-sample evaluation uses 1995-1999 as the training period with 2000

as the validation period, and the last in-sample evalution uses 1995-2014 as the training

period with 2015 as the last validation year. The corresponding OOS year is the same as

the version without validation (2001-2016).

Table 6 shows the single best-performing rule selected using Rule 1 based on cor-

responding in-sample performance. Among all predictors, performance-based variables

perform the best compared to either fund characteristics and activeness measures. Given

rule-based portfolio sorts are dependent, the second variable in a two-way sort is the more

relevant variable that contributes in-sample predictability. Using the rule-based portfolio

sorting approach without validation shows that the one-year return after controlling for
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short-term (one-month) return performs the best for 15 out of 16 in-sample periods.

Compared to Rule 1, Rule 2 admits several rules in order to average out noises

associated with picking only the single best-performing rule. Table 7 presents the top-3

best-performing rules from the best to the worst using Rule 2. The top performing rule

is largely the same as using Rule 1. A more noticeable feature is that active measures

such as turnover, R-squared, and active weight start to matter as either the second-best

or third-best performing rules. For instance, R-squared appears to be either the first

controlling variable or the second predictive variable among the top-3 rule in any OOS

year from 2003 to 2016. Still, performance-based measures prevail as the second predictive

variable (41 out of 48 rules), and R-squared as the only other predictive variable that

matters (7 out of 48 rules).

Panel A in Table 8 shows the risk-adjusted OOS performance of the real-time port-

folio formed based on rules selected using either Rule 1 and Rule 2. Surprisingly, the OOS

performance of rule-based portfolio without validation outperforms the passive market

portfolio by 21 basis points (or 2.52% per year) at 10% level of significance, with only

the single best-performing rule used. In contrast, the OOS performance of rule-based

portfolio with validation does not significantly outperform the market, possibly due to

the fact that multiple rules dilute the real-time predictability. However, after controlling

for additional risk factors, none of the real-time portfolios generate significant positive

alpha.

I further examine risk exposures of these two real-time portfolios. Given the time-

varying nature of performance predictability, I conduct the analysis using the conditional

framework by Ferson and Schadt (1996). Specifically, I study whether low-frequency

macroeconomic information can account for the time-varying performance of OOS port-

folios:

Rt −Rf,t = α + (β +B′zt−1)(RM,t −Rf,t) + sRSMB,t + hRHML,t +mRMOM,t

+ εt,

(12)
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where Rt is return for the OOS portfolios. The one-month lagged macroeconomic vari-

ables zt−1
15 include one-month T-bill yield, dividend yield of the CRSP value-weighted

NYSE/AMEX stock index, term spread (measured by the difference between yields on

10-year treasuries and three-month T-bills), and default spread (measured by the yield

difference between Moody’s Baa-rated and Aaa-rated corporate bonds). As shown in

Panel A of Table 9, conditional macroeconomic information does not matter for explain-

ing the performance of the OOS portfolio in either case, and the OOS portfolios share a

strong positive loading on the size and momentum factor, which is expected given both

Rule 1 and Rule 2 select performance-based predictors for the best-performing rules dur-

ing the in-sample periods. In summary, although rule-based approach without validation

outperforms the market during my OOS evaluation period, it cannot generate significant

alpha after accounting for more risk factors.

5.2 Regression-Based Machine Learning Methods

In this subsection, I implement six regression-based machine learning methods de-

scribed in Section 2. As mentioned earlier, all these six methods are variants of the stan-

dard least squares estimator either with different specifications on an additional penalty

term or through transformation of the original predictor space. I also examine the per-

formance of OLS as the benchmark when evaluating each of these methods in OOS tests.

To evaluate each predictor’s marginal contribution to return predictability, I con-

sider a notion of variable importance following Gu et al. (2020). Predictor P ’s importance

is measured as the reduction in panel predictive R2 from setting the coefficient estimate of

predictor P to zero, while holding other model estimates fixed. As in the machine learn-

ing literature, I use the training sample for calculating variable importance. To make

each method comparable to each other, I compute the relative importance of predictor

P as the fraction of total R2 reduction attributed to that predictor, which is bounded

between 0 and 1.

15 zt−1 is demeaned for more precise estimates of coefficients.
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Figure 2 shows the relative variable importance of each predictor based on training

sample estimation using each of the six machine learning methods. Across all methods,

short-term performance (one-month return) is found to be the primary predictor for

performance forecasting, accounting for more than 40% reduction in R2 for 5 out of the 6

methods. And active share is found to be the second important variable in 5 of 6 methods,

which is different from the predictor ranking uncovered using rule-based approach. R-

squared appears in the top-3 important predictors in 4 of 6 methods. One thing worth

mentioning is that since LASSO, elastic net, and sparse group LASSO (SGL) all involve

variable selection in the estimation step, their respective variable importance ranking is

close to each other, which turns out to be reflected in their real-time forecasting as well.

Panel B in Table 8 shows the risk-adjusted OOS performance of the real-time port-

folio formed using the six machine learning methods. Out of the six methods, OOS

portfolio formed based on predictions from LASSO and elastic net are found to have a

monthly positive Carhart alpha of 11 basis points (or 1.32% per year) at 5% level of

significance. It is prominent that these two methods yield almost identical results. Since

LASSO is a special case of elastic net with only variable selection feature, this suggests

that variable selection in the original predictor space is an essential feature to generate

real-time return predictability. The other method that can generate significantly positive

return is the sparse group LASSO which also involves variable selection. However, SGL

fails to generate any significantly risk-adjusted return.

Panel B in Table 9 presents the conditional performance evaluation for machine

learning OOS portfolios. For LASSO and elastic net, none of the macroeconomic in-

formation variables matter for explaining performance, while for other regression-based

methods one-month short-term interest rate and term spread play some roles in explaining

OOS portfolio performance. In contrast to rule-based methods, regression-based meth-

ods build OOS portfolios that are not exposed to the momentum factor even though

short-term one-month return turns out to be the most important predictor in all setups.

I further check the real-time predictability of predictors using machine learning
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across different fund investment styles in Table 10. It turns out that LASSO and elas-

tic net only enable predictors for forecasting performance among more growth-oriented

funds (i.e., aggressive growth and growth funds), and using SGL can barely generate a

marginally statistically significant conditional Carhart alpha among aggressive growth

funds (though the economic magnitude is about 1.56% per annum). Another noticeable

finding is that none of the six machine learning methods would deliver superior risk-

adjusted performance for conservative investors who mainly invest in income-oriented

funds (with significantly positive exposure to the value factor).

5.3 Time Variations in Real-Time Portfolios

Previous tests provide evidence that variable selection methods LASSO and elastic

net can provide reliable OOS performance upon selecting among the 12 predictors, with

short-term one-month return being the predictability driver. This subsection attempts

to examine how rule-based approach and machine learning methods work over time.

I only consider rule-based approach without validation and elastic net from machine

learning since each of these two methods performs the best in respective methodology

type. Figure 3 shows the market-adjusted performance of real-time portfolios constructed

using rule-based approach and elastic net over different OOS periods. Plot A and B

demonstrate that before 2011, rule-based portfolio can outperform the market in general

but the outperformance starts to deteriorate from 2011. In contrast, elastic net portfolio

navigates away from significant down times of performance predictability by investing

in the passive market portfolio during these periods. However, this benefit is associated

with costs by missing positive market-adjusted gains during the first few OOS evaluation

periods, partly due to the relatively short initial in-sample window for estimation. In this

sense, through variable selection, elastic net or LASSO portfolios only take advantage of

predictive information from some of the 12 predictors when predictability is strong, and

switch to passive market portfolio by ignoring all predictors when overall predictability is

weak. This feature essentially trades off some positive gains for less volatility in real-time
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portfolio.

Figure 4 demonstrates the investment value from real-time portfolios. If an investor

starts to invest at the beginning of 2001 in the elastic net portfolio, she would obtain 31%

higher return than the market portfolio by the end of 2016. On the other hand, if she

invests in the rule-based portfolio without validation, the outperformance relative to the

market would be 45% higher. This is consistent with the results in Table 8 which shows

that rule-based portfolio without validation has a higher CAPM alpha than elastic net

portfolio.

6 Flow Response to Predictor-Implied Performance

Real-time tests in previous sections show that in a simulated or hypothetical envi-

ronment, short-term performance (one-month return) plays the primary role in forecasting

future fund performance in real time given an information set of 12 predictors. Beyond

this hypothetical setting, it would be of theoretical interests to understand how in reality

investors incorporate predictive information into their capital allocation decisions. In

this section, I use variations in fund flows to study the investment impact of predictive

information implied by six of the 12 predictors16.

Following the prior literature on fund flows (Zheng, 1999, Frazzini and Lamont,

2008), I make the simplified assumption that investors invest and redeem money from

funds only at the end of each month. Fund flows is then calculated as percentage changes

in fund total net assets net of capital appreciation. A positive value represents net inflow

and a negative value implies net outflow. The fund flow for fund i at the end of month

t+ 1 is

Fi,t+1 =
TNAi,t+1

TNAi,t
− (1 +Ri,t+1), (13)

where TNAi,t is the total net asset of fund i at the end of month t, and Ri,t+1 is the

16 Tests for all 12 predictors will be added in future version of the paper.
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return to fund i in month t+ 1 net of fees and expenses. To mitigate impact of outliers,

I winsorize flows at 1% in each cross-section.

A first thought in examining investors’ attention to predictive information is to

include standard predictors in a panel regression to test whether coefficient on predictors

are significantly different from zero. However, this approach can be confounded by the

fact that investors allocating capital may use those predictors for other non-performance

related reasons. For instance, a high fee fund may not be attractive to investors but it does

not mean that this fund would not have skill in generating net-of-fee abnormal returns

for investors. To resolve this confounding effect in order to isolate predictive content of

each predictor, I propose a novel approach by further extracting a return component that

can be attributed to each performance predictor.

Specifically, I modify the return decomposition procedure in Barber et al. (2016)

to extract the return component that can be attributed to each performance predic-

tor. To achieve this, I first run time-series rolling-window regressions for each fund to

estimate fund’s exposure to the high-minus-low portfolio using the most recent 5-year

performance17:

Ri,τ −Rf,τ = αi,t + γPi,tR
P
τ +

∑
j

βi,j,tfj,τ + εi,τ (14)

for τ = t−1, . . . , t−60, where RP
τ is the high-minus-low return spread in month τ between

two fund portfolios that equally weights funds within the fifth quintile based on predictor

P and the fund portfolio that equally weights funds within the first quintile based on

predictor P , both of which are formed at the end of month τ − 1. fj,τ denotes return to

factor j. The high-minus-low spread for a given predictor does not represent any specific

risk factor as in the asset pricing literature. Instead, it represents the market price of a

common managerial skill capture by the predictor. For instance, when a group of funds

owning a common skill can be captured by fund size, a fund with positive loading γ on

17 I restrict the sample by including only funds with a five-year history of fund returns in order to
estimate factor loadings in flow analysis.
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the return spread means that the fund behaves as if it has a similar skill as large funds18.

The purpose of this step is to estimate month t fund loading (γ̂Pi,t) to the factor-mimicking

fund portfolio RP
t and factor loadings (β̂i,j,t’s).

In the second step, I decompose fund excess return in month t into three components

(pure alpha, predictor-implied performance, and performance attributed to risk factors):

Ri,t −Rf,t = α̂i,t︸︷︷︸
pure alpha

+ γ̂Pi,tR
P
t︸ ︷︷ ︸

predictor P -implied performance (PIP)

+
∑
j

β̂i,j,tfj,t︸ ︷︷ ︸
risk premia

.
(15)

This decomposition allows me to isolate the return component attributed to predictive

content embedded in predictor P . Moreover, the realized pure alpha, α̂i,t, is computed

as the residual term from the decomposition, which captures any abnormal components

not absorbed by common risk factors and the predictor-implied performance (PIP hence-

forth).

Since flows tend to be responsive to the lagged performance as well (Chevalier and

Ellison, 1997), I follow Barber et al. (2016) to estimate the exponential decay rate of the

flow-performance sensitivity using the full sample, which is estimated through a market-

adjusted return (MAR) model as follows:

Fi,t+1 = a+ b

17∑
s=0

e−λsMARi,t−s + c′Xi,t + ηt+1 + εi,t+1, (16)

where MARi,t−s is the marked-adjusted return for fund i in month t − s. The vector

of control variables Xi,t includes fund characteristics observable at the end of month t,

including lagged monthly flows from t− 17 to t, log of one-month lagged fund TNA and

fund age, most recent available fund expense ratio19, a fund dummy that indicate whether

the fund has any load, and the total volatility of monthly fund net return in prior 12

18 An alternative approach would be assigning funds into different groups based on a predictor and
using the average return of that group to proxy predictor-implied performance.

19 Expense ratio is reported at annual frequency.
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months (from t − 11 to t). The model is estimated using nonlinear least squares with

month fixed effects. The estimated exponential decay rate is 0.28 at the 1% significance

level.

To reduce the number of parameters in estimation when accounting for flow re-

sponse to lagged performance, I weight past performance using the exponential decay

function estimated from equation (16) and construct an index for each return compo-

nent. Specifically,

Alphai,t =

∑17
s=0 e

−λ̂sα̂i,t−s∑17
s=0 e

−λ̂s
,

P IP P
i,t =

∑17
s=0 e

−λ̂sγ̂Pi,t−sR
P
t−s∑17

s=0 e
−λ̂s

,

FACTORi,j,t =

∑17
s=0 e

−λ̂sβ̂i,j,t−sfj,t−s∑17
s=0 e

−λ̂s
,

(17)

where FACTORi,j,t varies depending on which model to use as the testing field.

To assess the impact of PIP on fund flows, I run the following panel regression for

each predictor P separately:

Fi,t+1 = b0 + bαAlphai,t + bPPIP
P
i,t +

∑
j

bjFACTORi,j,t + θ′Xi,t + ηt+1 + εi,t+1, (18)

where Fi,t+1 is the flow for fund i in month t+ 1. The parameter of interest is bP , which

measures the flow sensitivity to past predictive information implied by predictor P . The

panel regression includes a vector of controls (Xi,t) and month fixed effects (ηt+1) as in

equation (16). Most importantly, for different predictor-implied factor-mimicking portfo-

lios, I include in Xi,t the lagged predictor itself as a control for that characteristic20. This

novel specification helps to isolate predictive information from characteristic preference

by investors that are not motivated by performance predictability21. For a given factor

20 Essentially all predictors are fund characteristics.
21 An alternative approach is to use ranking functions for each predictor or standardize predictors so

that the coefficient in front of each predictor is comparable, which is exploited in Jones and Mo
(2021). The difference between this approach and mine resembles the difference between covariance-
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model, I consider the magnitude bP across different predictor P . The comparison across

predictors is also conducted within alternative factor models. If investors incorporate the

predictive information implied in predictor P , the coefficient bP should be significant.

Table 11 shows monthly flow sensitivity to different performance components using

CAPM as the benchmark model22. For comparison, I also estimate flow response to two

performance components (performance attributed to risk factors and alpha) in the last

column of each panel, where I re-estimate the equations (15) and (18) without extracting

PIP.

The first column of Table 11 illustrates that an average 1% increase in size-implied

return after adjusting for market risk and controlling for size characteristic itself corre-

sponds to a 0.5% increase in monthly fund flows, comparable with a 0.6% increase in fund

flows when there is a 1% increase in pure alpha. This suggests that investors do respond

to predictive information implied by fund size, in an economically significant magnitude.

Similarly, active weight and fund duration also have strong predictive information cap-

tured by flow variations. In contrast, estimates from the third to the fifth columns reject

that investors respond to the return components implied by return gap, active share,

and R-squared, after controlling for corresponding characteristics. Interestingly, in such

cases, characteristics dominates over predictor-implied return components.

Table 12 exhibits additional tests of flow responses to PIP across three fund invest-

ment styles: aggressive growth, growth, and growth and income. For aggressive growth

funds, investor flows respond more to PIP compared to flows to growth and income funds

in terms of both economical and statistical significance, except for active weight-implied

performance. In contrast, although none of the flow-PIP sensitivities for growth and

income funds is statistically significant, the economic magnitude for size-implied perfor-

based and characteristics-based asset pricing tests.
22 Barber et al. (2016) and Berk and van Binsbergen (2016) argue that investors are most likely to

use CAPM for risk-adjusting performance. I also conduct the test using five different benchmark
factor models (CAPM, Fama-French three-factor model (FF3) (Fama and French, 1993), Carhart
four-factor model (C4) (Carhart, 1997), Fama-French six-factor model (FF6) (Fama and French,
2018), and q-factor (HXZ4) (Hou et al., 2015)). To save space, I only include the tests using CAPM
as the benchmark in the main text.
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mance is higher than that for aggressive growth funds. In overall, these results suggest

that investors in more growth-oriented funds are more inclined to use predictors to select

funds for performance concerns than investors in more income-oriented funds, suggesting

that investor attention to predictors is stronger among funds where they usually work

well.

7 Conclusion

How would a rational investor select mutual funds based on ex ante information?

Can mutual fund performance predictors be effectively used in real-time for better cap-

ital allocation for investors? Researchers have found abundant evidence that mutual

fund performance is predictable ex post. This paper examines whether investors can

utilize predictors without knowing which one would work ex ante. Specifically, I assess

if a real-time investor could have used 12 fund performance predictors (expense ratio,

turnover, fund flow, fund size, one-year return, Carhart alpha, one-month return, return

gap, active share, R-squared, active weight, and fund duration) to outperform different

benchmark stock portfolios over the 2001-2016 period. Employing rule-based and ma-

chine learning methods, I find one version of the rule-based real-time portfolio is able to

beat the market in real time but generates no alpha relative Carhart four-factor model. In

contrast, regression-based machine learning with variable selection feature (LASSO and

elastic net) can deliver outperformance not only relative to the market benchmark (with

annualized market-adjusted alpha of 1.68%) but also relative to additional risk factors

(with annualized Carhart four-factor alpha of 1.32%). Further inspection on the real-

time machine learning portfolio reveals that through variable selection, either LASSO

or elastic net portfolio only exploits predictive information from some of the predictors

when predictability is strong, and switches to the passive market portfolio by ignoring

all predictors when overall predictability is weak. This feature essentially trades off some

positive expected returns for less volatility in the real-time portfolio. Short-term fund

27



performance (one-month return) turns out to be the main driver underlying any real-

time predictability discovered by LASSO or elastic net. These findings justify potential

value added by robo-advisors which aim to assist unsophisticated households to pick

outperforming funds.

My paper further shows that beyond investors’ usage of CAPM, investors react to

the components of CAPM alpha implied by predictors in different ways, and investor

attention to predictors is stronger among aggressive growth funds where those predictors

are found to work well. These results suggest that real-time predictability exists not

due to lack to investor attention to publicly available predictive information, instead

the magnitude of any real-time excess gain discovered in this paper can be seen as a

proxy cost an average investor needs to incur using intensive search algorithms to find

skilled managers in the asset management industry. More investigation of investors’ time-

varying attention allocation on predictors and investors’ sophistication in using predictive

information would be an interesting venue for future work.
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Table 1: List of Mutual Fund Performance Predictors

Category Predictor Study

Characteristics-Based Expense Ratio (ER) Elton et al. (1993)

Fund Flow (Flow) Zheng (1999)

Fund Size (Size) Chen et al. (2004)

Performance-Based One-Year Return (Ret1y) Hendricks et al. (1993)

Carhart Alpha (Car1y) Carhart (1997)

One-Month Return (Ret1m) Bollen and Busse (2004)

Return Gap (RG) Kacperczyk et al. (2006)

Activeness Turnover (TR) Elton et al. (1993)

Active Share (AS) Cremers and Petajisto (2009)

R-Squared (R2) Amihud and Goyenko (2013)

Active Weight (AW) Doshi et al. (2015)

Fund Duration (Dur) Cremers and Pareek (2016)
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Table 2: Predictor Definition

Predictor Definition

ER Annual expense ratio in fraction of total net asset

Flow Three-month dollar flow in millions

Size Log of total net asset in million dollars

Ret1y One-year cumulative return of a fund

Car1y Monthly Carhart four-factor alpha using 12 monthly returns

from last 12 months

Ret1m Most recent one month return net of fees

RG Difference between net fund return and the net return to most recent fund stock holdings

TR Minimum of aggregated sales or aggregated purchases of securities

divided by the average 12-month total net assets of a fund

AS Deviation of a fund portfolio holdings from its benchmark index holdings

R2 R-squared from a regression of fund net excess return on

Carhart four factors using monthly returns from last 24 months

AW Deviation of a fund portfolio holdings from its market-cap weighted holdings

Dur Average time (in years) a fund rebalances its stock holdings
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Table 3: Summary Statistics - Number of Funds.
This table reports the summary statistics for actively managed U.S. domestic equity funds
at the end of each year in the sample from 1994 to 2016. The fund sample is constructed
such that only observations where each predictor is available are kept. Additional filters
include: (1) only funds with at least $15 millions of total net assets (TNA) are kept; (2)
incubation bias is adjusted by eliminating fund observations preceding a fund’s first offer
date as reported in CRSP and observations with missing fund names. TNA, Expense
Ratio, and Turnover Ratio are reported as the cross-sectional average at the end of each
year and winsorized at 1% and 99% levels.

Year Num. of Funds TNA Turnover Ratio Expense Ratio
(in Millions) (%) (%)

1994 269 1204.65 72.01 1.16
1995 209 1677.63 73.65 1.16
1996 214 1683.13 72.71 1.17
1997 471 2206.39 78.97 1.19
1998 526 2497.50 80.74 1.14
1999 585 2911.42 88.49 1.17
2000 670 2481.49 96.81 1.20
2001 719 2022.17 88.43 1.26
2002 806 1376.50 85.68 1.29
2003 900 1711.11 78.10 1.27
2004 987 1778.94 74.87 1.26
2005 1035 1765.40 76.38 1.24
2006 1084 1924.94 75.06 1.20
2007 1149 1925.00 81.91 1.18
2008 1146 1110.40 89.15 1.20
2009 1182 1386.76 74.97 1.18
2010 1268 1421.84 71.09 1.15
2011 1241 1386.31 65.10 1.13
2012 1191 1582.06 61.96 1.11
2013 1181 2138.59 59.03 1.09
2014 1163 2332.54 58.11 1.07
2015 1128 2246.54 57.50 1.06
2016 1072 2359.53 57.05 1.04
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Table 4: Summary Statistics - Fund Performance Predictors.
Panel A exhibits descriptive statistics of the 12 predictors described in Table 1 and 2
from December 1994 to November 2016. All predictors are winsorized at 1% and 99%
level. Obs. is the time-series average of number of funds in each cross-section in the
sample. Mean is the time-series average of cross-sectional mean of a predictor. Me-
dian is the time-series average of cross-sectional median. SD is the time-series average of
cross-sectional standard deviation. Min (max) is the time-series average of cross-sectional
minimum(maximum). AR(1) is the cross-sectional median of first-order autocorrelation
of a predictor for a fund. Panel B exhibits the contemporaneous pairwise Pearson corre-
lations among predictors.

Panel A: Descriptive Statistics

Predictor Obs. Mean Median SD Min Max AR(1)

ER 900 1.17% 1.14% 0.36% 0.27% 2.18% 0.95
Flow 900 -1.20 -1.72 108.04 -459.57 484.43 0.78
Size 900 6.12 6.08 1.67 2.89 10.22 0.97
Ret1y 900 10.81% 10.06% 12.41% -18.34% 187.00% 0.92
Car1y 900 -0.05% -0.07% 0.90% -4.19% 13.43% 0.84
Ret1m 900 0.87% 0.83% 2.38% -7.04% 20.37% 0.10
RG 900 -0.01% -0.02% 1.26% -7.15% 17.95% 0.13
TR 900 75.74% 59.47% 61.18% 2.98% 317.57% 0.93
AS 900 0.81 0.84 0.15 0.15 1.00 0.96
R2 900 0.91 0.93 0.07 0.33 0.99 0.94
AW 900 0.79 0.77 0.21 0.12 1.58 0.93
Dur 900 5.64 4.86 3.49 0.01 17.69 0.96

Panel B: Pairwise Correlation

ER Flow Size Ret1y Car1y Ret1m RG TR AS R2 AW Dur

ER 1
Flow 0.068 1
Size -0.372 -0.097 1
Ret1y 0.024 0.113 0.03 1
Car1y 0.002 0.033 0.006 0.431 1
Ret1m 0.007 0.013 0.004 0.268 0.253 1
RG 0.013 -0.001 -0.003 0.145 0.192 0.001 1
TR 0.186 0.019 -0.148 -0.017 -0.027 -0.003 0.007 1
AS 0.336 0.052 -0.195 0.062 0.008 0.017 0 0.023 1
R2 -0.196 -0.045 0.092 -0.113 -0.107 -0.02 -0.036 -0.061 -0.367 1
AW 0.106 0.027 -0.031 0.016 0.006 0.006 -0.005 0.006 0.16 -0.206 1
Dur -0.244 -0.097 0.224 -0.006 0.014 0.001 -0.003 -0.592 -0.166 0.108 0.008 1

37



Table 5: In-Sample Performance of Mutual Fund Predictors.
This table exhibits the Carhart four-factor (C4) Carhart (1997) alpha spread across
quintile fund portfolios. Fund portfolios are formed based on value of previous month-end
predictors defined in Table 1 and 2. Portfolios are rebalanced at the end of each month.
The Newey-West corrected standard error with six-month lag is shown in parentheses.
Alpha spread is in monthly percentage. Absolute t-statistics are shown in parentheses.
***, **, and * denote significance at 1%, 5%, and 10% levels, respectively. The sample
for all predictors is the same, with returns from January 1995 to December 2016.

Panel A: Equal-Weighted Fund Portfolio

Predictor Portfolio C4 Alpha Abs. t-stat

ER High - Low -0.03 (0.5)

Flow High - Low 0.08 (1.03)

Size High - Low -0.15*** (2.61)

Ret1y High - Low 0.24 (1.36)

Car1y High - Low 0.29*** (3.34)

Ret1m High - Low 0.60*** (2.84)

RG High - Low 0.01 (0.11)

TR High - Low -0.05 (0.53)

AS High - Low 0.12* (1.67)

R2 High - Low -0.18* (1.78)

AW High - Low 0.19*** (2.77)

Dur High - Low 0.12 (1.65)

Panel B: Value-Weighted Fund Portfolio

Predictor Portfolio C4 Alpha Abs. t-stat

ER High - Low -0.20*** (3.27)

Flow High - Low -0.02 (0.33)

Size High - Low -0.12** (2.11)

Ret1y High - Low 0.09 (0.47)

Car1y High - Low 0.25** (2.55)

Ret1m High - Low 0.62*** (2.78)

RG High - Low -0.10 (1.41)

TR High - Low -0.18** (2.38)

AS High - Low 0.00 (0.06)

R2 High - Low -0.14 (1.18)

AW High - Low 0.09 (1.04)

Dur High - Low 0.16*** (2.81)
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Table 6: Best-Performing Rule Selected Using Rule-Based Approach Without
Validation.
This table exhibits best-performing rule selected using rule-based approach without vali-
dation based on corresponding in-sample performance. A rule is either a single predictor
quintile or a combination of quintiles of two predictors. 12 predictors described in Table
1 and 2 are considered to form the fund selection rules.

2001 2002 2003 2004 2005 2006 2007 2008

Car1y, 5;
Ret1m, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

2009 2010 2011 2012 2013 2014 2015 2016

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5
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Table 7: Top-3 Best-Performing Rule Selected Using Rule-Based Approach
With Validation.
This table exhibits predictor ranking based on the training sample performance of selected
rules to pick funds. 12 predictors described in Table 1 and 2 are considered to form the
fund selection rules.

Rank 2001 2002 2003 2004 2005 2006 2007 2008

1 TR, 5;
Ret1m, 5

Car1y, 5;
Ret1m, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

2 Car1y, 5;
Ret1m, 5

TR, 5;
Ret1m, 5

R2, 1;
Ret1y, 5

R2, 1;
Ret1y, 5

R2, 1;
Ret1y, 5

R2, 1;
Ret1y, 5

R2, 1;
Ret1y, 5

R2, 1;
Ret1y, 5

3 Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Car1y, 5;
Ret1m, 5

Flow, 4;
Ret1y, 5

Car1y, 5;
Ret1m, 5

Car1y, 5;
Ret1m, 5

Car1y, 5;
Ret1m, 5

Car1y, 5;
Ret1m, 5

Rank 2009 2010 2011 2012 2013 2014 2015 2016

1 Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

Ret1m, 5;
Ret1y, 5

2 Car1y, 5;
Ret1m, 5

Car1y, 5;
Ret1m, 5

AW, 2;
R2, 1

AW, 2;
R2, 1

Car1y, 5;
Ret1m, 5

Car1y, 5;
Ret1m, 5

Car1y, 5;
Ret1m, 5

Car1y, 5;
Ret1m, 5

3 R2, 1;
Ret1y, 5

AW, 2;
R2, 1

Car1y, 5;
Ret1m, 5

Car1y, 5;
Ret1m, 5

AW, 2;
R2, 1

AW, 2;
R2, 1

AW, 2;
R2, 1

AW, 2;
R2, 1
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Table 8: Real-Time Performance of Rule-Based and Ma-
chine Learning Portfolios.
This table presents the monthly returns for fund portfolios con-
structed using rule-based approach (without and with validation)
and six regression-based machine learning methods (OLS as the
benchmark). FF3 Alpha is from Fama-French three factor model
Fama and French (1993). C4 alpha is from Carhart four-factor model
Carhart (1997). All returns are in monthly percentage. Absolute t-
statistics are reported in parentheses.

Panel A: Rule-Based Approaches

Validation Average Return CAPM Alpha FF3 Alpha C4 Alpha

No 0.79** 0.21* 0.11 0.08

(2.14) (1.71) (1.20) (0.81)

Yes 0.70* 0.11 0.02 -0.01

(1.89) (1.17) (0.28) (0.17)

Panel B: Machine Learning Methods

Method Average Return CAPM Alpha FF3 Alpha C4 Alpha

OLS (Benchmark) 0.56 -0.07 -0.14 -0.12

(1.37) (0.61) (1.35) (1.22)

Ridge 0.58 -0.04 -0.11 -0.11

(1.46) (0.38) (1.15) (1.07)

LASSO 0.74** 0.14** 0.11** 0.11**

(1.98) (2.18) (2.25) (2.16)

Elastic Net 0.74** 0.14** 0.11** 0.11**

(1.98) (2.18) (2.25) (2.17)

PCR 0.61 0.00 -0.08 -0.09

(1.60) (0.01) (1.15) (1.22)

PLS 0.55 -0.07 -0.14 -0.12

(1.37) (0.65) (1.37) (1.23)

SGL 0.68* 0.07 0.03 0.03

(1.83) (0.96) (0.44) (0.44)
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Table 9: Conditional Performance of Real-Time Fund Portfolios.
This table exhibits the conditional performance attribution of real-time fund portfolios within the Ferson and Schadt (1996) (FS)
framework. Real-time fund portfolios are selected using two types of approaches: rule-based and machine learning methods. Panel
A shows the performance of rule-based approach and Panel B shows the results from machine learning methods. 12 fund predictors
defined in Table 1 and 2 are used as inputs for prediction. All fund portfolios are formed through equal-weighting. The one-
month lagged conditional variables include one-month T-Bill, dividend yield (DY), term spread (TS), and default spread (DS). All
conditional variables are demeaned to have zero sample means. Absolute t-statistics based on the Newey-West corrected standard
error using six-month lag are shown in square brackets. ***, **, and * denote significance at 1%, 5%, and 10% levels, respectively.
The real-time portfolio performance is from January 2001 to December 2016.

Panel A: Rule-Based Approach

Validation Alpha Market Market Market Market Market SMB HML MOM

×1m T-Bill ×DY ×TS ×DS

No 0.10 0.96*** 0.35 0.04 0.02 0.01 0.39*** 0.05 0.11**

(1.05) (23.39) (0.97) (0.48) (0.47) (0.18) (8.70) (0.67) (2.11)

Yes 0.00 0.98*** 0.19 0.05 0.03 -0.01 0.36*** 0.03 0.10**

(0.06) (31.56) (0.87) (0.90) (0.99) (0.14) (11.74) (0.48) (2.29)

Panel B: Machine Learning Methods

Method Alpha Market Market Market Market Market SMB HML MOM

×1m T-Bill ×DY ×TS ×DS

OLS (Benchmark) -0.05 1.01*** 0.58** -0.08 0.05** 0.07 0.30*** 0.03 -0.02

(0.64) (34.63) (2.39) (1.31) (2.24) (1.42) (6.62) (1.09) (0.56)

Ridge -0.04 0.99*** 0.45** -0.08 0.05** 0.08 0.30*** 0.04 -0.01

(0.48) (37.51) (2.00) (1.08) (2.45) (1.29) (7.71) (1.09) (0.12)

LASSO 0.12** 1.00*** 0.07 0.00 0.01 0.03 0.13*** -0.02 0.00
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Table 9: Conditional Performance of Real Fund Portfolios - FS (Continued)

(2.06) (40.58) (0.46) (0.04) (0.45) (0.66) (2.87) (0.77) (0.08)

Elastic Net 0.12** 1.00*** 0.07 0.00 0.01 0.03 0.13*** -0.02 0.00

(2.07) (40.52) (0.46) (0.05) (0.44) (0.66) (2.87) (0.76) (0.08)

PCR -0.10 1.00*** 0.37** 0.13** 0.02 -0.05 0.31*** 0.04 0.04

(1.25) (36.58) (2.21) (2.28) (0.80) (0.68) (5.75) (0.89) (0.93)

PLS -0.05 1.00*** 0.57** -0.08 0.04** 0.06 0.29*** 0.04 -0.02

(0.68) (34.28) (2.29) (1.24) (2.08) (1.35) (6.70) (1.14) (0.56)

SGL 0.05 1.00*** 0.34*** 0.06 0.04*** -0.02 0.18*** 0.01 0.00

(0.70) (41.77) (3.05) (1.36) (2.68) (-0.38) (3.71) (0.24) (0.05)
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Table 10: Conditional Performance of Real-Time Fund Portfolios by Fund Styles.
This table exhibits the conditional performance attribution of real-time fund portfolios within the Ferson and Schadt (1996) (FS)
framework for three styles of funds: Aggressive Growth, Growth, and Growth and Income. Real-time fund portfolios are selected
using two types of approaches: rule-based and machine learning methods. Panel A shows the performance of rule-based approach
and Panel B shows the results from machine learning methods. 12 fund predictors defined in Table 1 and 2 are used as inputs for
prediction. All fund portfolios are formed through equal-weighting. The one-month lagged conditional variables include one-month
T-Bill, dividend yield (DY), term spread (TS), and default spread (DS). All conditional variables are demeaned to have zero sample
means. Absolute t-statistics based on the Newey-West corrected standard error using six-month lag are shown in square brackets.
***, **, and * denote significance at 1%, 5%, and 10% levels, respectively. The real-time portfolio performance is from January
2001 to December 2016.

Panel A: Rule-Based Approach

Style Validation Alpha Market Market Market Market Market SMB HML MOM

×1m T-Bill ×DY ×TS ×DS

Aggressive Growth No 0.17 1.03*** 1.28** 0.15 0.05 -0.04 0.48*** -0.01 0.16**

(1.15) (23.33) (2.43) (1.37) (1.15) (0.42) (7.03) (0.05) (2.52)

Yes 0.04 1.03*** 0.75* 0.08 0.05 0.03 0.43*** -0.05 0.15***

(0.37) (31.72) (1.95) (0.98) (1.31) (0.39) (8.95) (0.50) (3.45)

Growth No 0.11 0.99*** 0.22 0.04 0.01 -0.01 0.39*** 0.02 0.12**

(1.24) (22.41) (0.74) (0.5) (0.33) (0.12) (7.23) (0.32) (2.34)

Yes -0.03 1.00*** 0.41** 0.03 0.03 0.01 0.35*** -0.02 0.08**

(0.41) (37.31) (2.21) (0.58) (1.38) (0.10) (11.34) (0.48) (2.42)

Growth and Income No 0.06 0.88*** -0.57** -0.02 0.00 0.00 0.06** 0.13*** 0.04**

(0.86) (38.26) (-2.17) (0.31) (0.10) (0.01) (2.20) (2.96) (2.12)

Yes -0.04 0.94*** -0.26* -0.02 -0.02 0.00 0.05*** 0.11*** 0.05***

(0.95) (63.7) (1.68) (0.35) (1.13) (0.05) (2.70) (3.06) (2.70)
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Table 10: Conditional Performance of Real Fund Portfolios - FS (Continued)

Panel B: Machine Learning Methods

Style Method Alpha Market Market Market Market Market SMB HML MOM

×1m T-Bill ×DY ×TS ×DS

Aggressive Growth OLS (Benchmark) -0.03 1.05*** 0.74* -0.10 0.07** 0.06 0.33*** -0.01 -0.01

(0.33) (30.49) (1.90) (1.00) (2.18) (0.84) (6.35) (0.15) (0.16)

Ridge -0.06 1.04*** 0.59* -0.07 0.09** 0.06 0.33*** -0.03 0.03

(0.65) (29.54) (1.75) (0.65) (2.41) (0.69) (6.54) (0.55) (0.42)

LASSO 0.18** 1.01*** 0.40** 0.09 0.05** -0.03 0.17*** -0.07 0.03

(2.15) (34.58) (2.38) (1.37) (2.26) (0.42) (3.11) (1.50) (0.58)

Elastic Net 0.18** 1.01*** 0.40** 0.09 0.05** -0.03 0.17*** -0.07 0.03

(2.15) (34.59) (2.39) (1.38) (2.28) (0.42) (3.11) (1.49) (0.58)

PCR -0.12 1.06*** 0.68* -0.05 0.07** 0.07 0.34*** -0.06 0.02

(1.52) (27.62) (1.68) (0.68) (2.29) (1.15) (5.85) (1.54) (0.42)

PLS -0.04 1.05*** 0.77** -0.10 0.08** 0.06 0.32*** -0.02 -0.01

(0.40) (30.88) (2.03) (1.05) (2.37) (0.90) (6.17) (0.56) (0.12)

SGL 0.13* 1.01*** 0.42** 0.08 0.06** -0.03 0.17*** -0.04 0.01

(1.93) (43.98) (2.33) (1.55) (2.43) (-0.67) (3.32) (-1.18) (0.43)

Growth OLS (Benchmark) -0.07 1.02*** 0.54** -0.06 0.05*** 0.05 0.27*** -0.03 -0.03

(0.91) (35.68) (2.38) (1.00) (2.69) (0.97) (6.50) (0.89) (-0.89)

Ridge -0.06 1.01*** 0.47** -0.06 0.06*** 0.05 0.29*** -0.01 -0.02

(0.85) (36.48) (2.07) (0.79) (2.69) (0.87) (7.54) (0.45) (0.36)

LASSO 0.15** 1.01*** 0.37*** 0.06 0.05*** -0.02 0.15*** -0.02 0.01

(2.55) (41.14) (3.35) (1.13) (3.08) (0.41) (3.21) (0.55) (0.25)

Elastic Net 0.15** 1.01*** 0.37*** 0.06 0.05*** -0.02 0.15*** -0.01 0.01
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Table 10: Conditional Performance of Real Fund Portfolios - FS (Continued)

(2.56) (41.17) (3.36) (1.13) (3.08) (0.41) (3.21) (0.54) (0.25)

PCR -0.10 1.03*** 0.50*** 0.10* 0.04* -0.03 0.3*** -0.02 0.04

(1.49) (38.68) (3.09) (1.86) (1.87) (0.47) (5.58) (0.38) (1.08)

PLS -0.08 1.02*** 0.57** -0.05 0.05*** 0.04 0.26*** -0.02 -0.03

(1.02) (33.87) (2.36) (0.83) (2.62) (0.86) (6.54) (0.81) (0.73)

SGL 0.05 1.02*** 0.37*** 0.08* 0.05*** -0.05 0.18*** -0.01 0.00

(0.78) (40.01) (2.85) (1.70) (2.86) (-0.96) (3.68) (-0.29) (0.10)

Growth and Income OLS (Benchmark) -0.03 0.96*** 0.07 -0.03 0.00 0.02 0.03 0.06*** -0.03

(0.60) (63.07) (0.45) (0.79) (0.03) (0.69) (1.01) (4.33) (1.23)

Ridge 0.00 0.94*** -0.01 -0.05 -0.01 0.03 0.03 0.07*** -0.03

(0.10) (55.56) (0.07) (0.94) (0.47) (1.06) (1.12) (4.51) (1.25)

LASSO 0.00 0.96*** 0.20* 0.03 0.02* -0.01 0.03* 0.02* -0.02

(0.08) (77.68) (1.89) (1.23) (1.88) (0.57) (1.71) (1.68) (1.37)

Elastic Net 0.00 0.97*** 0.22** 0.03 0.02* -0.01 0.02 0.02* -0.02

(0.15) (80.20) (1.98) (1.27) (1.67) (0.66) (1.48) (1.94) (1.29)

PCR -0.02 0.91*** 0.22** 0.09*** 0.00 -0.04 0.05* 0.08*** -0.01

(0.53) (59.07) (2.17) (2.69) (0.10) (1.52) (1.83) (2.94) (0.63)

PLS -0.03 0.96*** 0.07 -0.02 0.00 0.01 0.02 0.06*** -0.03

(0.70) (65.92) (0.58) (0.67) (0.22) (0.57) (0.67) (4.24) (1.41)

SGL 0.01 0.96*** -0.02 -0.02 -0.01 0.02 0.02 0.02 -0.02

(0.44) (63.82) (-0.10) (-0.44) (-0.79) (0.67) (1.58) (1.12) (-0.99)
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Table 11: Monthly Flow Sensitivity to Performance Components.
This table exhibits monthly flow sensitivity to different performance components using
CAPM as the benchmark model. PIP P denotes for the predictor-implied performance
based on predictor P , which is one of the six predictors: fund size (Size), return gap (RG),
active share (AS), R-squared (R2), active weight (AW), fund duration (Dur). Control
variables are other observables at the end of month t, including lagged monthly flows
from t− 17 to t, one-month lagged log of TNA (size), one-month lagged log of fund age,
one-month lagged value of fund’s expense ratio, a fund’s dummy that indicate whether
the fund has any load, and the total volatility of monthly fund net return in prior 12
months (from t − 11 to t). Standard errors clustered by fund and month are shown in
parentheses.

Benchmark Model: CAPM

Predictor P

Monthly Flow Size RG AS R2 AW Dur No PIPP

Pure Alpha 0.632*** 0.625*** 0.647*** 0.651*** 0.625*** 0.633*** 0.552***

(0.043) (0.044) (0.043) (0.043) (0.044) (0.044) (0.040)

PIPP 0.520*** 0.506 0.301 0.153 0.776*** 0.466***

(0.163) (0.339) (0.202) (0.187) (0.227) (0.156)

Size -0.166*** -0.166*** -0.176*** -0.172*** -0.165*** -0.168*** -0.163***

(0.022) (0.022) (0.023) (0.022) (0.022) (0.022) (0.021)

RG 21.591**

(9.010)

AS -0.692***

(0.192)

R2 1.347***

(0.448)

AW 0.035

(0.112)

Dur 0.007

(0.007)

Controls Yes Yes Yes Yes Yes Yes Yes

Month FE Yes Yes Yes Yes Yes Yes Yes

Obs. 152,756 152,756 152,756 152,756 152,756 152,756 157,970

Adj. R2 0.026 0.026 0.027 0.027 0.026 0.026 0.026
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Table 12: Monthly Flow Sensitivity to Performance Components for Three
Fund Styles.
This table exhibits monthly flow sensitivity to different performance components using
CAPM as the benchmark model for three fund styles. PIP P denotes for the predictor-
implied performance based on predictor P , which is one of the six predictors: fund size
(Size), return gap (RG), active share (AS), R-squared (R2), active weight (AW), fund
duration (Dur). Control variables include size, predictor P and other observables at
the end of month t, including lagged monthly flows from t − 17 to t, one-month lagged
log of TNA (size), one-month lagged log of fund age, one-month lagged value of fund’s
expense ratio, a fund’s dummy that indicate whether the fund has any load, and the total
volatility of monthly fund net return in prior 12 months (from t − 11 to t). Standard
errors clustered by fund and month are shown in parentheses.

Benchmark Model: CAPM

Panel A: Aggressive Growth

Predictor P

Monthly Flow Size RG AS R2 AW Dur No PIPP

Pure Alpha 0.654*** 0.654*** 0.656*** 0.662*** 0.648*** 0.655*** 0.691***

(0.065) (0.063) (0.065) (0.065) (0.064) (0.065) (0.065)

PIPP 0.701*** 0.899** 0.807*** 0.643*** 0.055 0.731***

(0.247) (0.361) (0.198) (0.244) (0.274) (0.265)

Controls Yes Yes Yes Yes Yes Yes Yes

Month FE Yes Yes Yes Yes Yes Yes Yes

Obs. 16,530 16,530 16,530 16,530 16,530 16,530 17,764

Adj. R2 0.087 0.088 0.087 0.087 0.087 0.087 0.092

Panel B: Growth

Predictor P

Monthly Flow Size RG AS R2 AW Dur No PIPP

Pure Alpha 0.750*** 0.737*** 0.760*** 0.759*** 0.737*** 0.741*** 1.003***

(0.075) (0.076) (0.075) (0.075) (0.076) (0.076) (0.066)

PIPP 0.355 0.364 0.422* 0.373 0.678*** 0.361

(0.236) (0.332) (0.252) (0.233) (0.142) (0.241)

Controls Yes Yes Yes Yes Yes Yes Yes

Month FE Yes Yes Yes Yes Yes Yes Yes

Obs. 80,637 80,637 80,637 80,637 80,637 80,637 83,793

Adj. R2 0.026 0.026 0.026 0.026 0.026 0.026 0.031

Panel C: Growth and Income
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Table 12: Monthly Flow Sensitivity to Performance Components (Continued)

Predictor P

Monthly Flow Size RG AS R2 AW Dur No PIPP

Pure Alpha 0.816*** 0.806*** 0.864*** 0.853*** 0.835*** 0.815*** 0.691***

(0.119) (0.113) (0.110) (0.113) (0.117) (0.116) (0.065)

PIPP 0.811 0.814 -0.880 -0.028 0.072 0.717

(0.518) (0.594) (0.814) (0.501) (0.601) (0.457)

Controls Yes Yes Yes Yes Yes Yes Yes

Month FE Yes Yes Yes Yes Yes Yes Yes

Obs. 36,859 36,859 36,859 36,859 36,859 36,859 17,764

Adj. R2 0.014 0.014 0.014 0.014 0.014 0.014 0.092
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(a) Percentage of U.S. Households Owning Mutual Funds over Time.

(b) U.S. Total Net Assets Managed by Three Types of Investment Vehicles. Note: Data for
ETFs exclude non–1940 Act ETFs and data for mutual funds exclude money market funds.

Figure 1: Households Demand for Mutual Funds. Source: 2021 Investment
Company Fact Book.
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Figure 2: Relative variable importance by model: fund performance pre-
dictability, all funds
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Plot A: Market-adjusted return to rule-based portfolio (w/o validation)
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Plot B: Market-adjusted return to rule-based portfolio (w/ validation)
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Figure 3: Mean monthly (%) return of real-time fund portfolio using rule-
based approach and elastic net. Sample period: 2001-2016.
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Figure 4: Dollar return from $1 invested using rule-based approach and elastic net. Sample period: 2001-2016.
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Appendix A Details on Some Fund Predictors

A.1 Return Gap

Kacperczyk et al. (2006) define the return gap as the difference between net fund

return and the net return to fund stock holdings, that is,

RGf,t = RFf,t − (RHf,t − EXPf,t), (19)

where RFf,t is the net fund return in month t, RHf,t is the total return to a buy-and-

hold portfolio based on the most recently disclosed fund stock holdings, and EXPf,t

denotes expenses and fees. This measure is constructed at monthly frequency. I take the

most recent return gap and lag it for three months if necessary to account for potential

reporting delay.

A.2 Active Share

Cremers and Petajisto (2009) propose a measure for active portfolio management,

which measures the deviation of a fund portfolio holdings from its benchmark index

holdings. Specifically, active share for fund i at time t is defined as

ASi,t =
1

2

Ni,t∑
j=1

|wi,j,t − wBi,j,t|, (20)

where wi,j,t and wBi,j,t are the portfolio weights of stock j in fund i and in its benchmark

index respectively, and the sum is taken over stock positions only23. I obtain the active

share data from Martijn Cremers’ website https://activeshare.nd.edu/data, which

originally ranges from 1984 to 2015. Given this paper’s focus on real-time predictability, I

use active share data computed from self-declared benchmarks instead of from minimum

active share benchmarks which require full-sample information. Moreover, I assign to

23 The investment universe here is defined as the joint union of a fund stock portfolio holding universe
and its benchmark portfolio universe.
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each fund the most recently available active share while restrict the maximal time lag

to be 11 months between current date and the most recent date when active share is

available. For instance, I keep fund observation in November 2000 if its most recent

active share date is in December 1999, but drop fund observation if its most recent active

share date is in November 1999. I take the most recent active share and lag it for three

months if necessary to account for potential reporting delay.

A.3 R-squared

I compute R2 following Amihud and Goyenko (2013) from a regression of mutual

fund excess returns on Carhart four factors with based on monthly returns in the prior

24 months up to month t. Funds are required to have valid return in each of the prior 24

months.

A.4 Active Weight

Doshi et al. (2015) proposes an alternative measure for managerial activeness, i.e.,

active weight, which is defined as

AWi,t =
1

2

Ñi,t∑
j=1

|wi,j,t − wMi,j,t|, (21)

where wMi,j,t is the market-cap weight of stock j within fund i’s portfolio at time t, and Ñi,t

is the total number of stocks held long by the fund. The difference between active weight

and active share is that active weight measures how funds allocate money across their

long stock positions after determining their long-investment universe, while active share

incorporates fund decisions to cover specific stocks. Therefore active weight exclusively

captures managerial decisions for deviating from a simple benchmark on the intensive

margin. I therefore compute quarterly active weight following Doshi et al. (2015) and

require a fund to have at least 10 stocks. For each month, I keep the most recently
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available active weight. I take the most recent active weight and lag it for three months

if necessary to account for potential reporting delay.

A.5 Fund Duration

Cremers and Pareek (2016) construct a fund duration measure to gauge how fre-

quent a fund rebalances its stock holdings. They find that among high active share funds,

only those with high fund duration are able to outperform. The fund duration data is

available on Martijn Cremers’ website https://activeshare.nd.edu/data. Since fund

duration measures the rebalancing frequency of fund portfolio, it has a highly negative

correlation with fund turnover measures. I take the most recent fund duration and lag it

for three months if necessary to account for potential reporting delay.

Online Appendix: Data Cleaning

I modify the procedure in Kacperczyk et al. (2006) and Doshi et al. (2015) for

cleaning mutual fund data.

Stock Holdings

I use three data files to create a dataset for mutual fund stock holdings: Thomson-

Reuters (former CDA/Spectrum, or TFN for abbreviation) s12 type 1 file, type 3 file,

mflink2 file in MFLINKS constructed by Wermers (2000) and provided by Wharton

Research Data Services (WRDS). The mutual fund stock holdings data are from N-30D,

N-30B-2, N-CSR, N-CSRS, N-Q. The cleaning procedure is outlined as follows:

• I exclude funds with CDA/Spectrum investment objective code (IOC) being 1, 5,

6, and 7, corresponding to international, municipal bonds, bond and preferred, and

balanced funds. The left funds have investment objective code as aggressive growth,

growth, growth & income, metals, unclassified, or missing.

• TFN s12 type 1 file reports two dates: RDATE (reported holding date) and FDATE
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(vintage date for matching datasets). They generally do not coincide, and I screen

out the first appearing FDATE for each FUNDNO-RDATE pair to avoid stale

information. I also create a month-end date variable based on RDATE, which is

useful to merge datasets.

• Some funds report more than once in a given month, and I keep only the last report

of the month.

• After merging s12 type 1 file with mflink2 file, there are several cases when WFICN-

RDATE is not unique (since there may be multiple FUNDNO’s for one WFICN

due to error or multiple WFICN’s for one FUNDNO due to re-usage of fundno by

TFN). In those cases, I keep only funds (identified by WFICN after eliminating

observations with missing WFICN) with the largest total net assets (identified by

the ASSETS variable in s12 type 1 file).

• I then merge the previous resulting file with s12 type 3 file which contains stock

holding information.

• I link CUSIP from s12 type 3 file to NCUSIP from CRSP to get the PERMNO

identifier.

• The last thing is to adjust back shares held by funds for stock splits and other

events.

– TFN has already adjusted stock splits according to FDATE. For instance,

if a fund holds 1, 000 shares in stock A in March (RDATE) while stock A

experiences 2 : 1 stock splits in June which happens to be the vintage month

(FDATE) for holdings reported in March. Then TFN would record 1, 000×2 =

2, 000 shares of stock A held by the fund in March (RDATE), based on stock

splits in June (FDATE). I therefore need to adjust back the shares so that in

March, the number of shares owned is indeed 1, 000.

– To achieve this, I use CFACSHR from the CRSP MSF file. In the above

example, the correct number of shares in March (RDATE) can be recovered

as shares rdate = shares fdate∗CFACSHR fdate
CFACSHR rdate

.
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– I then use the re-adjusted reported shares and ALTPRC from CRSP MSF file

to calculate the dollar value of a security held by a fund as shares rdate ×

|ALTPRC|.

– I only keep stock holdings with positive dollar values.

Equity Funds

I create a dataset that contains WFICN-CRSP FUNDNO-DATE pairs for actively

managed U.S. domestic equity funds24. I use fund style file to pre-select funds and later

combine it with monthly fund information, fund names, and the newly created holdings

to filter out index funds and classify funds into different styles at monthly frequency.

• I fill empty style of fund share class with the most recent available style.

• I pre-select fund styles based on style code in CRSP.

1. I first exclude funds if the CRSP policy code is in ‘Bal’, ‘Bonds’, ‘B & P’, ‘C

& I’, ‘GS’, ‘MM’, ‘Pfd’, ‘TFM’.

2. Then I keep funds if the Lipper classification code is in ‘EIEI’, ‘G’, ‘LCCE’,

‘LCGE’, ‘LCVE’, ‘MCCE’, ‘MCGE’, ‘MCVE’, ‘MLCE’, ‘MLGE’, ‘MLVE’,

‘SCCE’, ‘SCGE’, ‘SCVE’ or Lipper prospectus objective code is in ‘CA’, ‘EI’,

‘G’, ‘GI’, ‘MC’, ‘MR’, ‘SG’.

3. If Lipper code is not available, I keep funds if the Strategic Insight objective

code is in ‘AGG’, ‘GMC’, ‘GRI’, ‘GRO’, ‘ING’, ‘SCG’, the fund is identified

as domestic equity fund.

4. If Strategic Insight code is not available either, I include funds if the Wiesen-

berger objective code is in ‘G’, ‘GCI’, ‘IEQ’, ‘LTG’, ‘MCG’, ‘SCG’.

• I then merge fund styles with fund monthly returns, fund names, holdings (for

IOC).

• Before style classification, I use CRSP index flag and fund names to identify index

funds. Specifically, I first exclude fund share classes with non-missing CRSP index

24 DATE is a month-end date variable for CALDT.
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flag and then exclude funds if the name contains any of the following characters:

‘index’, ‘s&p’, ‘idx’, ‘dfa’, ‘program’, ‘etf’, ‘exchange traded’, ‘exchange-traded’,

‘target’, ‘2000’, ‘2005’, ‘2010’, ‘2015’, ‘2020’, ‘2025’, ‘2030’, ‘2035’, ‘2040’, ‘2045’,

‘2050’, ‘2055’, ‘2060’, ‘2065’, ‘2070’, ‘2075’.

• Finally, I classify funds into four styles (aggressive growth, growth, equity growth

and income, and others) with a created STYLE variable.

1. If Lipper objective code is ‘CA’, or Strategic Insight code is ‘AGG’, or Wiesen-

berge code is ‘MCG’, or IOC is 2, I classify the fund as aggressive growth fund.

2. If Lipper objective code is ‘G’, or Strategic Insight code is ‘GRO’, or Wiesen-

berge code is in ‘G’ or ‘LTG’, or IOC is 3, I classify the fund as growth fund.

3. If Lipper objective code is in ‘GI’ or ‘EI’, or Strategic Insight code is in ‘GRI’

or ‘ING’, or Wiesenberge code is in ‘GCI’ or ‘IEQ’, or IOC is 4, I classify the

fund as equity growth and income fund.

4. Other unclassified funds are denoted as ‘Other’ in variable STYLE.

More Filters

To be included in a cross-section, I require funds to have at least $15 million TNA

in the portfolio formation month. I also adjust the incubation bias documented in Evans

(2010) using two filters:

• Eliminate observations preceding the fund’s first offer date as reported in CRSP,

that is, observations with a missing value in the created AGE variable.

• Eliminate observations with missing fund names.
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