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Abstract

This paper develops a generalization of the Hansen-Jagannathan bound

that incorporates information beyond the mean and variance of returns.

The resulting bound compares the physical and risk-neutral distribu-

tion for every τ -quantile. An empirical application with S&P500 return

data shows that the new bound is stronger than the Hansen-Jagannathan

bound for small values of τ . This feature is consistent with the rare disas-

ter models, but not with the long run risk model. Using a semiparametric

approach, I extend this finding using conditioning information and doc-

ument that disaster risk is time-varying. I also propose a new measure

of quantile forecastability and show that many stylized facts about the

equity premium carry over to the quantile setting.
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1 Introduction

Nonparametric methods are useful for analyzing misspecification of asset pricing

models in the macro-finance literature (Hansen and Jagannathan, 1991; Snow,

1991; Stutzer, 1995; Bansal and Lehmann, 1997; Alvarez and Jermann, 2005;

Backus et al., 2014; Liu, 2020). The underlying theme of these methods is to

estimate a statistic of the observable asset returns, such as the Sharpe ratio,

and use this statistic to bound unobservable moments of the stochastic discount

factor (SDF). The seminal paper of Hansen and Jagannathan (1991) shows

how the Sharpe ratio leads to a lower bound on the volatility of the SDF.

Hansen and Jagannathan (1991) (henceforth HJ) conclude that any SDF needs

to be sufficiently volatile to explain historically high Sharpe ratios. This finding

poses a challenge to consumption based asset pricing models, since historical

consumption growth in the US is much less volatile than asset returns. A typical

problem is that a high level of risk aversion is required in order to overcome the

HJ bound, which contradicts other stylized facts of the data.

However, since the HJ bound uses only the mean and variance of excess

returns, there might be other information contained in the data that can be

exploited to obtain sharper conclusions about the SDF volatility and misspeci-

fication of asset pricing models. This paper fills that gap by developing moment

bounds on the SDF which use information from the entire distribution of asset

returns, not just mean and variance. The new bound on the SDF volatility is

motivated as a Sharpe ratio on digital put options, that is, a derivative contract

paying out one dollar if the stock falls below a specified strike price. By varying

the strike, we obtain a continuum of bounds that compare the physical and

risk-neutral distribution for every τ -quantile, where τ ∈ (0, 1). For this reason,

the new bound is referred to as the quantile bound.

The benefits of this approach are threefold. (i) The quantile bound is valid

and performs well even if the distribution of returns is heavy tailed (in contrast

to the HJ bound); a point I illustrate in Section 2.3. (ii) Different consumption

based asset pricing models imply different shapes of the quantile bound. In par-

ticular, some models, like the long-run risk model of Bansal and Yaron (2004),

predict that the HJ bound is stronger than the quantile bound. I find counter

evidence to this implication in the data (Section 4). I go on to argue that this
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finding can be interpreted as model misspecification. Specifically, failure to in-

corporate disaster risk implies counterfactually high levels of risk-aversion in

order to render the quantile bound stronger than the HJ bound. (iii) Quantiles

of the left tail of a distribution provide a cleaner interpretation of disaster risk

than the mean or variance. I show that introducing disaster risk to an asset

pricing model not only increases the market Sharpe ratio, but it also induces

a peak in the quantile bound for small τ . I find support for this hypothesis in

the data. This finding lends further support to the idea that a fear of disasters

is driving expected returns, in contrast to, for example, changing expectations

about economic growth as predicted by the long-run risk model.

The analysis above exploits the difference between the unconditional phys-

ical and risk-neutral quantile, which I refer to as the quantile wedge. Comple-

mentary to the unconditional case, we can ask how the quantile wedge evolves

using conditional information. In contrast to the conditional equity premium,

the literature offers little guidance on the predictors of this quantile wedge. In

addition, the out-of-sample performance is much less understood and typical

notions, such as the out-of-sample R2
oos of Campbell and Thompson (2008), are

no longer applicable. A second contribution of this paper is to show how these

ideas can be incorporated in the quantile setting. Specifically, I propose a clean

substitute for R2
oos, denoted by R1

oos(τ), which is a measure of out-of-sample pre-

dictability tailored to quantile regression. Moreover, I derive a forward looking

regressor based on option data to approximate the latent conditional quantile

function. This regressor consists of the sum of two components, namely the risk-

neutral quantile and a risk adjustment term, both of which can be calculated

using forward looking information at time t. The results in this paper confirm

that the risk adjusted regressor performs well in- and out-of-sample.

This finding leads me to interpret the risk adjusted regressor as a high fre-

quency measure of the latent conditional quantile function. I show that there is

significant time fluctuation in the left tail of the quantile function, which can be

taken as model-free evidence of time varying disaster risk. Additional insight can

be gained from this exercise. For example, I observe that both the risk-neutral

and physical quantile drop markedly during the great recession. Interestingly,

the decrease in the risk-neutral quantile is far larger. This observation allows us
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to gauge the influence of two phenomena that are normally indistinguishable:

the increase in perceived disaster risk or the increase in risk premia for insurance

against a market decline.1 My results show that an increase in risk premia were

the dominant force during the great recession, even though perceived disaster

risk also increased at times of financial distress.

I end the paper with another empirical strategy to test conditional implica-

tions of asset pricing models regarding the left and right tail of the distribution

of returns. Specifically, I argue that the class of disaster risk models implies

that the difference between the physical and risk-neutral distribution is more

pronounced in the left tail than the right tail. In contrast, the class of long-run

risk models posits that the difference is most pronounced around the median.

I propose an empirical strategy to test this hypothesis and find that, consis-

tent with the disaster literature, the difference is most pronounced in the left

tail. This finding provides further support for the disaster risk model based on

conditional information.

1.1 Literature review

Hansen and Jagannathan (1991) derive a nonparametric bound on the SDF

volatility and use it to establish a duality relation with the maximum Sharpe

ratio. Many researchers followed up with higher order bounds (Snow, 1991;

Almeida and Garcia, 2012; Liu, 2020) and entropy bounds (Stutzer, 1995; Bansal

and Lehmann, 1997; Alvarez and Jermann, 2005; Backus et al., 2014).

This paper advocates the use of quantiles to obtain sharper SDF bounds.

Quantiles from the risk-neutral distribution can be inferred from the market

through put and call options, which follows from the work of Ross (1976); Bree-

den and Litzenberger (1978). These authors show that options can complete

the market and the risk-neutral PDF can be obtained as the second derivative

of the call option price curve. This idea was put into practice by Aı̈t-Sahalia

and Lo (1998, 2000); Rosenberg and Engle (2002); Jackwerth (2000) to estimate

the SDF or risk-aversion nonparametrically. Even though the approach of Aı̈t-

Sahalia and Lo (1998, 2000) renders an estimate of the entire SDF, it requires

estimating a ratio of two density functions that are hard to estimate, partic-

1They are indistinguishable since, normally, we cannot estimate conditional disaster risk.
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ularly in the tails. The results proved in this paper yield a bound on certain

moments of the SDF, but we only require an estimate of a CDF and quantile

function, which, in general, can be estimated at a faster rate.

The results in this paper affirm that the highest Sharpe ratio is not attained

by the market portfolio. Instead, I find that it is more profitable to engage

in (digital) put selling strategies, which is consistent with Coval and Shumway

(2001) and Bates (2008). Bates (2008) proposes a structural model to rationalize

this finding using crash-averse preferences. I provide an alternative statistical

rationale, leveraging on the empirical observation that asset returns are heavy

tailed (Danielsson and De Vries, 2000). In particular, imposing a Pareto distri-

bution on asset returns with a sufficiently fat tail implies the existence of put

selling strategies that yield higher Sharpe ratios than a direct investment in the

market portfolio. Importantly, this feature is shared by the class of disaster risk

models (Rietz, 1988; Barro, 2006; Wachter, 2013), but not by the class of long-

run risk models (Bansal and Yaron, 2004; Bansal et al., 2012). I thus provide a

new way to compare both models based on distributional characteristics beyond

the mean and variance.

This paper also connects to the burgeoning literature on using options to

obtain forward looking estimates of the equity premium (Martin, 2017; Chabi-Yo

and Loudis, 2020). However, instead of focusing on the conditional expectation

of excess returns, I use option data to predict conditional return quantiles. The

evaluation and performance of conditional return predictors is well understood

in the literature, especially after fundamental contributions of Goyal and Welch

(2008) and Campbell and Thompson (2008). I draw on earlier work of Koenker

and Machado (1999) to extend the evaluation toolkit to the quantile setting.

The relation between option data and expected market crashes has a long

history and features in the work of Bates (1991, 2000, 2008); Bollerslev and

Todorov (2011); Backus et al. (2011); Ross (2015), as well as many others. I

build on Chabi-Yo and Loudis (2020) to obtain a semiparametric estimator of

the conditional quantile function that does not require parameter estimation or

calibration. The time variation in this estimator for low quantiles is consistent

with the time varying disaster risk models of Gabaix (2012) and Wachter (2013).

The rest of this paper is organized as follows. Section 2 discusses the quantile
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bound, Section 3 outlines how to estimate the new bound with actual data and

Section 4 describes the main empirical results. Section 5 extends the empirical

results using conditioning information. Finally, Section 6 concludes.

2 Quantile bound on the SDF volatility and model

implications

2.1 Notation

Let R be the return on any tradable asset and their portfolios. The assumption

of no arbitrage and the law of one price imply the existence of a (positive)

stochastic discount factor (SDF), denoted by M , such that the following relation

holds

E [MR] = 1. (2.1)

The expectation in (2.1) is taken with respect to a probability measure P, fre-

quently referred to as the physical measure, which represents the true probability

distribution of the data generating process. Alternatively, the relation in (2.1)

can be reformulated in terms of the risk-neutral measure. That is, there exists

a probability measure P̃, equivalent to P, such that2

Ẽ [R] = 1/E [M ] . (2.2)

The expectation on the left in (2.2) is taken with respect to P̃. Throughout the

paper, I use tilde (∼) to denote quantities that are calculated under the risk-

neutral measure P̃. If we assume the existence of a risk-free asset with return

Rf , then E [M ] = 1/Rf and we uncover the familiar fact in (2.2) that the risk-

neutral measure absorbs risk premia. Mathematically, the connection between

(2.1) and (2.2) follows, since M/E [M ] is the Radon-Nikodym derivative of the

measures P and P̃. The SDF can potentially depend on many state variables.

To avoid having to specify or estimate these state variables, I work with the

projected SDF

M = E [M|R] ,

2Two probability measures P, P̃ are said to be equivalent whenever P(A) = 0 ⇐⇒ P̃(A) =
0.
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where M is the SDF that depends on all the state variables. The projected SDF

has the same pricing implications for contingent claims written on return R for

which we have data (Cochrane, 2005, pp. 66–67).3

2.2 Quantile bound

I now prove a new bound on the SDF volatility that elucidates how any difference

between the physical and risk-neutral distribution leads to a volatile SDF. Before

stating the bound, I introduce F̃ (·) (resp. F (·)) to denote the risk-neutral (resp.

physical) CDF and write Q̃τ (R) to denote the risk-neutral τ -quantile of the

return R. I omit (R) and write Q̃τ , whenever the dependence on R is clear from

the context. By definition, the risk-neutral quantile function satisfies

F̃
(
Q̃τ (R)

)
:= P̃

(
R ≤ Q̃τ

)
= τ.

For ease of notation, I also define φ(τ) := F (Q̃τ (R)), which can be interpreted

as the ordinal dominance curve of the measures P and P̃ (Hsieh et al., 1996).

The new SDF volatility bound can now be stated as follows.

Theorem 2.1 (Quantile bound). For any τ ∈ (0, 1), we have

σ(M)

E [M ]
≥ |τ − φ(τ)|√

φ(τ)× (1− φ(τ))
. (2.3)

If a risk-free asset exists, then E [M ] = 1/Rf and (2.3) simplifies to

σ(M) ≥ |τ − φ(τ)|√
φ(τ)× (1− φ(τ))Rf

. (2.4)

Proof. See Appendix A.1. �

I refer to Theorem 2.1 as the quantile bound, since a key ingredient in (2.3)

is the risk-neutral quantile function. If P = P̃, agents are risk-neutral and

the dominance curve evaluates to φ(τ) = τ . In that case the quantile bound

degenerates to zero.

Theorem 2.1 makes precise the sense in which any discrepancy between the

physical and risk-neutral distribution induces SDF volatility. Compare this to

3Formally, M is a measurable function of R, but I avoid denoting this dependence explicitly
to simplify notation.
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the classical HJ bound:

σ(M) ≥ |E(R)−Rf |
σ(R)Rf

. (2.5)

The lower bound in (2.5) tells us that any excess return induces SDF volatility.

Essentially, (2.5) uses three sources of information: (i) The mean of the physical

distribution (ii) The mean of the risk-neutral distribution (iii) The variance of

the physical distribution. One can imagine that other statistics of the data

can be exploited as well to learn something about the SDF. This is precisely

what (2.3) does, by comparing the physical and risk-neutral distribution for

every τ -quantile. If there is no priced jump or stochastic volatility risk, φ(τ) is

determined by the equity premium and no information is gained beyond (2.5).

On the other hand, if there are risk premia for jumps or stochastic volatility,

the measures P and P̃ differ both in shape and location (Broadie et al., 2009),

which implies that φ(τ) contains information that is not captured by (2.5).

Moreover, the quantile bound is well defined regardless of any moment re-

strictions on the returns and thus robust to fat-tails. Both fat-tails and skewness

are essential features of financial return data (Martin and Gao, 2021) and hence

the quantile bound could offer useful information beyond that contained in the

HJ bound, which is confined to the mean-variance paradigm.

The Sharpe ratio on the right hand side of (2.5) summarizes the risk-return

trade-off of a mean-variance optimizing agent. Analogously, the quantile bound

can be understood as the Sharpe ratio of insurance against crash risk for small

quantiles. Consider a security that pays out $1, whenever the asset return is

below Q̃τ (R), for some small τ . The price of such a security is given by

E [M ] Ẽ
[
1

(
R ≤ Q̃τ (R)

)]
= E [M ] τ. (2.6)

Similarly, the (discounted) expected return is

E [M ]E
[
1

(
Q̃τ (R)

)]
= E [M ]φ(τ). (2.7)

And the risk associated to this investment is given by

σ
(
1

(
R ≤ Q̃τ (R)

))
=
√
φ(τ)(1− φ(τ)). (2.8)
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Combining (2.6), (2.7) and (2.8) to form the Sharpe ratio we recover (2.3).

The interpretation above sheds light on the economic interpretation of the

two bounds. For example, the HJ bound is used to motivate the equity premium

puzzle. That is, standard consumption based asset pricing models have difficulty

to overcome the HJ bound for reasonable levels of risk aversion, due to historical

high returns on the market portfolio (Cochrane, 2005). The disaster risk model

of Rietz (1988) and Barro (2006) argues that high Sharpe ratios result from

investors’ fear of extreme (negative) shocks to consumption. Following this

reasoning, we would expect high Sharpe ratios for small quantiles in (2.3) due

to the crash risk interpretation sketched above. In this sense, (2.3) is a more

direct measure of the influence of disasters on the behavior of the SDF. I analyze

this further in Section 2.4.

2.3 An illustrative example

To illustrate how the quantile bound in Theorem 2.1 compares to the HJ bound,

I consider a setup with heavy-tailed returns. For ease of exposition, I assume

that a risk-free asset exists with return Rf . Let U ∼ UNIF [0, 1] (Uniform

distribution on [0,1]) and consider the following specification

M = AUα, R = BU−β with α, β,A,B > 0.

A random variable X ∼ PAR (C, ζ) has Pareto distribution with scale param-

eter C > 0 and shape parameter ζ > 0 if the CDF is given by

P(X ≤ x) =

1− (x/C)
−ζ

x ≥ C

0 x < C.

It follows from the setup that returns are Pareto distributed.

Proposition 2.2.

(i) Under physical measure P, the distribution of returns is Pareto: R ∼

PAR (B, 1/β).
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(ii) The Sharpe ratio on the asset return is given by

E [R]−Rf
σ(R)

=

B
1−β −

α+1
A√

B2

1−2β −
(

B
1−β

)2 . (2.9)

Proof. See Appendix A.2. �

I show that the quantile bound in this environment can be stronger than the

HJ bound under two different calibrations. To understand the intuition behind

this result, I provide an explicit expression for the quantile bound that shows

the quantile bound is independent of the Pareto tail parameter β.

Proposition 2.3. In the setup described above, the following properties hold:

(i) Under P̃, R ∼ PAR
(
B, α+1

β

)
.

(ii) The quantile bound depends only on the (left) tail index α of M . In par-

ticular,

1

Rf

|τ − φ(τ)|√
φ(τ)(1− φ(τ))

=
A

1 + α

∣∣∣τ − 1 + (1− τ)
1

α+1

∣∣∣√
(1− (1− τ)

1
α+1 )(1− τ)

1
α+1

.

(iii) If β ↑ 1
2 , then the HJ bound converges to 0.

Proof. See Appendix A.2. �

Properties (ii) and (iii) provide some intuition when the quantile bound is

stronger than the HJ bound. Namely, heavier tails of the distribution of R (as

measured by β) lead to a lower Sharpe ratio. However, the quantile bound is

unaffected by β since it only depends on the tail index α. Therefore, when β

gets close to 1/2, the HJ bound is rather uninformative, whereas the quantile

bound may fare better. Moreover, we do not need to impose any restrictions

on the parameter space to calculate the quantile bound, whereas the HJ bound

requires β < 1/2. However, the latter restriction is not unreasonable for asset

returns, since typical tail index estimates suggest β ∈ [1/4, 1/3] (Danielsson and

De Vries, 2000).

I now calibrate the model in two different ways to illustrate the difference

between the quantile and HJ bound. The first calibration is targeted to match
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some of the salient features of the US market return. To match the typical

Pareto exponent for the US market return, I set β = 1/3. For simplicity,

assume Rf = 1 and to match the observed equity premium of 8%, I pick B =

1.08×(1−β) = 0.72. The implied return volatility is far above typical estimates

(16% in Cochrane (2005)), but since this example is provided to gain intuition

the discrepancy is ignored. Equations (A.5) and (A.6) are used to solve for the

parameters A,α from the SDF distribution. In the alternative calibration, I set

β = 1/2.2 (heavier tails, but still finite variance) and pick B again to match

the equity premium. Once more, (A.5) and (A.6) are used to solve for A,α.

Table 1 summarizes the resulting parameter values for reference, together with

the corresponding Sharpe ratio and SDF volatility.

Table 1: Model calibration

A α B β σ(R) Sharpe ratio σ(M)
Calibration 1 1.19 0.19 0.72 0.33 0.62 0.13 0.16
Calibration 2 1.11 0.11 0.59 0.45 1.63 0.05 0.10

Note: Calibration of SDF model with Pareto returns. Both calibrations impose an
equity premium of 8% and (gross) risk-free rate Rf = 1. σ(R) denotes the return
volatility and σ(M) the SDF volatility.

Figure 1 shows the HJ and quantile bound for the two different calibrations.

One can see that the supremum of the quantile bound exceeds the HJ bound in

both cases. The display on the right shows that the performance of the quantile

bound is better whenever the distribution of asset returns is more heavy tailed.

In the left display of Figure 1, the supremum of the quantile bound is slightly

stronger than the HJ bound, but only marginally so. In contrast, the display

on the right of Figure 1 highlights that there is a range of values for which the

quantile bound is stronger than the HJ bound, owing to the fatter tails of the

return distribution.

2.4 Quantile and HJ bound for common asset pricing mod-

els

In this section, I compare the tightness of the quantile bound in Theorem 2.1 to

the HJ bound using common asset pricing models. The tightness is of interest,

since some asset pricing models imply that the HJ bound is always tighter
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Figure 1: Plots of the quantile bound (in red), HJ bound (blue), true SDF volatility (yellow)
and estimated quantile bound (yellow) for different values of β.

than the quantile bound. For other models, this feature is true under common

parameter calibration. Since real data in Section 4 show that the quantile bound

is significantly stronger than the HJ bound, this finding can be taken as evidence

against such models. Appendix D contains similar results in this direction using

other well known asset pricing bounds.

Example 2.1 (CAPM). The Capital Asset Pricing Model (CAPM) specifies

the SDF as

M = α− βRm.

Here, Rm denotes the return on the market portfolio. Since the HJ bound

is derived by applying the Cauchy-Schwarz inequality to COV(Rm,M), the

inequality binds if M is a linear combination of Rm. Hence, under CAPM,

the HJ bound is always stronger than the quantile bound regardless of the

distribution of Rm.

For the following two examples I need Stein’s Lemma (Cochrane, 2005, p.

163):

Lemma 2.4 (Stein’s Lemma). If X1, X2 are bivariate normal, g : R → R is

differentiable and E |g′(X1)| <∞, then

COV (g(X1), X2) = E [g′(X1)]COV(X1, X2).
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Example 2.2 (Joint normality). Suppose that M and R are jointly normally

distributed. This assumption violates no-arbitrage, since M can be negative,

but could be defended as an approximation over short time horizons when the

variance is small (see Example 2.3). The proof of the quantile bound in Theorem

2.1 gives the following identity

|τ − φ(τ)|
Rf

=
∣∣∣COV

(
1

(
R ≤ Q̃τ

)
,M
)∣∣∣

By an approximation argument, Stein’s lemma still applies with g(x) = 1 (x ≤ k)

and g′(x) = δk(x) (Dirac delta function). Therefore,

∣∣∣COV
(
1

(
R ≤ Q̃τ

)
,M
)∣∣∣ = f(Q̃τ ) |COV(R,M)| . (2.10)

Here, f(·) is the marginal density of R. Standard SDF properties also yield the

well known identity
|E(R)−Rf |

Rf
= |COV (R,M)| .

To evaluate the strengths of the quantile and HJ bound, consider the relative

efficiency

HJ bound

Quantile bound
=

|E[R]−Rf |
σ(R)Rf

|τ−φ(τ)|√
φ(τ)(1−φ(τ))Rf

(2.10)
=

√
φ(τ)(1− φ(τ))

σ(R)f(Q̃τ )
. (2.11)

To see that the HJ bound is always stronger than the quantile bound, minimize

(2.11) with respect to τ . Temporarily write x = Q̃τ and consider

Γ(x) =
F (x)(1− F (x))

f(x)2
.

Minimizing Γ(x) is equivalent to minimizing (2.11) and first order conditions

imply that the optimal x∗ satisfies

[f(x∗)− 2F (x∗)f(x∗)]f(x∗)2 − 2f(x∗)f ′(x∗)[F (x∗)(1− F (x∗))] = 0. (2.12)

Since f, F are the respective PDF and CDF of the normal random variable R,
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it follows that f ′(µR) = 0 and F (µR) = 1/2, where µR is the mean of R. As

a result, (2.12) holds when Q̃τ∗ = x∗ = µR. For this choice, φ(τ∗) = P(R ≤

Q̃τ∗) = 1/2 and f(Q̃τ∗) = 1/
√

2πσ2
R. Therefore, (2.11) obeys the bound

√
φ(τ)(1− φ(τ))

σRf(Q̃τ )
≥
√

2π

2
≈ 1.25.

Hence, the HJ bound is always better in a model where the SDF and wealth

portfolio are assumed to be jointly normal.

Example 2.3 (Joint lognormality). Let ZR and ZM be standard normal ran-

dom variables with correlation ρ and consider the specification

R = e(µR−
σ2R
2 )λ+σR

√
λZR

M = e−(rf+
σ2M
2 )λ+σM

√
λZM ,

where λ governs the time scale. Simple algebra shows that the no-arbitrage

condition E [RM ] = 1 is satisfied when µR − rf = −ρσRσM . It is hard to find

an analytical solution for the relative efficiency between the HJ and quantile

bound in this case, but linearization leads to a closed form expression which is

quite accurate in simulations. The details are described in Appendix A.3, where

I prove that

min
τ∈(0,1)

HJ bound

Quantile bound
≈ 1

2

√
2πσ2

Rλ

exp(σ2
Rλ)− 1

.

This expression is independent of µR. An application of l’Hôspital’s rule reveals

that the relative efficiency converges to
√

2π/2 if λ → 0+. This is the same

relative efficiency in Example 2.2, which is unsurprising as the linearization

becomes exact in the limit as λ → 0+. This ratio is less than 1 if σ ≥ 0.91

and λ = 1. In practice, annualized market return volatility is about 16%,

which means that the HJ bound is stronger than the quantile bound under any

reasonable parameterization if the SDF and asset return are lognormal.

Example 2.4 (Disaster risk). The disaster risk model of Rietz (1988) and

Barro (2006) posits that risk-premia are driven by extreme events that affect

consumption growth. I follow the specification in Backus et al. (2011), who

assume that the representative agent has power utility and the log pricing kernel
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is given by

logM = log(β)− γ∆c.

Innovations in consumption growth are driven by two independent shocks

∆c = ε+ η. (2.13)

Here, ε ∼ N(µ, σ2) and

η|(J = j) ∼ N(jθ, jν2), J ∼ Poisson(κ).

The interpretation of η is that of a jump component (disaster) which induces

negative shocks to consumption growth. κ governs the jump intensity for the

Poisson distribution. I use the same calibration as Backus et al. (2011). In

line with their paper, the market portfolio is considered as a claim on levered

consumption, i.e. an asset that pays dividends Cλ. I convert the model implied

volatility bounds to monthly units, to facilitate the comparison with the long-

run risk model and the empirical bounds obtained in Section 4.

The quantile bound, HJ bound and SDF volatility are illustrated in the left

upper panel of Figure 2.4 We see that the quantile bound has a sharp peak at

τ = 0.046, after which it decreases monotonically. Interestingly, there is a range

of τ values for which the quantile bound is sharper than the HJ bound. This is

in line with the empirical evidence in Section 4.

The reason for this result can be understood from the upper right panel of

Figure 2, which shows the physical and risk-neutral distribution of return on

equity. The right tail of the distributions are not shown, since they are virtually

indistinguishable in that region. The risk-neutral distribution displays a heavy

left tail, owing to the implied disaster risk embedded in the SDF. As a result,

it is extremely profitable to sell digital put options which pay out in case of a

disaster. These put options must have high Sharpe ratios as their prices are

high (insurance against disaster risk), but the actual probability of disaster is

so low that the risk associated to selling such insurance is limited.

The following example uses time t conditional information. I denote the

4The bounds can be calculated analytically, see Appendix C.1 for the details.
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Figure 2: The upper left panel compares the HJ bound and quantile bound in disaster
risk model and the right upper panel shows the physical and risk-neutral distribution. The
bottom panel shows the HJ and quantile bound for the long run risk model. The bounds are
in monthly units.

SDF from time t to t + 1, by Mt+1. The subscript refers to a random variable

that is realized at time t+ 1, conditioned on time t.

Example 2.5 (Long-run risk). The long-run risk (LRR) model of Bansal and

Yaron (2004) posits that consumption growth is driven by a small and persistent

component that captures long-run risk. Moreover, the existence of a representa-

tive agent with Epstein and Zin (1989) recursive preferences is assumed. After

calibration, this model is successful in matching many of the salient features

of the US market return data. I consider the extended model of Bansal et al.

(2012), which allows for correlation between consumption growth shocks and
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dividend growth. In particular, the following dynamics are assumed:

xt+1 = ρxt + ϕeσtet+1

σ2
t+1 = σ̄2 + ν(σ2

t − σ̄2) + σwwt+1

∆ct+1 = µc + xt + σtηt+1

∆dt+1 = µd + φxt + πσtηt+1 + ϕσtud,t+1.

Here, ∆ct+1 and ∆dt+1 denote log consumption and dividend growth, while σt

is conditional volatility of log consumption growth. The parameter ρ governs

the persistence of long-term risk. The log SDF dynamics follow from the Euler

equation and the Epstein and Zin (1989) preferences

logMt+1 = θ log β − θ

ψ
∆ct+1 + (θ − 1)rc,t+1,

where rc,t+1 is the continuous return on the consumption asset. I omit further

details on the parameter interpretation and calibration approach, which is ex-

tensively discussed in Bansal et al. (2012). To compare the HJ bound to the

quantile bound, I use the same calibration of parameters as Bansal et al. (2012).

The quantile bound, as well as the HJ bound and SDF volatility are estimated

by simulation, using 110,000 months, where the first 10,000 observations are

dropped as burn-in sample. The results are summarized in the bottom panel of

Figure 2. Unlike the disaster risk model, the quantile bound is always weaker

than the HJ bound. Moreover, the quantile bound is almost symmetric around

τ = 0.5, at which the maximum is attained. Hence, it is not profitable to sell

insurance against disaster risk. This contradicts the empirical estimates from

Section 4, which suggests that the quantile bound is stronger than the HJ bound

and implies it is most profitable to sell insurance against disaster risk.

3 Estimation of the unconditional quantile bound

In this section I discuss the estimation of the (unconditional) quantile bound.

I assume the existence of a risk-free asset, so we can use the quantile bound

in (2.4). The bound is comprised of three unknowns: the risk-neutral quantile
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function Q̃τ (R), the physical probability measure P(R ≤ x) and the uncondi-

tional risk-free rate Rf . I follow Liu (2020) and fix Rf at a pre-specified level.

This is because the US risk-free rate can be inferred with high precision and

its influence is minor compared to the estimation of the first two functions. I

sketch the intuition for the function estimates below; a more detailed description

is provided in Appendix B.2.

Since our estimation strategy involves returns sampled over time, we have

to incorporate conditioning information. I use Rt+1 to denote the asset return

realized at time t+1, conditioned on time t information. I use the same notation

for the risk-free rate Rf,t+1, which is assumed to be known at time t.

To estimate the risk-neutral quantile function, I first estimate P̃(R ≤ x) and

use inversion to get an estimate of Q̃τ (R). To make this idea operational, we

rely on the following result of Breeden and Litzenberger (1978)

P̃t(Rt+1 ≤ K/St) = Rf,t+1
∂

∂K
Putt(K),

where Putt(K) is the time t price of a European put option with strike K,

expiring at time t + 1 and St is the time t stock price of the underlying asset.

Hence, with enough put option prices, we can identify the conditional risk-

neutral CDF. To obtain an estimate of the unconditional CDF, we average the

conditional CDFs over time

F̃T (x) := P̃T (R ≤ x) :=
1

T

T∑
t=1

P̃t (Rt+1 ≤ x) .5 (3.1)

Under suitable restrictions on the distribution of returns, we expect this to

converge to the unconditional return distribution. An estimate for the uncon-

ditional risk-neutral quantile curve is then obtained from

Q̃T (τ) := inf
{
x ∈ R : τ ≤ F̃T (x)

}
.

It is a nontrivial exercise to obtain solid estimates via this procedure, due to the

lack of a continuum of option prices, interpolation of different maturity options

and missing data for option prices far in– and out-of-the money. A detailed

5I follow the empirical process literature and use subscript T to denote a functional estimate
based on T observations.
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description is given in Appendix B.2, using a modification of the procedure

proposed by Figlewski (2008).

Secondly, we need to estimate P(R ≤ x). I use a kernel CDF estimator for

this function, which ensures that the quantile bound is a smooth function of τ .

Imposing a smooth quantile bound improves the approximation in finite samples

and mitigates the influence of outliers that would be more pronounced, if, say,

we use the discontinuous empirical CDF estimator. The kernel CDF estimator

is given by

FT (x) := PT (Rt+1 ≤ x) =
1

T

T∑
t=1

Φ

(
x−Rt+1

h

)
,

where Φ is the integral of the Epanechnikov kernel and h is the bandwidth. The

optimal bandwidth is determined via cross-validation. I denote the estimated

dominance curve by φT (τ) := FT (Q̃T (τ)). Combining the pieces, I obtain the

following estimator for the quantile bound

θ̂(τ) :=
|τ − φT (τ)|√

φT (τ) [1− φT (τ)]Rf
τ ∈ [ε, 1− ε], (3.2)

for some small ε > 0.

4 Empirical application

This Section presents estimates of the quantile bound using a combination of

forward looking option data and historical market returns. Based on calibration

of the disaster risk model, we provide statistical evidence that the quantile

bound renders a stronger bound on the SDF volatility than the HJ bound.

4.1 Data and estimation of the unconditional risk-neutral

quantile curve

I use daily option data on the S&P500 from OptionMetrics covering the period

01-01-1996 until 12-31-2019 to estimate the unconditional risk-neutral quantile

curve. Before estimating the risk-neutral quantile curve, I use several data

cleaning procedures, which are detailed in Appendix B.1. Subsequently, the
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unconditional risk-neutral quantile curve is estimated following the steps in

Appendix B.2. Figure 3 shows the estimated unconditional quantile curves for

several horizons. It is apparent that longer time horizons carry a higher (risk-

neutral) probability of up and downswings. This makes intuitive sense, but is

not apparent a priori, since the quantile curves document profit and losses over

a fixed horizon and not during any time within the horizon.

Figure 3: Plots of the unconditional (risk-neutral) quantile function for various maturities.

4.2 Quantile bound for 30-day returns

I now turn to the estimation of the unconditional quantile bound for 30-day

returns, using the estimator in (3.2). The unconditional physical CDF estimate

is based on non-overlapping, historical 30-day returns on the S&P500 index over

the period 1996-2019, calculated at the middle of the month. This consists of

a total of T = 288 return observations. The unconditional risk-neutral quantile

function is estimated following the procedure in Appendix B.2, using only the

dates at which the historical market returns Rm,t+1 are calculated; that is, I

average over dates t, corresponding to the start of the return period of Rm,t+1.

Finally, I fix the uncontional risk-free rate at Rf = 1, which roughly corresponds

to the sample average of monthly risk-free rates over the time period 1996-2019.

Figure 4 shows the estimated quantile bound, as well as the HJ bound.

Notice that the estimated quantile bound is akin to the quantile bound predicted
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by the disaster risk model (Figure 2). This finding corroborates the idea that

very high Sharpe ratios can be obtained for selling insurance against crash risk

and is consistent with empirical evidence from previous studies that analyze

the Sharpe ratios of put selling strategies (see Broadie et al. (2009) and the

references therein).

The shape of the quantile bound in Figure 4 is also similar to the direct

SDF estimates of Aı̈t-Sahalia and Lo (2000) and Rosenberg and Engle (2002),

which are based on the ratio ζt(Rm,t+1) = f̃t(Rm,t+1)/ft(Rm,t+1). In their

context, 1/ζt(Rm,t+1) can be thought of as the expected return from buying an

Arrow-Debreu security, which pays out $1 if the return next period is Rm,t+1.

Aı̈t-Sahalia and Lo (2000, Table 3) report large negative expected returns for

small values of Rm,t+1, implying that selling Arrow-Debreu securities for low

returns is profitable. The authors do not further develop the implications for

asset pricing models, as I do below.

Figure 4: Plot of the quantile bound as function of τ . The solid red line is the estimated
quantile bound. The dashed blue line depicts the HJ bound.

4.2.1 Testing the quantile and HJ bound

I now test more formally whether the quantile bound improves upon the HJ

bound, using a bootstrap approach. To make this operational, I fix, a priori,

the τ -quantile at probability level τ = 0.046, which renders the sharpest bound

on the SDF volatility in the disaster risk model (Example 2.4). The resulting
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quantile bound is summarized in Table 2, together with the HJ bound. Observe

that the quantile bound is more than double that of the HJ bound. To see

whether this is a statistically significant difference, I consider the test statistic

T {Rm,t+1} := θ̂(0.046)−
∣∣R̄m −Rf ∣∣
σ̂(Rm)Rf

. (4.1)

The first term on the right hand side denotes the estimated quantile bound

(3.2) evaluated at the 0.046-quantile, using the entire time series {Rm,t+1} of

returns. The second term denotes the estimated HJ bound, using R̄m and

σ̂(Rm) as the respective sample mean and standard deviation of {Rm,t+1}. A

value of T {Rm,t+1} ≥ 0 indicates that the quantile bound is stronger than the

HJ bound.

Since the distribution of (4.1) is hard to characterize, I use block bootstrap

to approximate the p-value of the null hypothesis

H0 : T {Rm,t+1} ≤ 0. (4.2)

The block bootstrap is used to generate time indices from which we recreate

(with replacement) bootstrapped returns {R?m,t+1}. The same bootstrapped

time indices are used to estimate the risk-neutral quantile curves and leads to

the quantile bound θ̂?(0.046), as well as the HJ bound∣∣R̄?m −Rf ∣∣
σ̂(R?m)Rf

.

I repeat the bootstrap exercise 100,000 times and calculate the bootstrapped

test statistic

T {R?m,t+1} := θ̂?(0.046)−
∣∣R̄?m −Rf ∣∣
σ̂(R?m)Rf

. (4.3)

Finally, the p-value is obtained as the fraction of times T (R?m,t+1) ≤ 0. Table 2

shows that the estimated p-value is 0.0529, suggesting that the quantile bound

is stronger than the HJ bound.

4.2.2 Implications

What are the economic implications of this finding? First, in Section 2.4, I

argued that under CAPM, the HJ bound is always stronger than the quantile
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Table 2: Sample bounds and bootstrap result

Rf Sample size HJ bound τ Quantile bound p-value
1 288 0.1087 0.0464 0.2339 0.0529

Note: Test result of (4.2), using 100,000 bootstrap samples. The HJ and quan-
tile bound refer to the sample estimates, using the entire time of observations.

bound. Therefore, the empirical finding that the quantile bound is stronger

than the HJ bound is evidence against CAPM. The LRR model of Bansal et al.

(2012) can neither reconcile this feature of the data under common parameter

calibration. The evidence from Figure 4 and Table 2 supports the view that

misspecification of the LRR model stems from the absence of disaster risk. For

the LRR model, I establish by simulation that a risk aversion coefficient of 90 is

needed for the quantile bound to overcome the HJ bound. Moreover, in the LRR

model, the quantile bound is almost symmetric around τ = 0.5 and decreases

steeply when τ is close to {0, 1}, which again contradicts empirical evidence that

the highest Sharpe ratios are obtained for selling insurance against disaster risk.

The empirical results thus favor the theoretical implications of the disaster risk

model.

The observation that put options can be leveraged to yield higher Sharpe

ratios than a direct investment in the market portfolio has been noted before in

the literature (Bates, 2008; Broadie et al., 2009). However, what seems to have

gone unnoticed is the connection to model misspecification, in the sense that this

empirical regularity puts a tight constraint on a model’s risk-aversion coefficient.

In particular, this is true for the LRR model or statistical models that impose

joint lognormality between the SDF and market return (Example 2.3). In the

most extreme case, for CAPM or models that impose joint normality (Example

2.2), we cannot even find parameters that can generate the empirical regularity.

These results underscore the importance of incorporating information beyond

the mean and variance to analyze model misspecification.
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5 Conditional relation between physical and risk-

neutral quantile

The unconditional quantile bound puts a tight constraint on the SDF volatility

due to the apparent disaster risk in the data. This section complements that

finding by looking at conditional information. I show how the numerator term in

the quantile bound governs the difference between the physical and risk-neutral

quantile, up to a first order correction. I interpret this first order correction

as a risk adjustment term, which, under some conditions, can be approximated

by option data available at time t. Fluctuation in the risk adjustment term for

small τ points to time varying disaster risk.

5.1 Lower bound on physical quantile

I start by deriving a market observable lower bound on the difference between

the physical and risk-neutral quantile function. Write Ft(x) := Pt(Rt+1 ≤ x)

for the physical distribution function of Rt+1 conditional on all information

available at time t , ft(·) for the PDF and Qt,τ for the conditional τ -quantile.

As before, a tilde superscript refers to the risk-neutral measure. The idea is

to use von Mises (1947) calculus for statistical functionals to find a first order

approximation to the physical quantile function. A statistical functional ϕ : D→

E is typically a map between two normed spaces D and E. In our application,

we take ϕ(G) = G−1(τ), where G is a CDF and G−1(τ) is the quantile function.

Following Van der Vaart (2000, Section 20.1) and Serfling (2009, p. 217), we

have the following identity

Qt,τ − Q̃t,τ = ϕ(Ft)− ϕ(F̃t) = ϕ′
F̃t

(Ft − F̃t) + o
(∥∥∥Ft − F̃t∥∥∥) , (5.1)
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where ‖·‖ is a norm on a suitable linear space6 and ϕ′
F̃t

(Ft− F̃t) is the Gâteaux

derivative of ϕ at F̃t in the direction of Ft

ϕ′
F̃t

(Ft − F̃t) := lim
λ↓0

ϕ
[
(1− λ)F̃t + λFt

]
λ

=
∂

∂λ
ϕ
(

(1− λ)F̃t + λF
) ∣∣∣∣

λ=0

. (5.2)

Heuristically, the Gâteaux derivative in this context can be thought of as mea-

suring the change in the quantile function when we move the distribution of

returns from risk-neutral in the direction of the physical distribution. Appendix

A.7 shows that, when ϕ(·) is the quantile map, the Gâteaux derivative is given

by

ϕ′
F̃t

(Ft − F̃t) =
τ − Ft(Q̃t,τ )

f̃t(Q̃t,τ )
. (5.3)

We now make it our working hypothesis that the remainder term in (5.1) is

“small” in the sup-norm, ‖g‖∞ = supx |g(x)|.

Working Hypothesis 5.1. The remainder term in (5.1),
∥∥∥Ft − F̃t∥∥∥

∞
, can be

neglected.

Remark. The word “small” might be nebulous in this context; all it means is

that we assume that the first order approximation in (5.1) is accurate. The

assumption that ||Ft − F̃t||∞ is small is quite natural, since the discussion in

Example 2.4 shows that substantial pointwise difference between Ft(·) and F̃t(·)

leads to near-arbitrage opportunities. Ultimately, whether the Working Hy-

pothesis is reasonable or not is an empirical question. I test this in Section 5.2

and find that the approximation is quite accurate. Additionally, Appendix E

shows that Assumption 5.1 finds support in the Black and Scholes (1973) model.

Combining (5.1) and (5.3) in conjunction with Assumption 5.1 renders the

approximation

Qt,τ ≈ Q̃t,τ +
τ − Ft(Q̃t,τ )

f̃t(Q̃t,τ )︸ ︷︷ ︸
risk adjustment

. (5.4)

Observe that the numerator in the risk adjustment term equals the numerator

6Formally, the space can be defined as {∆ : ∆ = c(F − G), F,G ∈ D, c ∈ R} and D is the
space of distribution functions (Serfling, 2009).
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term in the conditional version of the quantile bound. The approximation in

(5.4) contains the terms Q̃t,τ and f̃t(Q̃t,τ ), which are directly observed at time

t, as they can be computed using (a variation of) the Breeden and Litzenberger

(1978) formula in (3.1). However, the physical CDF, Ft(·), is unknown and

hence (5.4) cannot directly be used to predict Qt,τ .

Under additional assumptions, the numerator term τ − Ft(Q̃t,τ ) can be

bounded with market data. To show this, I link Ft(·) to a risk-neutral co-

variance term, similar to Chabi-Yo and Loudis (2020). Use the reciprocal of the

SDF to pass from physical to risk-neutral measure

Ft(Q̃t,τ ) = Et
[
1

(
Rt+1 ≤ Q̃t,τ

)]
= Ẽt

[
1

(
Rt+1 ≤ Q̃t,τ

) Et [Mt+1]

Mt+1

]
= C̃OVt

[
1

(
Rt+1 ≤ Q̃t,τ

)
,
Et [Mt+1]

Mt+1

]
+ τ.

(5.5)

To proceed, assume that Rt+1 = Rm,t+1 (the market return). This allows me

to get a more explicit expression of the SDF as follows. Chabi-Yo and Loudis

(2020) show that in a one-period model with a representative agent who has

utility function u(·) and derives utility over final wealth, the SDF is given by

Et [Mt+1]

Mt+1
=

u′(Wtx0)
u′(Wtx)

Ẽt
[
u′(Wtx0)
u′(Wtx)

] with x = Rm,t+1, x0 = Rf,t+1,

and Wt is the agent’s initial wealth at time t. Define f(x) := u′(Wtx0)
u′(Wtx)

and use

a Taylor expansion around x = x0 to get

f(x) = 1 +

∞∑
k=1

θk(x− x0)k with θk =
1

k!

(
∂kf(x)

∂xk

)
x=x0

.

The θk-coefficients depend on the specific utility representation employed, but
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are conditionally non random. I substitute the above in (5.5) and obtain

C̃OVt

[
1

(
Rm,t+1 ≤ Q̃t,τ

)
,
Et [Mt+1]

Mt+1

]
= C̃OVt

[
1

(
Rm,t+1 ≤ Q̃t,τ

)
,

f(Rm,t+1)

Ẽt(f(Rm,t+1))

]

=

∑∞
k=1 θk

(
Ẽt
[
1

(
Rm,t+1 ≤ Q̃t,τ

)
(Rm,t+1 −Rf,t+1)k

]
− τ Ẽt

[
(Rm,t+1 −Rf,t+1)

k
])

1 +
∑∞
k=1 θkẼt [(Rm,t+1 −Rf,t+1)k]

.

(5.6)

In the last line I used Ẽt(1(Rm,t+1 ≤ Q̃t,τ )) = τ . The upshot is that the

(un)truncated moments of the excess market return can be computed from

option data (see Appendix A.4). To enhance notation, I follow Chabi-Yo and

Loudis (2020) and write

M̃(n)
t+1 := Ẽt [(Rm,t+1 −Rf,t+1)

n
]

M̃(n)
t+1[k0] := Ẽt [1 (Rm,t+1 ≤ k0) (Rm,t+1 −Rf,t+1)n] .

Using the more compact notation, we have

C̃OVt

[
1

(
Rm,t+1 ≤ Q̃t,τ

)
,
Et [Mt+1]

Mt+1

]
=

∑∞
k=1 θk

(
M̃(k)
t+1[Q̃t,τ ]− τM̃(k)

t+1

)
1 +

∑∞
k=1 θkM̃

(k)
t+1

.

(5.7)

Combining Equation (5.7) and (5.5) in (5.4) leads to the first order approxima-

tion

Qt,τ ≈ Q̃t,τ +
1

f̃t(Q̃t,τ )

∑∞k=1 θk

(
τM̃(k)

t+1 − M̃(k)
t+1[Q̃t,τ ]

)
1 +

∑∞
k=1 θkM̃

(k)
t+1

 . (5.8)

The right hand side of (5.8) depends on known quantities that can be calculated

at time t with option data, except for the unknown parameters θk. However,

Chabi-Yo and Loudis (2020) show that we can make assumption about θk that

lead to a lower bound. I adopt the following assumptions from their paper:
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Assumption 5.2. M̃(k)
t+1 ≤ 0 if k is odd. Furthermore, for k0 ≤ Rf,t+1

M̃(1)
t+1[k0] ≤ 0, M̃(2)

t+1[k0] ≥ 0

M̃(3)
t+1[k0] ≤ 0, M̃(4)

t+1[k0] ≥ 0.

Assumption 5.3. Preference parameters θk satisfy the following inequalities

for k ≥ 1

θk ≤ 0 if k is even and θk ≥ 0 if k is odd

Assumption 5.3 needs to be strengthened as follows to obtain the completely

nonparametric bound in Corollary 5.6:

Assumption 5.4. The first three preference parameters can be expressed as

θk =
(−1)k+1

Rkf,t+1

for k ∈ {1, 2, 3}.

Remark. Chabi-Yo and Loudis (2020) discuss the economic relevance of these

assumptions. Assumption 5.2 concerns odd moments of excess market returns,

which are typically negative, since they relate to unfavorable market conditions.

Assumption 5.3 is natural given Assumption 5.2, since investors require com-

pensation for exposure to risk-neutral moments. Assumption 5.4 strengthens

Assumption 5.3 and is needed to obtain a completely nonparametric bound in

Corollary 5.6. One can test the validity of Assumption 5.4 in the data. Chabi-Yo

and Loudis (2020) do so and find that Assumption 5.4 cannot be rejected.

Under these assumptions, we can bound the discrepancy between the con-

ditional physical and risk-neutral distribution.

Theorem 5.5 (Lower bound). Let assumptions 5.2 and 5.3 hold. Assume

that the risk-neutral CDF is absolutely continuous w.r.t. Lebesgue measure and

supk ‖Rm,t+1‖k := supk Ẽ(|Rm,t+1|k)1/k <∞. Finally, define τ∗ so that

Q̃t,τ∗ = Rf,t+1 − sup
k
‖Rm,t+1 −Rf,t+1‖k .
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Then, for all τ ≤ τ∗

τ − Pt
(
Rm,t+1 ≤ Q̃t,τ

)
≥

∑3
k=1 θk

(
τM̃(k)

t+1 − M̃(k)
t+1[Q̃t,τ ]

)
1 +

∑3
k=1 θkM̃

(k)
t+1

 .

Proof. See Appendix A.5. �

Corollary 5.6. If, additionally, Assumption 5.4 holds, then for all τ ≤ τ∗

τ−Pt
(
Rm,t+1 ≤ Q̃t,τ

)
≥


∑3
k=1

(−1)k+1

Rkf,t+1

(
τM̃(k)

t+1 − M̃(k)
t+1[Q̃t,τ ]

)
1 +

∑3
k=1

(−1)k+1

Rkf,t+1

M̃(k)
t+1

 =: LRBt(τ).

(5.9)

Proof. See Appendix A.5. �

Under the working hypothesis that the remainder term in the quantile ap-

proximation in (5.4) is negligible, the following Corollary is immediate.

Corollary 5.7. Suppose that the remainder term in (5.4) is negligible, and

Assumptions 5.2–5.4 hold, then for all τ ≤ τ∗

Qt,τ − Q̃t,τ ≥
LRBt(τ)

f̃t(Q̃t,τ )
. (5.10)

Theorem 5.5 establishes a lower bound on how far the risk-neutral distribu-

tion can diverge from the physical distribution conditional on time t. The lower

bound that results depends on unknown preference parameters θk, which, in

principle, can be estimated from return and option data (Chabi-Yo and Loudis,

2020, Section 3.3). The bound in Corollary 5.6 does not require any estima-

tion and can be calculated solely based on time t information. Corollary 5.6

complements the recent literature on the recovery of beliefs. Ross (2015) shows

that one can recover Ft(·), if the pricing kernel is transition independent. Sub-

sequent work (Borovička et al., 2016; Qin et al., 2018; Jackwerth and Menner,

2020) casts doubt on the transition independence assumption and shows that

recovery is generally impossible. Complimentary to these results, Corollary 5.6

shows that one can still establish a lower bound in the left tail of the distribu-

tion, under a different set of (mild) economic constraints. I will show in Section
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5.5 that it’s much easier to recover the right tail of the distribution, due to the

near absence of risk-adjustment.

Corollary 5.7 establishes an interesting relation between the physical and

risk-neutral quantile, showing that the difference between the two can be bounded

using option data available at time t. The hypothesis that the remainder term

in (5.4) is small is confirmed with simulation results in Appendix E, using the

Black and Scholes (1973) model. If the lower bound in (5.10) happens to be

tight, one can use it as a predictor variable to forecast the physical quantile

(also known as Value-at-Risk). Moreover, this predictor variable is not subject

to the historical sample bias critique of Goyal and Welch (2008). I now show

that the lower bound in Corollary 5.7 is indeed tight.

5.2 Testing Corollary 5.7 in the data

I first outline the procedure to calculate Q̃t,τ , LRBt(τ) and f̃t(Q̃t,τ ), which

are needed to compute the lower bound in Corollary 5.7. I use the same option

data and returns on the S&P500 index, which were used to estimate the quantile

bound in Section 4. However, this time we use the full set of daily observations,

instead of only using observations at the middle of the month. On every day

t, I use the procedure outlined in Appendix B.2 to estimate Q̃t,τ . Additionally,

since d
dτ Q̃t(τ) = 1/f̃t(Q̃t,τ ), I approximate the denominator term in (5.10) by

1

f̃t(Q̃t,τ )
≈ Q̃t(τ + h)− Q̃t(τ − h)

2h
,

where h is the bandwidth of the τ -grid. Finally, to calculate LRBt(τ), I use the

estimated quantile curve Q̃t,τ in combination with the formula for higher order

risk-neutral moments in Appendix A.4.

I use 30/60 day time horizons for testing, starting from January 2, 2004

until December/November 2019. This yields a total of 3361 and 3956 time

observations for the 30 and 60 day returns respectively.7 Since virtually all

macro-finance models assume that the market return is negatively correlated

with the SDF, one expects the market return to have a higher probability of

7The number of observations is different, since I discard all days where I cannot estimate
the risk-neutral curve, for example due to an insufficient number of option data. This happens
more often for 30 day returns.
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a crash under risk-neutral measure than under physical measure. This means

that Corollary 5.7 has non trivial content if LRBt(τ) ≥ 0 in the data. I confirm

that this is the case for all dates considered, using the same τ ’s from Table 3

below.

5.2.1 In-sample performance

To test whether the lower bound in Corollary 5.7 is tight, I use the following

estimator for the latent conditional quantile function

Q̂t,τ = Q̃t,τ +
LRBt(τ)

f̃t(Q̃t,τ )︸ ︷︷ ︸
risk adjustment

. (5.11)

This can be computed at the start of each time period t, using the option data

mentioned above. Subsequently, I estimate the coefficients [β0(τ), β1(τ)]> in

the model

Qt,τ (Rm,t+1) = β0(τ) + β1(τ)Q̂t,τ , (5.12)

using quantile regression (Koenker and Bassett, 1978). If (5.11) is a good pre-

dictor of the conditional quantile function, we expect

H0 : β0(τ) = 0, β1(τ) = 1. (5.13)

Table 3 summarizes the estimates of model (5.12) for several quantiles. The

results are quite striking, as the point estimates of [β0(τ), β1(τ)]> are close to

the [0, 1]> benchmark. Moreover, the joint restriction in (5.13) is not rejected for

all days and quantiles, thus lending support for a tight lower bound in Corollary

5.7.

The standard errors in Table 3 are obtained via the smooth extended tapered

block bootstrap (SETBB) proposed by Gregory et al. (2018). We have to modify

the typical standard error estimates in quantile regression, due to the use of

overlapping returns as dependent variable which creates serial correlation in

the error term. This overlapping data problem has been addressed before in

the literature (Hansen and Hodrick, 1980; Hodrick, 1992), but these methods

are tailored to OLS and unsuited for quantile regression. The SETBB renders
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correct standard errors if the data are weakly dependent, as well as an estimate

of the covariance matrix of [β̂0(τ), β̂1(τ)]>. Let Σ̂(τ) denote the estimated

covariance matrix and write θ̂(τ) := [β̂0(τ), β̂1(τ)]> − [0, 1]>, then we can test

the joint restriction in (5.13) using the Wald statistic

T
[
θ̂(τ)Σ̂(τ)−1θ̂(τ)

]
 χ2

2, (5.14)

where χ2
2 is the χ-squared distribution with 2 degrees of freedom. I use the

prediction horizon as the block length in the bootstrap procedure, which is the

only user required input for SETBB.8

Table 3: Quantile regression estimates of (5.12)

Maturity: 30 days 60 days

β̂0(τ) β̂1(τ) Wald test R1(τ)[%] R1
oos(τ)[%] β̂0(τ) β̂1(τ) Wald test R1(τ)[%] R1

oos(τ)[%]
τ = 0.01 0.06

(0.3132)
0.97

(0.3506)
0.97 21.08 17.26 −0.23

(0.3368)
1.36

(0.3927)
0.27 16.96 36.59

τ = 0.05 0.20
(0.2944)

0.80
(0.3130)

0.41 9.27 9.21 −0.02
(0.3881)

1.05
(0.4251)

0.98 8.06 22.04

τ = 0.1 0.17
(0.2661)

0.83
(0.2766)

0.46 5.67 6.14 0.13
(0.4056)

0.87
(0.4292)

0.82 5.04 13.96

τ = 0.2 0.21
(0.3808)

0.79
(0.3881)

0.54 1.7 3.78 0.07
(0.4481)

0.93
(0.4581)

0.95 1.57 5.94

Note: Standard errors are shown in parentheses and calculated using the SETBB method of Gregory et al. (2018) with block length equal to the

maturity length and 1,000 Monte Carlo bootstrap samples. Wald test gives the p-value of the Wald test on the joint restriction: β̂0(τ) = 0, β̂1(τ) = 1.
R1(τ) denotes the in-sample goodness-of fit criterion (5.16). R1

oos(τ) is the out-of-sample goodness-of fit (5.17), using a rolling window size of
10×maturity.

5.2.2 Out-of-sample performance

Since the in-sample results suggest β0(τ) = 0 and β1(τ) = 1, it is natural to

test how well this works out-of-sample by evaluating the predictive model

Qt,τ (Rm,t+1) = Q̂t,τ .

It is worth emphasizing that the left hand side is unknown at time t, whereas

the right hand side is known at time t. Moreover, this predictive model does

not require any estimation and parallels the discussion in Martin (2017), who

used the same idea to measure the conditional equity premium.

An initial concern about the out-of-sample predictor (5.11) is the possibility

of crossing, which means that the predicted quantiles Q̂t,τ are not monotone

with respect to τ . This problem frequently arises in dynamic quantile models

8To calculate Σ̂(τ) with SETBB, I use the QregBB function from the R package QregBB avail-
able on the author’s Github page: https://rdrr.io/github/gregorkb/QregBB/man/QregBB.

html.
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(Gouriéroux and Jasiak, 2008). It appears, however, not a concern for the

predictor in (5.11), as crossing does not occur for either prediction horizon,

using the τ ’s from Table 3.

To assess the out-of-sample performance further, we like to use a single eval-

uation metric that summarizes the gains over a simple benchmark. Campbell

and Thompson (2008) propose the following out-of-sample R2 which is popular

to evaluate models that predict the equity premium

R2
oos = 1−

∑
ν2t∑
e2t
. (5.15)

Here, νt is the forecast error using a regression model and et is the forecast error

using a historical (rolling) mean as a predictor, which serves as the benchmark.

However, we cannot use R2
oos to evaluate the quantile predictor in (5.11),

since this out-of-sample metric is appropriate for OLS regression only. De-

spite this, a natural substitute for quantile regression is available. Koenker

and Machado (1999) proposed a goodness-of fit criterion for quantile regression,

which resembles the traditional OLS R2. In our context, the criterion is given

by

R1(τ) = 1− minb0,b1
∑
ρτ (Rm,t+1 − b0 − b1Q̂t,τ )

minb0
∑
ρτ (Rm,t+1 − b0)

, (5.16)

where ρτ (x) = x(τ − 1 (x < 0)) is the loss function from quantile regression

(Koenker and Bassett, 1978) and Q̂t,τ is the predictor from (5.11). It is well

known that b0 in the denominator of (5.16) equals the in-sample τ -quantile.

The natural out-of-sample analogue of (5.15) for quantile regression is then

R1
oos(τ) := 1−

∑
ρτ (Rm,t+1 − Q̂t,τ )∑
ρτ (Rm,t+1 −Qt,τ )

, (5.17)

where Qt,τ is the historical rolling quantile of the market return until time t.

The out-of-sample R1
oos(τ) is also displayed in Table 3. The predictor variable

Q̂t,τ improves upon the historical rolling quantile out-of-sample in all cases.

This is particularly true in the tail of the distribution, which is expected since

option data are known to provide useful information about extreme downfalls

in the stock market (Bates, 2008; Bollerslev and Todorov, 2011).
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5.3 Time varying disaster risk and dark matter

The in- and out-of-sample results show that Q̂t,τ is a good proxy for the latent

conditional quantile function. The time fluctuation in Q̂t,τ for small τ can

therefore be interpreted as time varying disaster risk. The left panels of Figure

5 show the evolution of Q̂t,τ (Rm,t+1) over time for the 30 and 60 day horizon,

with τ = 0.05. The time fluctuation in both series is evident from the graph

and provides empirical evidence for the thesis that disaster risk is time-varying,

as in the models of Gabaix (2012) and Wachter (2013).

For the 30 and 60 day horizon, the lowest quantile forecasts are produced

over the 4th quarter of 2008, when the great recession reached its peak. Hence,

outlooks were particularly grim during this period and the minimum 30 day

0.05-quantile forecast dropped to 72%, suggesting that a loss of 28% or more

had an expected probability of 5%. To put things in perspective, it happened

only once since 1926 that the S&P500 index recorded a monthly loss of 28% or

more.9 Hence, based on historical estimates, a back of the envelope calculation

puts the probability of a loss of 28% or more at 1/1139, which is 57 times lower

than 5%.

Ross (2015) refers to the impact that changes in perceived disaster proba-

bilities can have on asset prices as dark matter : “It is unseen and not directly

observable but it exerts a force that can change over time and that can pro-

foundly influence markets”. We can illuminate this dark matter somewhat, since

our proxy for Qt,τ in Figure 5 can be interpreted as a measure of perceived

disaster risk. In particular, the calculations above show that this perceived

disaster risk differs markedly from historical estimates. Moreover, we observe

the most severe downward spikes in Figure 5 during a period associated with

large negative returns on the stock market. This dependence points to a kind

of leverage effect10; the negative association between current stock returns and

the (perceived) forward looking disaster probability. It would be interesting to

incorporate this leverage effect explicitly in a model that features time varying

disaster risk and analyze its impact on the equity premium (e.g. in the model

9I use historical monthly SP500 return from WRDS, which are available from January 1926
and renders a total of 1139 observations.

10In finance, the leverage effect typically refers to the negative dependence between returns
and changes in volatility (see, e.g. Ait-Sahalia et al. (2013)).
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of Wachter (2013)). I leave this for future research.

The right panels of Figure 5 give another interesting view on this dark mat-

ter, as they show the evolution of Qt,τ − Q̃t,τ over time. The largest spikes

occur once more at the height of the financial crisis and the difference between

the two can be as large as 8% (30 day horizon) or 15% (60 day horizon). This

suggests that the risk-neutral quantile decreases disproportionally more than

the physical quantile during crises.

It is well known that risk-neutral quantiles are less than historical quantiles

in the left tail of the distribution. As Ross (2015) remarks, this means that

either the market forecasts a higher probability of a loss than historical estimates

suggest, or the market requires a high risk premium for insurance against crash

risk. The former is a statement about the physical distribution, whereas the

latter concerns the risk-neutral distribution. Since market forecasts of a crash

are unobserved one cannot separate the two effects. However, our approach

allows us to separate the effects, because we have a good proxy for Qt,τ . Figure 5

suggests that the insurance effect is more dominant than the market expectation

effect during a crisis. Namely, during the great recession, market expectations of

the severity of a crash went down (left panels of Figure 5), but the risk-neutral

quantile decreased even more (right panels of Figure 5). In other words, risk

aversion changes more than the perceived disaster risk.

5.4 Lognormal returns and risk-neutral quantiles

The previous Section compared the out-of-sample performance of Q̂t,τ to the

(rolling) historical quantile benchmark. There is another natural benchmark to

consider, namely the risk-neutral quantile Q̃t,τ . Since Q̃t,τ is risk adjusted it may

not seem a good idea to use it as a predictor. This is why we introduced the risk

adjustment term LRBt(τ)/f̃t(Q̃t,τ ) in the first place. Somewhat surprisingly,

I now show that among the class of lognormal models, Q̃t,τ is the optimal

predictor of the physical quantile, due to rotation symmetry of the quantile

regression estimator.

To describe the environment, consider the following discretized version of the

Black-Scholes model, with a riskless asset that offers a certain return Rf = erfλ

and a risky asset with return Rt+1 = exp([µ− 1
2σ

2
t ]λ+ σt

√
λZt+1), where Zt+1
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Figure 5: The left panels show the real time quantile predictor Q̂t,τ from (5.11)
for τ = 0.05, using prediction horizons 30 and 60 days. The right panels show
the difference between Q̂t,τ − Q̃t,τ for τ = 0.05.

is standard normal, σt is the conditional (Ft-measurable) volatility of returns

and λ denotes the time difference in years between period t and t + 1. In this

setup, Mt+1 := exp(−[rf + ξ2t /2]λ− ξt
√
λZt+1), is a valid SDF with conditional

Sharpe ratio

ξt =
µ− rf
σt

.

The implied dynamics under risk-neutral measure are given by

Rt+1 = exp

(
(rf −

1

2
σ2
t )λ+ σt

√
λZt+1

)
. (5.18)

The next Theorem shows that quantile regression using the risk-neutral quantile

as a regressor renders an identical forecast when using the (unobserved) physical

quantile as a regressor.

Theorem 5.8. Consider the lognormal model described above with return obser-

vations {Rt+1}Tt=1 stacked in the T × 1 vector R. Let X̃t(τ) := [1 Q̃t,τ (Rt+1)]>

and denote the T × 2 matrix of stacked X̃t(τ) by X̃(τ). Define the regression

quantile β̂(τ ;R, X̃(τ)) as the solution to the quantile regression with the risk-
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neutral quantile as a covariate

β̂(τ ;R, X̃(τ)) ∈ arg min
β∈R2

T∑
t=1

ρτ

(
Rt+1 − X̃t(τ)>β

)
,

where ρτ (u) = (τ − 1 (u ≤ 0))u.

Similarly, let Xt(τ) := [1 Qt,τ (Rt+1)]>, X(τ) the T × 2 matrix of stacked Xt(τ)

and define β̂(τ ;R,X(τ)) as the solution to the quantile regression using the

physical quantile as a covariate

β̂(τ ;R,X(τ)) ∈ arg min
β∈R2

T∑
t=1

ρτ
(
Rt+1 −Xt(τ)>β

)
. (5.19)

Then

X̃T+1(τ)>β̂(τ ;R, X̃(τ)) = XT+1(τ)>β̂(τ ;R,X(τ)). (5.20)

Proof. See Appendix A.6. �

In sum, if returns are conditionally lognormal with time varying volatility

there is no need to risk adjust, since the quantile forecast based on the risk-

neutral quantile satisfies

QT+1(τ) = Q̃T+1(τ)β̂1(τ) + op(1) as T →∞.

Intuitively, the reason is that β̂1(τ) picks up the risk premium, so that Q̃t,τ β̂1(τ)

rotates back into physical quantile units. A similar situation occurs in Principal

Component Analysis, where it is enough to identify the principal component up

to some rotation matrix to make predictions (Bai, 2003).

The assumption underlying the result is that the only source of variation

in the distribution of returns is changes in conditional volatility. This is in

essence the same idea underlying the popular GARCH models. However, I have

abstracted away from specifying what actually drives the volatility process, as

opposed to GARCH type models. Hence, the result of Theorem 5.8 is valid for

any conditional volatility specification. The result comes at the cost of modeling

the returns as conditionally lognormal. There is ample evidence that returns

are not conditionally lognormal (Martin, 2017), but given the popularity of the
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lognormal assumption in financial models it is still an interesting benchmark to

consider.

Theorem 5.8 can actually be used as model free evidence against the con-

ditional lognormal assumption. To see this, we can use quantile regression to

estimate coefficients β̂0,t(τ)+ β̂1,t(τ), using Q̃t,τ as the only covariate to explain

the quantiles of Rm,t+1. The t-subscript in β·,t refers to the fact that the coeffi-

cients are estimated using information up to time t. I use an expanding window

to estimate β·,t based on quantile regression and then produce dynamic quantile

forecasts of the form

Q̂t,τ = β̂0,t(τ) + β̂1,t(τ)Q̃t,τ . (5.21)

If returns follow the lognormal dynamics in (5.18), Theorem 5.8 suggests that

Q̂t,τ ≈ Qt,τ .

This hypothesis can be formalized by testing for the joint restriction

H0 : [β0(τ), β1(τ)] = [0, 1]>, (5.22)

in the quantile regression

min
β0,β1

∑
t

ρτ

(
Rm,t+1 − β0 − β1Q̂t,τ

)
.

The same Wald restriction test is used as in (5.14), using SETBB to compute

the covariance matrix. The results are summarized in Table 4. The Wald test

on the joint restriction is rejected for any τ and prediction horizon. Moreover,

the explanatory power is low, as R1(τ) is at most a couple of percentage points.

This is strong evidence against the conditional lognormal assumption. The in-

consistencies that arise from the conditional lognormal assumption have been

documented before by Martin (2017, Result 4) using a different method, ex-

ploiting the difference between the VIX and SVIX index. The conclusion from

that paper applies more generally though, since it allows for time variation in

the mean and risk-free rate.
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Table 4: Quantile regression with risk-neutral covariate

Horizon 30 days 60 days

β̂0(τ) β̂1(τ) Wald test R1(τ)[%] β̂0(τ) β̂1(τ) Wald test R1(τ)[%]
τ = 0.01 0.62

(0.1912)
0.30

(0.2066)
0 5.43 0.75

(0.1603)
−0.01
(0.2287)

0 0.03

τ = 0.05 0.61
(0.1810)

0.35
(0.1894)

0 6.52 0.69
(0.2687)

0.24
(0.2828)

0 2.33

τ = 0.1 0.59
(0.1860)

0.38
(0.1927)

0 4.02 0.71
(0.2978)

0.24
(0.3103)

0 1.49

τ = 0.2 0.54
(0.2412)

0.45
(0.2461)

0 1.44 0.71
(0.3276)

0.27
(0.3344)

0 1.02

Observations 2832 3397

Note: Quantile regression of (5.21) using an expanding window based on an initial 500 observations. Wald test denotes
the p-value of the joint restriction [β0(τ), β1(τ)]> = [0, 1]>.

5.5 Asymmetric tail behavior

The disaster risk specification of Backus et al. (2011), or the time varying disas-

ter risk model of Wachter (2013) imply another testable implication that is not

shared with the LRR model. Namely, shocks to consumption are assumed to be

negative should a disaster occur. This implies the fat left tail in the risk-neutral

distribution shown in Figure 2, but the right tail of the risk-neutral and physical

distribution are nearly identical. In contrast, the LRR model implies that the

risk-neutral and physical distribution differ most around the median due to the

conditional lognormal assumption (see Figure 6).

These qualitatively different hypotheses can be tested by running the quan-

tile regression

Qt,τ = β0(τ) + β1(τ)Q̃t,τ , (5.23)

and testing the null hypothesis [β0(τ), β1(τ)]> = [0, 1]>. For example, the

disaster risk model implies rejection of H0 for small τ , but non-rejection for τ

close to one, since the risk-neutral quantile is almost identical to the physical

quantile in the right tail. The LRR model implies rejection around τ = 0.5 and

non-rejection for τ close to 0 or 1.

Table 5 contains the result. Consistent with the disaster risk model, we see

quite different behavior in the left and right tail. The regression estimates for

small τ are quite different from the [0, 1]> benchmark and the null hypothesis is

rejected or marginally not rejected at 5% significance. In contrast, the regression

estimates for τ closer to 1 indicate that Q̃t,τ is a good predictor of the latent

quantile functionQt,τ . The p-values for the joint restriction are rather high, even
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for the median. Following Engle and Manganelli (2004), Table 5 also reports

the expected value of the hit function, defined as

Hitt = 1

(
Rm,t+1 < Q̃t,τ

)
− τ. (5.24)

The expected value is 0 if Qt,τ = Q̃t,τ , that is, if investors are risk-neutral.

Again consistent with the disaster risk, the expected value of (5.24) is more

negative in the left than right tail. Somewhat surprisingly, the expected value

is positive for τ = 0.95. Such a finding cannot be warranted by a monotonically

decreasing pricing kernel, but is consistent with a so called U -shaped kernel, as

in Bakshi et al. (2010).11

Table 5 also connects to the recovery of beliefs (Ross, 2015; Borovička et al.,

2016). Namely, the right tail of the physical distribution can be accurately re-

covered from the right tail of the risk-neutral distribution, since there is virtually

no risk adjustment in that part of the distribution. This observation may only

have limited use in practice though, since it is the left tail of both distributions

that is typically of interest in economic applications, such as Value-at-Risk.

Table 5: Risk-neutral prediction

Horizon 30 days 60 days

β̂0(τ) β̂1(τ) Wald test Hit β̂0(τ) β̂1(τ) Wald test Hit
τ = 0.05 0.31

(0.2510)
0.69

(0.2680)
0.06 -0.03 0.22

(0.3293)
0.79

(0.3639)
0.46 -0.03

τ = 0.1 0.32
(0.2273)

0.67
(0.2372)

0.02 -0.04 0.38
(0.3074)

0.62
(0.3279)

0.06 -0.05

τ = 0.2 0.38
(0.3211)

0.62
(0.3278)

0.07 -0.04 0.49
(0.3266)

0.51
(0.3359)

0.01 -0.06

τ = 0.5 0.06
(0.2273)

0.94
(0.2258)

0.88 -0.07 0.13
(0.2982)

0.87
(0.2946)

0.69 -0.04

τ = 0.8 −0.04
(0.1842)

1.04
(0.1788)

0.92 -0.02 0.04
(0.2377)

0.96
(0.2270)

0.95 -0.02

τ = 0.9 0.04
(0.1547)

0.96
(0.1486)

0.88 0.01 0.08
(0.1951)

0.93
(0.1837)

0.72 0

τ = 0.95 0.00
(0.1518)

1.00
(0.1445)

1 0.01 0.04
(0.1682)

0.96
(0.1565)

0.88 0.02

Observations 3361 3956

Note: Quantile regression of (5.23). Standard errors are based on SETBB and Wald test denotes the p-value
of the joint restriction test [β0(τ), β1(τ)]> = [0, 1]>.

11It would require a formal test to argue that the expected value Hitt is statistically different
from 0. I leave this for future research.

39



6 Conclusion

This paper proposes a new bound (quantile bound) on the SDF volatility, which,

in contrast to the HJ bound, compares the physical and risk-neutral distribution

at every τ -quantile. I show that the quantile bound compares favorably to the

HJ bound in scenarios where returns are heavy tailed or models that incorporate

disaster risk. Among others, the quantile bound uses information of the data

beyond the mean and variance, which are central to the HJ bound. In the

data, I find suggestive evidence of the presence of disaster risk and show that

the quantile bound is stronger than the HJ bound. I argue that this points to

misspecification of asset pricing models, such as CAPM or LRR, since they fail

to incorporate disaster risk.

Subsequently, I analyze the conditional difference between physical and risk-

neutral quantiles. A von Mises expansion is used to analyze this difference,

which, under mild economic constraints, can be bounded by moments of the

risk-neutral distribution. Quantile regression estimates confirm that the lower

bound predicts well in the data and that the lower bound is tight. This finding

complements the vast literature in finance which is concerned with conditional

mean forecasts.

I develop the analogy with the conditional mean further and propose a mea-

sure of out-of-sample performance, which shows that the lower bound outper-

forms the historical and risk-neutral quantile in the left tail of the distribution.

This evidence leads me to interpret the lower bound as a good approximation of

the latent conditional quantile function. I find that the lower bound fluctuates

significantly over time, pointing towards time changing disaster risk. In addi-

tion, the lower bound drops markedly during periods associated with market

distress, indicating that perceived disaster risk is correlated with contempora-

neous disasters. I then compare the difference between the lower bound and

risk-neutral quantile and argue that, during the great recession, an increase in

the premium for insurance against disaster risk was more pronounced than the

increase in perceived disaster risk. This is a novel way to disentangle two effects

which are normally indistinguishable.

A final application considers the conditional implications of asset pricing

models. I establish that the risk-neutral quantile severely underestimates the
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physical quantile in the left tail, but not in the right tail. This is in line with

the class of disaster risk models, but contradicts the LRR model. Overall, the

results underscore the importance of considering features of the data beyond

the mean and variance and provide deeper insight in the influence of tail risk

on asset prices.

A Proofs and computations

A.1 Proof of Theorem 2.1 (quantile bound)

Proof. I suppress the dependence of the τ -quantile on R and write Q̃τ := Q̃τ (R).

Start from the definition of a risk-neutral quantile

τ = P̃
[
R ≤ Q̃τ

]
= Ẽ

[
1

(
R ≤ Q̃τ

)]
= RfEt

[
M1

(
R ≤ Q̃τ

)]
= Rf

[
COV

(
M,1

(
R ≤ Q̃τ

))
+ E [M ]E

[
1

(
R ≤ Q̃τ

)]]
= Rf COV

(
M,1

(
R ≤ Q̃τ

))
+ E

[
1

(
R ≤ Q̃τ

)]
︸ ︷︷ ︸

=P(R≤Q̃τ )

. (A.1)

Rearranging then yields

τ − P(R ≤ Q̃τ )

Rf
= COV

(
M,1

(
R ≤ Q̃τ

))
.

Using Cauchy-Schwarz renders the inequality∣∣∣τ − P(R ≤ Q̃τ )
∣∣∣

Rf
≤ σ(M)σ

(
1

(
R ≤ Q̃τ

))
∣∣∣τ − P(R ≤ Q̃τ )

∣∣∣
σ
(
1

(
R ≤ Q̃τ

))
Rf
≤ σ(M). (A.2)

Finally, since 1
(
R ≤ Q̃τ

)
is a Bernoulli random variable, it follows that

σ
(
1

(
R ≤ Q̃τ

))
=

√
P(Q̃τ (R))× (1− P(Q̃τ (R))). (A.3)

Theorem 2.1 now follows after substituting (A.3) into (A.2). �
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A.2 Quantile bound Pareto distribution

This Section proves the two propositions in the main text about the quantile

bound, when the distribution of returns is Pareto.

Proof of Proposition 2.2. (i) The distribution of returns is Pareto, since

P(R ≤ x) = P
(
U−β ≤ x/B

)
= P

(
U ≥ (x/B)

− 1
β

)
= 1−

( x
B

)− 1
β

, x ≥ B.

(ii) Routine calculations show that the mean and variance of R are given by

(provided β < 1/2)

E [R] =
B

1− β
σ2(R) =

B2

1− 2β
−
(

B

1− β

)2

. (A.4)

Likewise, the distribution of the SDF follows from

P (M ≤ x) = P (AUα ≤ x) =
( x
A

) 1
α

, 0 ≤ x ≤ A.

In this case, M is said to have a Pareto lower tail. The expectation is

given by

E [M ] =
A

α+ 1
.

The constraint E [MR] = 1 forces

AB

α− β + 1
= 1. (A.5)

In addition from E [M ] = 1
Rf

it follows

A

α+ 1
=

1

Rf
. (A.6)

The Sharpe ratio can now be computed from (A.4) and (A.6).

�

Proof of Proposition 2.3. (i) Since RfM is the Radon-Nikodym derivative that
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induces a change of measure from P to P̃, it follows that

P̃(R ≤ x) = RfE [M1 (R ≤ x)]

= Rf

∫ 1

0

Auα1
(
Bu−β ≤ x

)
du

= RfA

∫ 1

0

uα1

(
u ≥

( x
B

)− 1
β

)
=

RfA

α+ 1

(
1−

( x
B

)−α+1
β

)
= 1−

( x
B

)−α+1
β

.

The last line follows from (A.6).

(ii) It is easy to show that the quantiles of a PAR (C, ζ) distribution are

given by

Qτ = C × (1− τ)−1/ζ .

It therefore follows that the risk-neutral quantile function is equal to

Q̃τ = B(1− τ)−
β
α+1 .

As a result

P(R ≤ Q̃τ ) = P
(
R ≤ B(1− τ)−

β
α+1

)
= 1−

(
B

B(1− τ)
−β
α+1

) 1
β

= 1− (1− τ)
1

α+1 .

Hence, the quantile bound evaluates to∣∣∣τ − P(R ≤ Q̃τ )
∣∣∣

Rfσ
(
1

(
R ≤ Q̃τ

)) =
A

1 + α

∣∣∣τ − 1 + (1− τ)
1

α+1

∣∣∣√
(1− (1− τ)

1
α+1 )(1− τ)

1
α+1

. (A.7)

(iii). The HJ bound, as given by the Sharpe ratio in (2.9), goes to 0 as

β ↑ 1/2 since σ(R) ↑ ∞. �
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A.3 Lognormal return and SDF

This Section provides a closed form approximation for the relative efficiency

between the HJ and quantile bound under joint lognormality. Let

Rt+1 = e(µR−
σ2R
2 )λ+σR

√
λZr

Mt+1 = e−(rf+
σ2M
2 )λ+σM

√
λZM .

Both ZR and ZM are standard normal random variables with correlation ρ.

First, approximate Mt+1 by a first order Taylor expansion, which gives

M̂t+1 = e−(rf+
σ2M
2 )λ + ZMσM

√
λe−(rf+

σ2M
2 )λ.

Notice that M̂t+1 = Mt+1 + op(
√
λ). Consequently, by Stein’s Lemma

COV(Rt+1,Mt+1) ≈ COV(Rt+1, M̂t+1) = σM
√
λe−(rf+

σ2M
2 )λCOV(Rt+1, ZM )

= σM
√
λe−(rf+

σ2M
2 )λE

[
σR
√
λ exp

([
µR −

σ2
R

2

]
λ+ σR

√
λZR

)]
COV(ZR, ZM )

= σMσRλe
−(rf+

σ2M
2 )λeµRλ COV(ZR, ZM ).

Again by Stein’s Lemma

COV(1 (logRt+1 ≤ x) ,Mt+1) ≈ COV
(
1 (logRt+1 ≤ x) , M̂t+1

)
= σM

√
λe−(rf+

σ2M
2 )λ COV (1 (logRt+1 ≤ x) , ZM )

= σM
√
λe−(rf+

σ2M
2 )λ COV

(
1

(
(µR − σ2

R/2)λ+ σR
√
λZR ≤ x

)
, ZM

)
= σM

√
λe−(rf+

σ2M
2 )λf (x)COV (ZR, ZM ) .

Here, f is the density of a normal random variable with mean (µR − σ2
R/2)λ

and variance λσ2
R. As a result,

∣∣∣∣∣ E [Rt+1]− eλrf

τ − P(Rt+1 ≤ Q̃τ )

∣∣∣∣∣ ≈ σR
√
λeµRλ

f(x)
. (A.8)
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The same reasoning in Example 2.2 implies that the relative efficiency between

the HJ and quantile bound can be approximated by

HJ bound

Quantile bound
=

|E[Rt+1]−Rf,t+1|
σ(Rt+1)Rf,t+1

|τ−P(Rt+1≤Q̃τ )|√
P(Rt+1≤Q̃τ )(1−P(Rt+1≤Q̃τ ))Rf,t+1

(A.8)
≈

√
P(rt+1 ≤ x)(1− P(rt+1 ≤ x)

σ(Rt+1)
× σR

√
λeµRλ

f(x)
. (A.9)

Here, rt+1 = logRt+1 and x = log Q̃τ . Using the same reasoning as in Example

2.2, the expression on the RHS of (A.9) is minimized by choosing x = log Q̃∗τ

s.t. P(Rt+1 ≤ Q̃∗τ ) = 1/2. In that case the relative efficiency equals

√
2πσ2

R

√
λeµRλ

2
√

[exp(σ2
Rλ)− 1] exp(2µRλ)

=
1

2

√
2πσ2

Rλ

exp(σ2
Rλ)− 1

.

A.4 Formulas for market moments

This Section presents formulas for the (un)truncated risk-neutral moments of

excess market return. An alternative way to calculate these is provided in

Chabi-Yo and Loudis (2020, Appendix B). I use a slight abuse of notation and

write Q̃Rt+1(τ) := Q̃t,τ (Rt+1), to obviate that the integrals below are taken with

respect to τ .

Proposition A.1. Higher order risk-neutral moments can be computed directly

from the risk-neutral quantile function

Ẽt [(Rt+1 −Rf,t+1)n] =

∫ 1

0

[Q̃Rt+1−Rf,t+1
(τ)]ndτ =

∫ 1

0

[Q̃Rt+1(τ)−Rf,t+1]ndτ.

(A.10)

And the truncated higher order risk-neutral moments also follow from

Ẽt [(Rt+1 −Rf,t+1)n1 (Rt+1 ≤ k0)] =

∫ F̃t(k0)

0

[Q̃Rt+1(τ)−Rf,t+1]ndτ.

Where F̃t(x) := P̃t(Rt+1 ≤ x) is the risk-neutral CDF. Frequently I use k0 =

Q̃t,τ (Rt+1), in which case the truncated moment formula reduces to

Ẽt
[
(Rt+1 −Rf,t+1)n1

(
Rt+1 ≤ Q̃τ

)]
=

∫ τ

0

[Q̃Rt+1
(p)−Rf,t+1]ndp.
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Proof. For any random variable X and integer n s.t. the n-th moment exist

E [Xn] =

∫ 1

0

[QX(τ)]ndτ.

This follows straightforward from the substitution x = Q(τ). Now use that for

any constant a ∈ R, QX−a(τ) = QX(τ) − a to derive (A.10). The truncated

formula follows similarly. �

A.5 Proof of Theorem 5.5 and Corollary 5.6

Proof of Theorem 5.5 and Corollary 5.6. I split the proof in three parts.

Part 1: Showing that C̃OVt

[
1

(
Rm,t+1 ≤ Q̃t,τ

)
, (Rm,t+1 −Rf,t+1)k

]
≤ 0 for k

odd.

Temporarily write X = Rm,t+1. To prove the claim above I distinguish 3 cases.

Take two i.i.d. copies X1, X2 with the same law as X under risk-neutral measure

and consider

Λ :=
(
1

(
X1 ≤ Q̃t,τ

)
− 1

(
X2 ≤ Q̃t,τ

))
︸ ︷︷ ︸

=I

(
(X1 −Rf,t+1)k − (X2 −Rf,t+1)k

)︸ ︷︷ ︸
=II

.

(A.11)

Case 1: (I = −1). This implies X2 < X1. Since k is odd I get II > 0 so that

Λ < 0.

Case 2: (I = 0). This implies Λ = 0.

Case 3: (I = 1). This implies X1 ≤ X2 and hence II < 0. Therefore Λ < 0.

Combining all three cases I get that Λ ≤ 0 almost surely. Take conditional

(risk-neutral) expectations on both sides of (A.11), using the non-positivity of

Λ and the independence of X1, X2 proves that the covariance term is negative.

Since by assumption θk ≥ 0 when k is odd I obtain

Ẽt
[
1

(
Rm,t+1 ≤ Q̃t,τ

)
(Rm,t+1 −Rf,t+1)k

]
− τ Ẽt

[
(Rm,t+1 −Rf,t+1)k

]
≤ 0

=⇒ τM̃(k)
t+1 − M̃(k)

t+1[Q̃t,τ ] ≥ 0 =⇒ θk

(
τM̃(k)

t+1 − M̃(k)
t+1[Q̃t,τ ]

)
≥ 0.
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Part 2: Showing that C̃OVt

[
1

(
Rm,t+1 ≤ Q̃t,τ

)
, (Rm,t+1 −Rf,t+1)k

]
≥ 0 for k

even and τ small enough.

This requires more delicate reasoning. First note that the covariance term goes

to zero as τ → 0 as a consequence of the Cauchy-Schwarz inequality and the

continuity of probability measures. Hence, to show that for τ small enough

the covariance term is positive, it suffices that the covariance term, seen as a

function of τ , has positive slope for τ small enough. To show this, write the

covariance as

Ẽt
[
(1
(
Rm,t+1 ≤ Q̃t,τ

)
− τ)(Rm,t+1 −Rf,t+1)k

]
. (A.12)

Consider the associated function

Γ(τ) := Ẽt
[
(1
(
Rm,t+1 ≤ Q̃t,τ

)
− τ)(Rm,t+1 −Rf,t+1)k

]
=

∫ Q̃t,τ

−∞
(R−Rf,t+1)kf̃Rm,t+1(R)dR− τ

∫ ∞
−∞

(R−Rf,t+1)kf̃Rm,t+1(R)dR.

Here f̃Rm,t+1(·) is the (risk-neutral) PDF of the market return. From Leibniz’

rule

∂

∂τ
Γ(τ) = (Q̃t,τ −Rf,t+1)kf̃Rm,t+1

(Q̃t,τ )
∂Q̃t,τ
∂τ

− Ẽt
[
(Rm,t+1 −Rf,t+1)k

]
= (Q̃t,τ −Rf,t+1)k − Ẽt

[
(Rm,t+1 −Rf,t+1)k

]
,

(A.13)

since, by the rules for derivatives of inverses

∂Q̃t,τ
∂τ

=
1

f̃Rm,t+1
(Q̃t,τ )

.

Because I assume that supk ‖Rm,t+1‖k < ∞, it follows that (A.13) is positive

for all τ ∈ [0, τ∗], where τ∗ solves

Q̃t,τ∗ = Rf,t+1 − sup
k
‖Rm,t+1 −Rf,t+1‖k .

In conclusion, I have shown that the covariance (A.12) vanishes when τ → 0+

and the slope of (A.12) is positive for all τ ≤ τ∗. This means that (A.12) is
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positive for all τ ≤ τ∗. Thus for all such τ ∈ (0, τ∗]

τM̃(k)
t+1 − M̃(k)

t+1[Q̃t,τ ] ≤ 0.

Hence, since θk ≤ 0 for k even

θk

(
τM̃(k)

t+1 − M̃(k)
t+1[Q̃t,τ ]

)
≥ 0.

Part 3: Combining both cases

I have now established θk(τM̃(k)
t+1 − M̃(k)

t+1[Q̃t,τ ]) ≥ 0 for all k and τ ≤ τ∗.

Therefore

Qt,τ − Q̃t,τ ≈
1

f̃t(Q̃t,τ )

∑∞k=1 θk

(
τM̃(k)

t+1 − M̃(k)
t+1[Q̃t,τ ]

)
1 +

∑∞
k=1 θkM̃

(k)
t+1

 .

≥ 1

f̃t(Q̃t,τ )

∑3
k=1 θk

(
τM̃(k)

t+1 − M̃(k)
t+1[Q̃t,τ ]

)
1 +

∑3
k=1 θkM̃

(k)
t+1

 . (A.14)

If additionally Assumption 5.4 holds, then

θ1 =
1

Rf,t+1
, θ2 = − 1

R2
f,t+1

, and θ3 =
1

R3
f,t+1

.

Using this in (A.14) gives

Qt,τ − Q̃t,τ ≥
1

f̃t(Q̃t,τ )


∑3
k=1

(−1)k+1

Rkf,t+1

(
τM̃(k)

t+1 − M̃(k)
t+1[Q̃t,τ ]

)
1 +

∑3
k=1

(−1)k+1

Rkf,t+1

M̃(k)
t+1

 .

�

A.6 Proof of Theorem 5.8

Proof. By definition

τ = Pt(Rt+1 ≤ Qt,τ ) = Pt
(

exp

(
−1

2
σ2
t λ+ σt

√
λZt+1

)
≤ exp(−µλ)Qt,τ

)
.
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Similarly

τ = P̃t(Rt+1 ≤ Q̃t,τ ) = P̃t
(

exp

(
−1

2
σ2
t λ+ σt

√
λZt+1

)
≤ exp(−rfλ)Q̃t,τ

)
.

As a result

e(µ−rf )λQ̃t,τ = Qt,τ . (A.15)

Recall that the quantile regression estimator is equivariant to reparametrization

of design: for any 2× 2 nonsingular matrix A, we have

β̂(τ ;R,XA) = A−1β̂(τ ;R,X).

By Equation (A.15)

X(τ) = X̃(τ)×

1 0

0 e(µ−rf )λ


︸ ︷︷ ︸

:=A

.

Therefore

β̂(τ ;R,X(τ)) = β̂(τ ;R, X̃(τ)A) = A−1β̂(τ ;R, X̃(τ)).

Hence, the predicted quantile using the physical quantile regression (5.19) equals

[1 QT+1,τ (RT+2)] β̂(τ ;R,X(τ)) = [1 QT+1,τ (RT+2)]A−1 β̂(τ ;R, X̃(τ))

= [1 Q̃T+1,τ (RT+2)] β̂(τ ;R, X̃(τ)).

This is exactly (5.20). �

A.7 Computation of Gâteaux derivative (5.3)

In this section we prove (5.3), which states that

ϕ′
F̃t

(Ft − F̃t) =
τ − Ft(Q̃t,τ )

f̃t(Q̃t,τ )
.
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For ease of exposition, we drop the time subscripts. For λ ∈ [0, 1], define

F̃λ := (1− λ)F̃ + λF . The following (trivial) identity will prove helpful12

τ = F̃λF̃
−1
λ . (A.16)

To further simplify notation, write q(λ) := F̃−1λ . Then (A.16) becomes

τ = (1− λ)F̃ (q(λ)) + λF (q(λ)).

Applying the implicit function theorem, we obtain

q′(λ) = − −F̃ (q(λ)) + F (q(λ))

(1− λ)f̃(q(λ)) + λf(q(λ))
.

Plug in λ = 0 to get

q′(0) = −−F̃ (q(0)) + F (q(0))

f̃(q(0))
. (A.17)

Notice that

F̃λ
∣∣
λ=0

= F̃ =⇒ q(λ)
∣∣
λ=0

= q(0) = F̃−1. (A.18)

Substitute (A.18) into (A.17) to obtain

q′(0) = −−F̃ (F̃−1) + F (F̃−1)

f̃(F̃−1)
=
τ − F (F̃−1)

f̃(F̃−1)
. (A.19)

Notice that q′(0) is exactly equal to the Gâteaux derivative from the definition

in (5.2), since

∂

∂λ
ϕ
[
(1− λ)F̃ + λF

] ∣∣∣∣
λ=0

=
∂

∂λ
q(λ)

∣∣∣∣
λ=0

= q′(0).

12This “equality” may actually only be an inequality for some τ , but this is immaterial to
the argument.
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B Estimating the risk-neutral quantile function

B.1 Data description

To estimate the risk-neutral quantile curve for each point in time, I use daily

option data from OptionMetrics covering the period 01-01-1996 until 12-31-2019.

This consists of European Put and Call option data with time to expiration less

than 500 days on the S&P 500 index. The option contract further contains data

on the highest closing bid and lowest closing ask price and price of the forward

contract on the underlying security. In addition, I obtain data on the daily

risk-free rate from Kenneth French’ website.13 Finally, stock price data on the

closing price of the S&P 500 are obtained via WRDS.

Prior to estimating the martingale measure, I use an additional data cleaning

procedure for the option data. All observations are dropped for which the

highest closing bid price equals zero, as well as all option prices that violate

no-arbitrage bounds. This is similar to the cleaning procedure of Martin (2017)

and leaves a total of 16,624,104 option-day observations.

B.2 Estimating the risk-neutral quantile function

There is a substantial literature on how to extract the martingale measure from

option prices. I follow Figlewski (2008), with some minor modifications empha-

sized below to estimate the conditional and unconditional risk-neutral quantile

curve for tenors 30, 60, 90, 180 and 360 days.

(i) Construct option prices: Use the midpoint of the highest closing bid and

lowest closing ask price to obtain the option price.

(ii) Convert option prices to Black-Scholes implied volatilities (IVs): Use out-

of-the money put and call option prices to construct IVs, since these tend

to be more liquid than in-the-money options. I regard a put option out-

of-the-money if the strike price is less than the forward price on the un-

derlying security. This is consistent with Martin (2017). Forward prices

are provided by OptionMetrics.

13See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#

Research
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(iii) Interpolate the IVs using a smoothing cubic spline: I use a smoothing cu-

bic spline (Wahba, 1990) with 4 knots to interpolate the IVs at a dense

set of equidistant strike prices

K ∈ {Kmin,Kmin + ∆,Kmin + 2∆, . . . ,Kmax} ∆ =
Kmax −Kmin

500
,

where Kmin,Kmax are the respective minimum and maximum strike prices

observed in the sample. This differs from Figlewski (2008), who recom-

mends a 4th degree smoothing spline and a single knot. The 4th degree

spline in Figlewski (2008) comes from the necessity to obtain a smooth

density function, which corresponds to the second derivative of the put-

call-option price curve. Since I only need to estimate a CDF, a 3rd degree

polynomial suffices and prevents overfitting. The use of 4 knots is arbi-

trary, as is the single knot in Figlewski (2008), but renders acceptable

estimates of the martingale measure in most cases.

(iv) Smooth the IV curve for at-the-money options: There tends to be a dis-

continuity in the smoothed IV curve for at-the-money options, since puts

and calls at the same strike trade on slightly different IVs. Let Ft+1 be the

price of the forward contract, I consider all strike prices K ∈ [Klow,Khigh],

where Klow is the lowest traded strike such that Ft+1(1−0.02) ≤ Klow and

Khigh the highest traded strike which satisfies Khigh ≤ (1+0.02)Ft+1. Fol-

lowing Figlewski (2008), I use a weighted average of IVput(K), IVcall(K)

to estimate

IV (K) = αIVput + (1− α)IVcall K ∈ [Klow,Khigh],

where

α =
Khigh −K
Khigh −Xlow

.

(v) Obtain the central part of the risk-neutral CDF: The smoothed Black-Scholes

IVs are converted back to option prices. By the (nonparametric) result of

Breeden and Litzenberger (1978)

1 +Rf,t+1
∂

∂K
Callt+1(K) = P̃t(St+1 ≤ K) = P̃t

(
Rm,t+1 ≤

K

St

)
. (B.1)
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I convert put prices to call option prices using put-call parity. LetKn−1,Kn,Kn+1

be consecutive strike prices on the strike grid, then the partial derivative

in (B.1) is approximated by

1 +Rf,t+1

[
Cn+1 − Cn−1
Kn+1 −Kn−1

]
≈ P̃t

(
Rm,t+1 ≤

K

St

)
.

(vi) Obtain the risk-neutral CDF in the tails: It remains to estimate the risk-

neutral CDF for K ≤ K2 and K ≥ K499, which concerns the left and right

tail of the distribution. I follow Figlewski (2008) and fit a generalized

extreme value (GEV) distribution in the left and right tail. The GEV

distribution function is given by (see De Haan and Ferreira (2007, p. 6)):

FGEV(x) = exp(−(1 + γx)−1/γ).

A location parameter µ and scale parameter σ can be introduced via the

transformation

x =
St+1 − µ

σ
.

The function FGEV(St+1;µ, σ, γ) effectively contains three parameters which

will be calibrated to the implied risk-neutral CDF. For the left tail, I use

τ = 0.02, τ2 = 0.03 and τ3 = 0.05 and find the associated strikes from the

empirical risk-neutral CDF, denoted by K(τ1),K(τ2),K(τ3) respectively.

Thereafter, I solve the following non-linear system of equations to match

the quantiles of FGEV with the empirical quantiles:

FGEV(K(τ1)) = τ1

FGEV(K(τ2)) = τ2

FGEV(K(τ3)) = τ3.

I follow the same procedure to extend the risk-neutral CDF to the right tail,

by matching the GEV function at the empirical quantile τ1 = 0.95, τ2 =

0.97, τ3 = 0.98. I discard tenors for which the 0.02 or 0.98-quantiles are

not available, to prevent extrapolation error in the tail. I depart from

Figlewski (2008) by matching only quantiles of the CDF, as opposed to
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matching the shape of the PDF.

(vii) Interpolate the risk-neutral CDFs for specific tenor: Typically, options with

a specfic tenor we want to estimate (e.g. 30 days) are not traded. To over-

come this issue, I linearly interpolate the conditional risk-neutral curves

with tenors closest to the tenor of interest. For example, suppose on a

given day only options with tenor 20 and 45 days are traded and we are

interested to obtain the 30-day risk-neutral CDF. In that case, the 20 and

45-day risk-neutrals CDFs are linearly interpolated so as to obtain the 30-

day risk-neutral CDF. This is similar to Martin (2017, Appendix A). The

conditional risk-neutral quantile curve is constructed as the left continuous

inverse of the estimated risk-neutral CDF

Q̃t,τ = inf
{
x ∈ R : τ ≤ P̃t(Rm,t+1 ≤ x)

}
.

(viii) Estimate the unconditional risk-neutral CDF: Once the conditional risk-

neutral measure has been estimated using the previous steps, I estimate

the unconditional CDF via

P̃T (Rm ≤ x) :=
1

T

T∑
t=1

P̃t (Rm,t+1 ≤ x) .

(ix) Estimate the unconditional risk-neutral quantile function: Given the un-

conditional risk-neutral CDF estimate in Step (viii), I estimate the uncon-

ditional risk-neutral quantile function with

Q̃T (τ) := inf
{
x ∈ R : τ ≤ P̃T (x)

}
. (B.2)

C Detailed representative agent models

In this Section I show two results about representative agent models which are

used in the paper. The first Section describes how to obtain the risk-neutral and

physical CDF in the disaster risk model. Section C.2 shows that the subjective

crash risk probability derived by Martin (2017) under log preferences is identical

to the crash probability I obtain building on the work of Chabi-Yo and Loudis
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(2020).

C.1 Disaster risk probabilities

This section contains the details about the disaster risk figures shown in Figure

2. Let F (·) denote the CDF of ∆c. Backus et al. (2011, p. 1976) show that

F (−b) =

∞∑
j=0

Φ

(
−b− µ− jθ√
σ2 + jν2

)
· e
−κκj

j!
, (C.1)

where Φ(·) is the CDf of a standard normal variable. From here it is straight-

forward to compute the physical CDF of return on equity, R = exp(λ∆c), by

a change of variables and truncating the sum in (C.1). In practice I use 31

terms, which is very accurate. Secondly, to obtain the risk-neutral CDF, I use

the result of Backus et al. (2011, p. 1987), that the risk-neutral distribution of

∆c is the same as in (C.1), with new parameters

κ̃ = κe−γθ+(γν)2/2, θ̃ = θ − γν2.

It follows that κ̃ > κ if θ < 0 (more jumps) and θ̃ < θ (outcomes of jump is

more negative on average). This explains the fat left tail of the risk-neutral

distribution in Figure 2. The quantile bound, HJ bound and SDF volatility can

now easily be calculated from the expression of the physical and risk-neutral

distribution.

C.2 Crash probability with known utility

Chabi-Yo and Loudis (2020) show that their bounds on the equity premium

equal the bounds of Martin (2017) when the representative agent has log pref-

erences. Here, I derive the analogous result for the subjective crash probability

of a log investor reported by Martin (2017, Result 2). In our notation, Martin

(2017) shows that

Pt (Rm,t+1 < α) = α

[
Put′t(αSt)−

Putt(αSt)

αSt

]
, (C.2)
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where Put′t is the derivative of the put option price curve seen as a function of

the strike. Under log preferences and using (5.5), it follows that

Pt(Rm,t+1 < Q̃t,τ ) = τ +
1

Rf,t+1
C̃OVt

[
1

(
Rm,t+1 ≤ Q̃t,τ

)
, Rm,t+1

]
= τ +

1

Rf,t+1

(
Ẽt
[
1

(
Rm,t+1 ≤ Q̃t,τ

)
Rm,t+1

]
− Ẽt(Rm,t+1)Ẽt

(
1

(
Rm,t+1 ≤ Q̃t,τ

)))
=

1

Rf,t+1
Ẽt
[
1

(
Rm,t+1 ≤ Q̃t,τ

)
Rm,t+1

]
. (C.3)

The result now follows upon substituting Q̃τ = α, since Martin (2017) shows

that (C.3) equals the right hand side of (C.2).

D Other SDF bounds

The principal method to use quantiles to derive bounds on the volatility of

the SDF can be applied to other well known bounds in the literature. In this

Section I revisit some of these SDF bounds and show how the quantile relation

can be used to obtain results akin to the quantile version of the HJ bound

in Theorem 2.1. For all the results to follow it is well known under which

conditions the bounds are tight. For example, the log bound in Section D.1

is known to bind for the growth-optimal portfolio. Under some conditions the

growth-optimal portfolio is equal to the market portfolio. Using the quantile

relation to bound the log of SDF could therefore refute the presumption that

the market portfolio is growth optimal, if the quantile bound is significantly

stronger. For convenience, recall the relation derived in the proof of Theorem

2.1, which is used repeatedly in this Section to analyze other SDF bounds

τ = Rf,t+1Et
[
Mt+11

(
Rt+1 ≤ Q̃t,τ

)]
. (D.1)
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D.1 Bound of Bansal and Lehmann (1997)

Here I consider a bound on the logarithm of the SDF. By an application of

Jensen’s inequality, we get

0 = log(1) = logEt [Mt+1Rt+1] ≥ Et [logMt+1] + Et [logRt+1]

=⇒ −Et [logMt+1] ≥ Et [logRt+1] .

This bound, together with its asset pricing implications, is analyzed in detail

by Bansal and Lehmann (1997). It is known to bind for the market portfolio in

a representative agent model with log utility. Applying a log transformation to

(D.1), we obtain for any τ ∈ (0, 1)

log(τ) = log(Rf,t+1) + log
(
Et
[
Mt+11

(
Rt+1 ≤ Q̃t,τ

)])
.

Use Jensen’s inequality in a similar vein as above and rearranging gives

−Et [log (Mt+1)] ≥ log(Rf,t+1) + Et
[
log
(
1

(
Rt+1 ≤ Q̃t,τ

))]
− log(τ).

Taking expectations on both sides also renders an unconditional version.

D.2 Bound of Snow (1991)

Snow (1991) derives a continuum of bounds of higher order moments on the

SDF. In somewhat simplified form, the idea is to use Hölder’s inequality to the

defining SDF equation

1 = Et [Mt+1Rt+1] ≤ Et
[
Mp
t+1

] 1
p Et

[
Rqt+1

] 1
q ,

for Hölder exponents 1
p + 1

q = 1 and p > 1. Rearranging gives the restriction on

the p-th norm of the SDF

Et
[
Mp
t+1

] 1
p ≥ Et

[
Rqt+1

]− 1
q .
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The quantile relation (D.1) can similarly be exploited by applying Hölder’s

inequality on the right hand side. This gives

Et
[
Mp
t+1

] 1
p ≥

(
τ

Rf,t+1

)
Et
[
1

(
Rt+1 ≤ Q̃t,τ

)]− 1
q

.

D.3 Bound of Liu (2020)

Liu (2020) develops a continuum of bounds which are based on different mo-

ments of the SDF. In particular

Et
[
Ms
t+1

]≤ Et
[
R
− s

1−s
t+1

]1−s
, if s ∈ (0, 1).

≥ Et
[
R
− s

1−s
t+1

]1−s
, if s ∈ (−∞, 0).

(D.2)

The proof, as in Liu (2020), follows from an application of the reverse Hölder

inequality.14 Equality occurs for the return which satisfies

logMt+1 = − 1

1− s
logRt+1 + Constant.

The quantile relation can only be used to obtain the upper bound part in (D.2),

since the reverse Hölder inequality requires almost sure positivity of 1(Rt+1 ≤

Q̃t,τ ) to prove the lower bound. For p ∈ (1,∞), apply the reverse Hölder

inequality to the relation (D.1) to obtain

τ = Rf,t+1Et
[
Mt+11

(
Rt+1 ≤ Q̃τ

)]
≥ Rf,t+1E

[
M

−1
p−1

t+1

]1−p
Et
[
1

(
Rt+1 ≤ Q̃t,τ

) 1
p

]p
Rearranging and using s := − 1

p−1 ∈ (−∞, 0) yields

Et
[
Ms
t+1

]
≥
(

τ

Rf,t+1

)s
Et
[
1

(
Rt+1 ≤ Q̃t,τ

)]1−s
.

14The reverse Hölder inequality states that for any p ∈ (1,∞) and measure space (S,Σ, µ)
that satisfies µ(S) > 0. Then for all measurable real- or complex-valued functions f and g on
S such that g(s) 6= 0 for µ-almost all s ∈ S, ‖fg‖1 ≥ ‖f‖ 1

p
‖g‖ −1

p−1
.
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E VonMises approximation: evidence from Black-

Scholes

This section illustrates the accuracy of the quantile approximation in (5.10)

in a discretized version of the Black-Scholes model with changing parameters.

Specifically, I assume the following model

Rt+1 = exp

(
(µt −

1

2
σ2
t )λ+ σtλZt+1

)
(E.1)

Zt+1 ∼ N(0, 1)

σt ∼ UNIF [0.05, 0.35]

µt ∼ UNIF [−0.02, 0.2] .

The returns under risk-neutral dynamics are given by

Rt+1 = exp

(
(rt −

1

2
σ2
t )λ+ σtλZt+1

)
(E.2)

rt ∼ UNIF [0, 0.03] . (E.3)

Finally, assume that all parameters are iid over time and that options are priced

according to the Black-Scholes formula, conditional on time t. In this setup, it

is fruitless to use historical data to predict future quantiles, since parameters

change unpredictably over time. We use λ = 1/12 to mimic the monthly ap-

plication in this paper. It is assumed that the risk-neutral quantile function is

known at the start of period t, as it is in the real world, using the result of

Breeden and Litzenberger (1978). I use the risk-neutral quantile function to

calculate LRBt(τ) at time t. Then, following the approximation in (5.10), the

physical quantile function is estimated by

Q̂t,τ = Q̃t,τ +
LRBt(τ)

f̃t(Q̃t,τ )
. (E.4)

We take 3,000 return observations, which are generated according to (E.1). This

exercise is repeated 1,000 times. To assess the accuracy of the approximation in

(E.4), I use several metrics. For every sample, I estimate a quantile regression
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Table 6: Simulation results

Eβ̂0(τ) Eβ̂1(τ) Q > Q̂ ρ(Q, Q̂) H0 : β̂0(τ) = 0 H0 : β̂1(τ) = 1 H0 : [β̂0(τ), β̂1(τ)] = [0, 1]
τ = 0.01 0.01 0.99 0.85 1 0.94 0.96 0.8
τ = 0.05 -0.03 1.04 0.69 0.99 0.9 0.89 0.66
τ = 0.1 -0.06 1.07 0.64 0.99 0.78 0.76 0.47

Note: Eβ̂0(τ) denotes the average quantile regression estimate of β̂0(τ) and likewise Eβ̂0(τ) shows it for β̂1(τ). Q > Q̂ shows

the fraction of times the true physical quantile is larger than our predicted quantile. Columns H0 : β̂0(τ) = 0 and H0 : β̂1(τ) = 1
report the fraction of times the individual null hypotheses β0(τ) = 0, β1(τ) = 1 are not rejected. The last column reports the
fraction of times the joint null hypothesis is not rejected.

of the form

Qτ (Rt+1) = β0(τ) + β1(τ)Q̂t,τ ,

where Q̂t,τ comes from (E.4). The first two columns in Table 6 report the

average values of the quantile regression estimates across the 1,000 simulations.

The means are rather close to 0 and 1 respectively for all quantiles. If (5.4) is

a good approximation, one expects Qt,τ > Q̂t,τ , since LRBt(τ) ≤ τ − Pt(Q̃t,τ ).

The third column in Table 6 shows this happens for the majority of samples.

The fourth column shows the correlation between Qt,τ and Q̂t,τ , which is very

close to one, and corroborates the view that the approximation is quite accurate.

Columns four and five document the percentage of non rejection of H0, which

is indeed quite high. The last column considers non rejection of the joint null

hypothesis, which is also high except for the τ = 0.1 quantile. Overall, Table

6 suggests that (E.4) is a highly accurate predictor of the physical quantile

function.

Example E.1. Let us illustrate the von Mises approximation (5.4) in the Black-

Scholes model with fixed parameters: λ = 1 (one year), µ = 0.08, r = 0.02, σ =

0.2.15 We can explicitly calculate F−1, F̃−1 and f̃ owing to the lognormal

assumption. Figure 6 shows the risk-neutral quantile function (in green), von

Mises approximation (5.4) (in blue) and the true physical quantile function (in

red). Observe that the approximation (5.4) is very accurate in this case.

E.1 Bias in quantile regression

In the empirical application, we have to estimate Q̃t,τ , f̃(·) and LRBt(τ). There-

fore, the estimated coefficients in the quantile regression are biased, due to mea-

15For illustrative purposes, I use λ = 1, instead of λ = 1/12, otherwise the physical quantile
function and von Mises approximation are indistinguishable.
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Figure 6: Illustration of quantile approximation (E.4) in the Black-Scholes
model.

surement error in the covariate. I present simulation evidence which shows that

the bias is small in finite samples.

The setup is as follows. We simulate returns according to model (E.1) and

assume that options are priced with Black and Scholes (1973) at the start of

period t. We want to calculate the von Mises approximation for a maturity

of 90 days. As in the empirical application, I assume that options with an

exact 90 day maturity are not available, but instead we observe options with

maturity 85 and 97 days. I generate a total of 1,000 options every time period

with maturities randomly sampled from 85 and 97 days.16 These numbers are

roughly consistent with the latter part of our empirical sample. The procedure

is repeated for a total of 1,000 time periods. For the entire sample, I compare

16So on average there will 500 options with maturity 85 days and 500 with maturity 97
days.
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the estimated and analytical von Mises term, which respectively are given by

VMe
t,τ :=

̂̃
Qt,τ +

̂LRBt(τ)˜̂ft(Q̃t,τ )

VMa
t,τ := Q̃t,τ +

LRBt(τ)

f̃t(Q̃t,τ )
.

The hats in VMe signify that the risk-neutral quantile, pdf and lower bound are

estimated from the available options at time t, using the procedure in Appendix

B.2. The terms in VMa are obtained from the known analytical expression

of the risk-neutral distribution (recall (E.2)). I then use quantile regression to

estimate the models

Q(Rt+1) = β̂0(τ) + β̂1,e(τ)VMe
t,τ

Q(Rt+1) = β̂0(τ) + β̂1,a(τ)VMa
t,τ .

I use the ratio β̂1,e/β̂1,a to measure the relative bias in the sample. This is

repeated 500 times to get a distribution of the relative bias. Figure 7 shows

boxplots of the bias for several quantiles. We see that the relative bias is very

small and centered around 1. Hence, the error in measurement problem resulting

from estimating the von Mises term is limited.
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Figure 7: Bias in quantile regression resulting from measurement error.
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