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Abstract

We develop a new equilibrium model in which households’ labor supply choices form the link
between sorting on the marriage market and sorting on the labor market. We first show that in
theory, the nature of home production—whether partners’ hours are complements or substitutes—
shapes equilibrium labor supply as well as marriage and labor market sorting. We then estimate
our model on German data to empirically assess the nature of home production, and find that
spouses’ home hours are complements. We investigate to what extent complementarity in home hours
drives sorting and inequality. We find that home production complementarity strengthens positive
marriage sorting and reduces the gender gap in hours and labor sorting. This puts significant
downward pressure on the gender wage gap and within-household income inequality, but it fuels
between-household inequality. Our estimated model sheds new light on the sources of inequality in
today’s Germany, and—by identifying important shifts in home production technology toward more
complementarity—on the evolution of inequality over time.
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1 Introduction
Positive assortative matching is a defining feature of both the labor market and the marriage market and

has important implications for inequality. On the marriage market, the matching of partners with similar

education impacts both within- and between-household income inequality. Moreover, positive sorting

in the labor market between workers and firms or jobs reinforces wage inequality across skills. But even

though inequality in economic outcomes results from agents interacting in both the marriage and the

labor market, how the interplay of the two markets shapes inequality has not been studied before.

This paper shows that sorting in the marriage market and in the labor market are linked by house-

holds’ time allocation choices—how time is divided between market work and home production—and

examines how these interconnected markets affect inequality. We build a novel equilibrium model with

rich heterogeneity and sorting on both markets and show that in theory, the nature of home production

technology shapes equilibrium. If spouses’ home hours are complementary, a ‘progressive’ equilibrium

emerges in which spouses share household tasks and supply similar market hours, and there is positive

sorting on both marriage and labor markets. We then estimate our model to investigate the nature of

home production in the data. We find that partners’ home production time is indeed complementary

in today’s Germany, and this complementarity has become stronger over time. Analyzing inequality

shifts, we find that this technological change in home production is a major driver of reduced gender

disparities between 1990 and 2016. Importantly, increases in positive assortative matching in both the

marriage and labor markets further mitigated gender disparities in Germany over the last decades.

Three sets of facts from the German Socioeconomic Panel (henceforth, GSOEP) show a salient

relationship between the marriage and the labor market and motivate our analysis. First, as is well

documented in the literature, there is positive assortative matching both on spouses’ education in the

marriage market and between workers’ education and jobs’ skill requirements in the labor market.

Importantly, there is a gender gap in labor market sorting whereby, conditional on education, men work

in more demanding jobs than women. Second, men and women who are more strongly sorted in the

marriage market (i.e., those whose education is more similar to their partner’s education) are also more

strongly sorted in the labor market (i.e., they tend to have the ‘right’ education level for the jobs they

perform). Third, households’ labor supply choices form an important link between the two markets:

Spouses with more similar education tend to split their time similarly between market and house work,

and conditioning on hours worked, the gender gap in labor market sorting is significantly smaller.

We capture these observed features in a novel equilibrium model in which households’ endogenous

labor supply choices form the link between the marriage and the labor market. The model is static, and

individuals who differ in skills face three decisions. First, in the marriage market, men and women choose

whether and whom to marry. Second, each household formed in the marriage stage collectively decides on

its members’ market and home production hours (in which the home hours produce the household’s pub-

lic good), as well as their private consumption. Last, in the labor market, individuals match with firms

of different productivity (where we use firms interchangeably with ‘jobs’), which determines their wages.
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The crucial feature of our model is that in the labor market, firms value both workers’ skills and hours

worked, since hours worked increase individuals’ productivity.1 Matching between workers and firms

is then based on workers’ effective skills—an increasing function of both skills and hours—and firms’

productivity. Since the household’s time allocation depends on both partners’ skills and impacts the

jobs they match with on the labor market, marriage market sorting affects labor market sorting. At the

same time, when making their marital and household labor supply choices, individuals internalize that

an increase in labor hours improves job quality and wages, thereby affecting the value from marriage.

Therefore, labor market sorting also affects marriage market sorting. This interrelation between the two

markets and sorting margins is the unique feature of our model but also makes the problem complex.

We focus on a tractable transferable utility (TU) representation of our model and derive two bench-

mark equilibria that depend on the model’s primitives. Both feature positive assortative matching

between workers and jobs in the labor market driven by productive complementarities. The two equilib-

ria, however, differ in household and marriage outcomes depending on properties of the home production

function. On the one hand, if home production exhibits complementarity in partners’ time inputs, a

monotone equilibrium arises, characterized by positive sorting in the marriage market and labor hours

that are increasing in both own and partner’s skills. This equilibrium reflects a ‘progressive’ economy

with a high frequency of two-earner households and in which spouses are similar in terms of skills and

their split between work and home production. The complementarity in home hours is therefore a force

toward positive marriage sorting as well as balanced labor supply, labor market sorting, and pay across

gender. This leads to a narrow gender wage gap and low within-household income inequality, but high

inequality between households. On the other hand, if partners’ time inputs are substitutable in home

production, a non-monotone equilibrium arises, featuring negative assortative matching in the marriage

market and labor hours that are increasing in own but decreasing in partner’s skill. This equilibrium

reflects a ‘traditional’ economy with a high degree of household specialization and disparity in part-

ners’ skills—features that widen the gender wage gap and within-household income inequality, but put

downward pressure on between-household inequality.

The main insight from our model is that marriage and labor market sorting are linked in an intuitive

way by households’ labor supply choices. The nature of this link depends on whether spouses’ hours in

home production are complementary or substitutable, a feature that needs to be investigated empirically.

We then study the nature of the home production technology and its role in inequality in the data—

both in the cross-section and over time. To do so, we minimally augment our baseline model to capture

additional sources of observed heterogeneity while preserving its parsimony and core mechanism. First,

we introduce three shocks: marriage taste shocks to allow for mismatch in the marriage market, labor

supply shocks to capture time use heterogeneity within each couple type, and a random component to

workers’ skills to account for mismatch in the labor market. Second, we parameterize our model allowing
1We base this assumption on our evidence of a positive impact of hours worked in the labor market on hourly wages in

the GSOEP, in Figure O3 (Online Appendix) and Table 6, column (3); and also on previous evidence that more hours
worked lead to higher productivity—for instance due to reduced coordination costs among co-workers (e.g., Goldin, 2014).
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for gender differences in both home and labor market productivity (the latter can also be interpreted

as discrimination) that will be disciplined by the data. We show that this model is identified.

We first estimate our model on data from modern Germany—our benchmark estimation, which

focuses on West Germany from 2010 to 2016—and find that spouses’ home production hours are com-

plementary. Our model matches key targeted features of the marriage market equilibrium (such as the

degree of marital sorting and the high correlation of home hours within couples) and the labor market

equilibrium (such as moments of the wage distributions). To further validate the model, we show that

it also reproduces critical features of the equilibrium that were not targeted in estimation: the three

stylized facts outlined above, as well as our measures of household and gender wage inequality.

In order to showcase our model’s mechanism, we conduct comparative statics of the gender wage gap

and within/between household wage inequality with respect to three parameters that impact inequality:

(i) the complementarity of partners’ home production time, (ii) women’s relative productivity in home

production, and (iii) women’s relative productivity in the labor market. Our insights are the following:

First, eliminating gender asymmetries in productivity (whether at home or at work) naturally reduces

the gender wage gap. But, interestingly, an increase in the complementarity of partners’ home produc-

tion hours has qualitatively similar effects. Second, a decline in the gender wage gap goes hand in hand

with a decline of gender gaps in labor hours and labor market sorting, and with an increase in marriage

market sorting. Third, the gender wage gap comoves with within-household inequality but moves in the

opposite direction from between-household inequality.

Having demonstrated the model mechanism, we then focus on Germany over time and investigate

how our model rationalizes the large decline in gender and within-household income inequality and the

increase in between-household inequality between 1990 and 2016. To this end, we re-estimate our model

on West German data from the 1990s and then compare it to our baseline estimation. Our estimates

reveal significant changes in home production over time, with today’s Germany being characterized by

stronger complementarity in spouses’ home hours and increased relative productivity of men, indicating

a switch toward a more ‘progressive’ economy (the monotone equilibrium of our model). These changes

in home production technology account for around 70% of the observed decline in the gender wage gap

and for the entire drop in within-household inequality. In contrast, changes in labor market technology—

which we interpret as skill-biased technical change—had very different effects: They fueled gender and

household inequality across the board, preventing gender gaps from falling even further.

Finally, we find that changes in both marriage market sorting and labor market sorting—which

increased by 10% and 8%, respectively—significantly affected these inequality shifts. If sorting patterns

had stayed constant at their 1990 levels, gender inequalities would be wider today and between-household

inequality narrower. Intuitively, stronger marriage market sorting over time generated more gender-

balanced labor market outcomes—in hours, sorting, and pay. In turn, the increase in labor sorting over

the past decades also significantly narrowed gender disparities, since it was predominantly driven by

women’s improved labor sorting; this helped them catch up with men’s pay.
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2 The Literature

This paper contributes to four strands of the literature, as follows.

Gender Gaps in Labor Supply and Pay. A growing literature studies the link between the

gender gap in labor supply and the gender gap in pay. The standard channel works through earn-

ings, whereby family and fertility choices have a permanent effect on the gender earnings gap (Adda,

Dustmann, and Stevens, 2017; Dias, Joyce, and Parodi, 2018; Angelov, Johansson, and Lindahl, 2016;

Kleven, Landais, and Søgaard, 2019). Because the wage rate is kept fixed in these papers, any gen-

der gap in pay can only be attributed to earnings and not to hourly wages (which is what we focus

on). In assuming that hours worked affect workers’ productivity in the market, we follow more closely

the literature that documents significant labor market returns to hours (Aaronson and French, 2004;

Gicheva, 2013; Goldin, 2014; Cortés and Pan, 2019; Bick, Blandin, and Rogerson, 2020).2 Other work

links gender pay gaps to gender differences in preferences for work flexibility (Bertrand, Goldin, and

Katz, 2010; Mas and Pallais, 2017; Cubas, Juhn, and Silos, 2019) and to sorting into occupations that

require different time inputs (Erosa, Fuster, Kambourov, and Rogerson, 2017). Finally, there is work

highlighting the importance of information frictions for gender pay gaps (without considering the mar-

riage market): If employers believe that women have less market attachment than men, they get paid

less (Albanesi and Olivetti, 2009; Gayle and Golan, 2011).

Our paper builds on this work, in that we also propose the gender gap in hours as a core factor in

the gender pay gap. However, in contrast to both the purely empirical and the structural papers we

cite, our work takes into account an endogenous marriage market that shapes labor supply choices.

Marriage Market Sorting. A large literature measures marriage sorting in the data and finds

evidence of positive assortative matching on education in different countries and increases in marriage

sorting over time (Browning, Chiappori, and Weiss, 2014; Greenwood, Guner, Kocharkov, and Santos,

2016; Greenwood, Guner, and Vandenbroucke, 2017; Eika, Mogstad, and Zafar, 2019). We confirm these

findings on positive marriage sorting on education in Germany.

Another approach has been to study marriage market sorting using structural models. Several papers

have investigated how premarital investments in education interact with marriage patterns in a static

framework (Fernández, Guner, and Knowles, 2005; Chiappori, Iyigun, and Weiss, 2009) or over the life

cycle (Chiappori, Costa-Dias, and Meghir, 2018) and how post-marital investments in a partner’s career

interact with family formation and dissolution (Reynoso, 2019). Further, structural work analyzes how

exogenous changes in wages, education, and family values (Goussé, Jacquemet, and Robin, 2017a);

exogenous wage inequality shifts (Goussé, Jacquemet, and Robin, 2017b), the adoption of unilateral

divorce (Reynoso, 2019), or different tax systems (Gayle and Shephard, 2019) affect household behavior

and marriage sorting.3 Finally, in models with exogenous marriage sorting, Fernández and Rogerson
2Bick et al. (2020) find that hourly wages of U.S. men are non-monotone, increasing until 50 hours per week, and then

decreasing. Note that in our sample, hardly anyone (<0.3%) works more than 50 hours per week, which justifies our
decision to not allow for non-monotone effects of hours on wages in our model (we do allow for nonlinear effects).

3In an influential paper, Voena (2015) also focuses on the adoption of unilateral divorce and its effects on household
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(2001) analyze the effect of increased marriage sorting on wage inequality, while Lise and Seitz (2011)

focus on its effect on between- and within-household consumption inequality.

Like in these papers, marriage market sorting is an important margin in our model. While education

is exogenous, we could think of the choice of how many hours to work as an ‘investment’ in individuals’

effective skills. This investment is impacted by marriage sorting while impacting labor market sorting,

which is different from prior work that tends to keep the labor market exogenous.4

Labor Market Sorting. A body of literature investigates sorting on the labor market, doc-

umenting positive assortative matching between workers and firms (Card, Heining, and Kline, 2013;

Hagedorn, Law, and Manovskii, 2017; Bagger and Lentz, 2018; Bonhomme, Lamadon, and Manresa,

2019); or workers and jobs (Lindenlaub, 2017; Lindenlaub and Postel-Vinay, 2020; Lise and Postel-

Vinay, Forthcoming) without taking the marriage market into account. In turn, Pilossoph and Wee

(2019b) consider spousal joint search on the labor market to explain the marital premium, but take

marriage market sorting as given. Our contribution is to explore how the forces that determine who

marries whom shape labor market sorting and pay.

Interplay between Marriage and Labor Market. Our work is most related to a nascent

literature on the interplay between marriage and labor markets. This research has focused on the effects

of spouses’ joint labor search (Pilossoph and Wee, 2019a; Flabbi, Flinn, and Salazar-Saenz, 2020) and of

changes in wage structure (Fernández, Guner, and Knowles, 2005) and technological progress in home

production (Greenwood, Guner, Kocharkov, and Santos, 2016, Chiappori, Salanié, and Weiss, 2017) on

marital sorting and household inequality, keeping the labor market in partial equilibrium.

To the best of our knowledge, this is the first paper that analyzes an equilibrium matching model of

both the marriage and the labor market and their interaction. Jointly considering marriage and labor

market sorting is novel, as is our mechanism regarding how the two sorting margins are linked (i.e.,

through endogenous labor supply) and our finding on the key role of home production complementari-

ties/substitutabilities for shaping equilibrium—both in theory and in the data.

3 Descriptive Evidence

3.1 Data

We use two data sources. The German Socioeconomic Panel (GSOEP) is a household panel of around

25,000 individuals (including the surveyed households’ head and the spouse), surveyed yearly. It contains

detailed information on labor market outcomes and time use. We focus on West Germany, 2010-2016.

In turn, the Employment Survey of 2012 (BIBB) contains detailed occupational characteristics. Details

on the GSOEP are in Online Appendix OC and on the BIBB in Appendix C.3.

behavior, especially asset accumulation. In her paper, the marriage market is exogenous.
4Exception are Fernández and Rogerson (2001) (but marriage sorting is kept exogenous) and Fernández et al. (2005)

(who endogenize the wages of low and high-skilled workers but their model lacks labor market sorting).
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3.2 Empirical Evidence

We first present evidence related to sorting in the marriage market, sorting in the labor market, and

the interaction between the two. We then highlight the fact that the allocation of hours between labor

market and home production is an important link between both markets. A description of the sample

restrictions and construction of the main variables can be found in Online Appendix OC.1.

Marriage Market Sorting. We find evidence of positive assortative matching (PAM) in edu-

cation in the German marriage market, in line with previous evidence (Eika et al., 2019 for the US and

Germany, and Greenwood et al., 2016 and Greenwood et al., 2017 for the US). Table 1 reports the match-

ing frequencies by education for the period 2010-2016, suggesting that almost 60% of individuals marry

someone of the same education level. The correlation between the education level of spouses, which is

our main measure of marriage market sorting, is equal to 0.47.5 Furthermore, marriage market sorting

increased over time. For the period 1990-1996, the correlation between partners’ education was 0.44.

Table 1: Marriage Matching Frequencies by Education

Low Education Men Medium Education Men High Education Men

Low Education Women 0.16 0.08 0.03
Medium Education Women 0.13 0.25 0.11
High Education Women 0.03 0.05 0.16
Notes: Low Education includes high school and vocational education with less than 11 years of schooling. Medium Education is vocational
education with more than 11 years of schooling. High Education is defined as college or more. We consider the maximum level of education
attained by each individual and keep only one observation per couple.

Labor Market Sorting. We also document positive assortative matching in the labor market.

We do not have firm identifiers in the GSOEP, so we measure labor sorting based on the relationship

between workers’ and jobs’ attributes, in which a job is defined by the occupation of the individual. The

match-relevant attribute of workers in the labor market is ‘years of education’. In turn, for jobs we use

information on the task requirement of each occupation to construct a measure of its task complexity

(see Appendix C.3). The correlation between years of education of workers and task complexity of jobs

is 0.62, indicating positive assortative matching between workers and jobs on the labor market.

Figure 1 (left) plots the fitted matching function (job attribute as a function of worker charac-

teristic) by gender, conditional on employment (solid lines). Both men and women are positively

sorted in the labor market, indicated by a positive slope of the matching function. However, men

are ‘better’ matched: For a given education level, men are on average matched to more demanding

jobs. This pattern is also reflected in the correlation of worker and job attributes by gender, which is

0.64 for men and 0.62 for women.6

5As discussed in Chiappori, Dias, and Meghir (2020), correlation is one of the measures of sorting that has two desirable
properties such a measure should have: a ‘monotonicity’ condition and whether it captures the case of ‘perfectly assortative
matching’. Eika et al. (2019) propose an alternative measure of marriage sorting based on the frequency of couples with
similar education relative to random matching. This measure equals 1.73 in our sample, 2010-2016: Individuals are 73%
more likely to marry someone with the same education, relative to random matching. And during 1990-1996, this sorting
measure is 1.59, also suggesting increased sorting over time.

6Differences in labor market sorting across gender are even larger (with a correlation 0.58 for men vs. 0.48 for women)
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Figure 1: Labor Market Matching Function (left); Labor Market and Marriage Market Sorting (right)

Labor Market Sorting and Marriage Market Sorting. Next, we assess the relationship

between labor market and marriage market sorting. To do so graphically, we measure marriage market

sorting by the difference between the years of education of an individual and the years of education

of their partner, with ‘zero’ indicating the maximum amount of sorting. We measure labor market

sorting as before, as the correlation between workers’ years of education and the task complexity of

the occupation. We then plot the relation between labor market and marriage market sorting by

gender in Figure 1 (right), where the green vertical line indicates maximum marriage market sorting.

The striking—and we believe novel—feature is that labor market sorting is maximized when marriage

market sorting is maximized, for both men and for women. In Online Appendix OA.1, we substantiate

this finding using regressions that control for important covariates.

The Role of Hours. We now provide evidence on a salient link between the two markets: hours

worked on the labor market vs. hours spent in home production. First, we document that the time

allocation choice is related to the partnership status as well as marriage market sorting. Second, we

document that at the same time, the time allocation choice is linked to labor market sorting.

As is well documented (Goussé et al., 2017b; Gayle and Shephard, 2019), an individual’s time

allocation between ‘work’, ‘home production’, and ‘leisure’ is related to their partnership status. Among

singles (Online Appendix OA.4, Figure O2, left panel), gender differences in time allocation choices are

small. But for couples, they are pronounced (right panel). Indeed, in couples, women spend about 12.5

hours less per week working on the labor market but about 20 hours more in home production compared

with their male partners. Neither for couples nor for singles are there significant gender differences in

leisure, which justifies our decision to abstract from it in our model below.

We also document the relationship between hours and marriage market sorting. Figure 2 shows

the correlation between home production hours within couples (left) and the correlation of labor hours

if we do not condition on participation and we treat unmatched individuals as matched to a job with attribute zero.
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within couples (right), both against our summary measure of marriage market sorting (difference in

partners’ years of education). Interestingly, both home production hours and labor market hours are

more complementary between those partners who are well sorted in the marriage market, as indicated

by the inverse U-shape of the hours’ correlation functions. Note that the pattern for home production is

even more pronounced than for market hours, with a stronger positive correlation of home hours among

partners with the same education compared with partners with differences in education.7

Figure 2: Time Allocation and Marriage Sorting

We further explore what drives the complementarity in the home production time of spouses by

looking at different components of home production, especially since the literature on family economics

emphasizes household specialization. We find that complementarities are strongest in childcare, and are

least pronounced when it comes to housework (see Figure O1 in Online Appendix OA.2).8

One concern is that the relationships between marital sorting and complementarities in hours in

Figure 2 are based on marriage market sorting bins that pool individuals from different education groups.

Not controlling for education allows for the possibility that hours only depend on own education but do

not vary with partner’s education if, e.g., low (high) educated workers always supply low (high) hours

independent of the partner’s type. Also, the complementarities in partners’ hours from Figure 2 might

be driven by confounding factors or unobserved heterogeneity that drive both spouses’ hours choices.

We discuss and address several of these concerns in Online Appendix OA.3. There, we control for

education and other covariates that might be correlated with the choice of hours (Table O2). Moreover,

we show that partners’ complementarities in labor market hours are stronger when we exploit exogenous

variation in childcare availability across states and time to instrument for female labor market hours

(Table O3). Finally, we also show in these regressions that the correlation between partners’ hours is

larger for those who are better sorted in the marriage market, in line with the descriptive evidence of
7For consistency between the right and left panels of Figure 2, we condition on both partners participating in the labor

market. The pattern in the left panel also holds if we do not condition on labor market participation.
8In recent work, Moschini (2021) also finds strong complementarities between parental time inputs when it comes to

investment in children’s skills.
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Figure 2. We provide the details of our identification strategy in Online Appendix OA.3.

Besides relating time allocation and marriage market outcomes, we also stress that the time split

between labor market and home production relates to labor market outcomes: We first show that

in Germany there is a large hourly wage penalty for working part-time, suggesting that hours are a

productive input in the labor market. This is in line with evidence by Aaronson and French (2004),

Goldin (2014) and Bick et al. (2020) for the US. Figure O3 (Online Appendix OA.5) shows a sizable part-

time penalty, especially for women. While fulltime women have a wage penalty of 14.7 percentage points

relative to fulltime men, when they work part-time the wage penalty increases to 26.6 percentage points.

Moreover, while few men work less than fulltime (less than 10% of employed men), more than 50% of

employed women do so, and are thus particularly affected by the documented wage penalties. However,

these effects of hours on wages cannot be interpreted as causal. To address selection, we identify the

effect of hours on the hourly wage in a panel regression model with individual fixed effects below, where

we instrument for hours worked (see Section 7.3.1). We again find a significant wage penalty for not

working fulltime: An increase from 30 to 40 hours per week raises the hourly wage by around 4%.

Finally, we stress that the number of hours worked is associated with sorting on the labor market.

Indeed, when accounting for differences in hours worked across gender, the discrepancy in their matching

functions shrinks considerably. This is documented in Figure 1, left panel, in which the solid lines

represent the matching functions by gender and the dashed lines plot the residualized matching functions

after partialling out hours worked. But even when controlling for the number of hours worked, small

differences in labor market sorting across gender persist that must be accounted for by other factors.

Summary. We highlight three sets of facts. First, there is evidence of PAM in both the labor and

the marriage market. In the labor market, however, men are ‘better’ matched than women. Second,

there is a strong relation between labor market and marriage market sorting, with labor market sorting

being maximized when marriage market sorting is. Third, the split between hours worked in the labor

market vs. hours spent in home production is a potentially important link between the two markets.

We not only show that time allocation choices depend on marriage market sorting but also that they are

themselves associated with labor market sorting. Motivated by these facts, we now build a model with

endogenous labor and marriage markets, linked through households’ labor supply choices. We come

back to these facts when validating our model below.

4 The Model

We first lay out the environment and agents’ decisions, and then define equilibrium.

4.1 Environment

There are two types of agents, individuals and firms. There is a measure one of firms. Firms have

productivity attribute y ∈ Y = [y, y], distributed according to a continuously differentiable cdf G, with

density g > 0. Among the individuals, there is an equal measure of men (denoted by subscript m)
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and women (denoted by subscript f). The overall measure of individuals is one. Both men and women

have exogenously given skills: Denote women’s skills by xf ∈ Xf = [0, xf ], where xf is distributed with

a continuously differentiable cdf Nf , with density nf > 0. Analogously, men have skills xm ∈ Xm =

[0, xm], distributed according to the continuously differentiable cdf Nm with density nm > 0.

In the marriage market, men and women match on skills, so the relevant distributions for marriage

matching are Nm and Nf . In the labor market, however, what matters for output is not only skills

but also hours worked, which will be chosen optimally in each couple. Each individual is endowed with

one unit of time that can be allocated to paid work in the labor market, denoted by hi, i ∈ {f,m}, or
non-paid work at home toward the production of a public good, `i = 1−hi (based on Figure O2, Online

Appendix, which shows no large differences in leisure across gender, we abstract from it). Note that

hi = 0 captures non-participation. By increasing hours worked in the labor market, each individual

‘invests’ in his/her effective skill x̃ := e(x, h), x̃ ∈ X̃ , with endogenous cdf Ñ(t) := P[x̃ ≤ t] = 1
2P[x̃f ≤

t] + 1
2P[x̃m ≤ t]. We assume that e is twice continuously differentiable, strictly increasing in each

argument, strictly supermodular in (x, h), and e(0, h) = 0 for all h. Thus, putting in more labor hours is

as if the worker is more skilled. The effective skill or index x̃ is the output-relevant worker characteristic

on the labor market.9 This assumption—that not only skills but also hours worked matter for labor

market matching—means that multiple attributes are matching-relevant even if the actual assignment

is simplified and based on the index x̃.

Denote by z(x̃, y) the output generated by an individual of type x̃ matched to a firm of type y. We

assume that production function z is twice continuously differentiable and strictly increasing in each

argument. Individuals and firms split the output they generate into wages and profits, where workers

use their wages to finance the private consumption good ci, i ∈ {f,m}.
The public good production function is denoted by p. It takes as inputs each couple’s hours at home,

so that p(`m, `f ) is the public good produced by a couple spending (`m, `f ) = (1− hm, 1− hf ) in home

production (recall that hours at home equal the hours not spent working).10 We assume that p is

twice continuously differentiable with p
`m

> 0, p
`f
> 0, p

`m`m
< 0 and p

`f `f
< 0 and satisfies the Inada

conditions limhf→0 p`f (1−hm, 1−hf ) = 0 and limhf→1 p`f (1−hm, 1−hf ) =∞, and similarly for p
`m

.11

Denote the utility function of an individual by u, where u(ci, p) is the utility from consuming private

good ci and public good p. We assume that u is twice continuously differentiable with uc > 0, up >

0, ucc ≤ 0, upp ≤ 0. We further restrict the class of utility functions below.

Both matching markets—the labor and marriage market—are competitive (full information and no
9We base this assumption on evidence that more hours worked lead to higher productivity and hourly pay (see Aaronson

and French, 2004; Gicheva, 2013; Goldin, 2014; Cortés and Pan, 2019; Bick et al., 2020 and our own evidence below).
10Our model can handle more general home production functions where part of the public good is purchased using wages.

But given that we do not observe purchased public goods in the data below and given that spouses’ observed home
production time can be seen as producing a public good net of the purchased part, we focus on p as a function of hours only.

11Throughout, we will denote the partial derivatives of some generic function f(x, y) using subscripts; for instance, the
derivative of f with respect to x is fx unless there is risk of confusion, in which case we use ∂f/∂x. We will denote
the derivative of a function of a single argument by prime; and the derivative of any composition of functions using
brackets—for instance, the derivative of f(x, y(x)) is denoted by (f)x.
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search frictions) and there is no risk. The two markets and sorting choices therein are linked through

the labor supply choice, which can be interpreted as a pre-labor market and post-marriage market

continuous investment in ‘effective’ skills. This link is the crucial element of our model.

4.2 Decisions

Agents make three decisions; see Figure 3. In the marriage market stage, men and women choose their

partner to maximize their value of being married. The outcome is a marriage market matching function

that matches each woman xf to some man xm (or singlehood) and a market-clearing price. In the

second stage, the household decision problem, each matched couple chooses private consumption and

allocates hours to the various activities—work in the labor market and at home—under anticipation

of the labor market outcomes (matching function and wage function). This stage yields both private

consumption and public consumption (and thus the time allocation), pinning down individuals’ effective

types. In the third stage, the labor market stage, agents take marriage market and household choices as

given and match with firms based on their effective skills so that their wage income is maximized (or

equivalently, each firm chooses an effective worker type to maximize profits). This problem pins down

a labor market matching function and a market-clearing wage function.

Figure 3: The Decision Stages of Individual i ∈ {f,m} of Skill Type xi

Stage: Marriage Household Labor

Allocations:

x̃i matches with yxi matches with xj
or single

cf , cm, hm, hf→ x̃idetermined
cf , cm, hf , Q −→ p, x̃i cfgci, hi

Resources:
(married)
(single)

(married)
(single)

w(x̃f ) + w(x̃m)
w(x̃i)

In terms of exposition, we will describe the decisions in reverse order.

Labor Market. Given the distribution of effective types Ñ , derived from the marriage and

household decisions, and given the wage function w : X̃ → R+ in the labor market, a firm with

productivity y chooses the effective worker type that maximizes its profits:

max
x̃

z(x̃, y)− w(x̃). (1)

This problem, along with market clearing, pins down the labor market matching function µ : X̃ → Y,
mapping workers’ effective skills to firm types in a measure-preserving way.12 Matching function µ de-

pends on complementarities of (x̃, y) in z. Importantly, it also depends on the hours choice (through
12Since we focus on monotone matching below, we restrict attention to pure matching, given by a function µ.
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Ñ), which in turn will depend on the marriage partner. Thus, sorting on the two markets is connected.

And if X̃ is an interval, X̃ = [0, x̃]—as will be the case below—then the first-order condition of

problem (1), which gives a differential equation for w, pins down the wage function as

w(x̃) = w0 +

∫ x̃

0
zx̃(t, µ(t))dt, (2)

where w0 is the constant of integration.13

Household Problem. Consider a couple (xf , xm) who anticipates (w, µ) in the labor market.

This couple solves the following cooperative household problem. One partner (here w.l.o.g. the man)

maximizes his utility subject to the household budget constraint and a constraint that ensures a certain

level of utility for the female partner, by choosing the couple’s private consumption and hours allocation:

max
cm,cf ,hm,hf

u(cm, p(1− hm, 1− hf )) (3)

s.t. cm + cf − w(x̃m)− w(x̃f ) ≤ 0

u(cf , p(1− hm, 1− hf )) ≥ v,

0 ≤ hi ≤ 1, i = f,m

where at this stage v is taken as a parameter by each household (it will be a function of female skills

and endogenously determined in the next stage, the marriage market stage). When solved for all

feasible v ∈ [0, vmax(xf , xm)] (where vmax(xf , xm) is the maximum that xf can obtain when matched

with xm), problem (3) traces out the household’s Pareto utility frontier. The solution to this problem

yields the hours functions hi : Xm × Xf × [0, vmax(xf , xm)] → [0, 1] and consumption functions ci :

Xm×Xf × [0, vmax(xf , xm)]→ R+. That is, for each partner in a couple (xm, xf ) and for a given utility

v, the problem pins down private consumption ci(xm, xf , v) and labor hours hi(xm, xf , v) (and therefore

the public good p(1−hm, 1−hf )). Because the household problem is set up in a cooperative way, these

allocations are Pareto-efficient for any given wage function.

Marriage Market. Anticipating for each potential couple the solution to the household problem

(hf , hm, cf , cm) as well as the labor market outcomes (w, µ), the value of marriage of man xm from

marrying woman xf is given by the value of household problem (3), and thus:

Φ(xm, xf , v(xf )) := u(cm(xm, xf , v(xf )), p(1− hm(xm, xf , v(xf )), 1− hf (xm, xf , v(xf )))),

where we now make explicit that v, the marriage market clearing price, is an endogenous function of

xf and pinned down in equilibrium of the marriage market. The marriage market problem for any man

xm is then to choose the optimal female partner type xf by maximizing this value:
13Note that w(x̃) is the wage of a worker with effective type x̃ per unit of time (recall that our time endowment is

normalized to one unit and we will give a specific interpretation of a time unit in the data below), not the worker’s earnings.
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max
xf

Φ(xm, xf , v(xf )). (4)

The FOC of this problem (which gives a differential equation for v), together with marriage market

clearing, determines the marriage market matching function η : Xf → Xm, mapping female skills to

male skills in a measure-preserving way, and a transfer (in utils) function v : Xf → R+, where v(xf ) is

the marriage payoff of woman xf . The marriage matching function depends on the complementarities

between men’s and women’s skills in Φ, as detailed below. Note that, in principle, individuals can decide

to remain single, which—given that there is an equal mass of men and women—will not happen in our

baseline model if the value of marriage Φ is positive for all potential couples.

4.3 Equilibrium

We now formally define equilibrium.

Definition 1 (Equilibrium). An equilibrium is given by a tuple of functions (η, v, hm, hf , cf , cm, Ñ , µ, w) s.t.

1. given (η, v, hm, hf , Ñ), the pair (w, µ) is a competitive equilibrium of the labor market;
2. given (η, v, µ, w), the tuple (hf , hm, cf , cm) solves the household problem, pinning down Ñ ;
3. given (µ,w, hm, hf , cf , cm), the pair (η, v) is a competitive equilibrium of the marriage market.

We next define a monotone equilibrium, which will be our main benchmark below.

Definition 2 (Monotone Equilibrium). An equilibrium is monotone if it satisfies Definition 1 and:

1. labor market matching µ satisfies PAM, µ(x̃) = G−1(Ñ(x̃));

2. labor hours hi are increasing in own type xi and in partner’s type xj, i, j ∈ {f,m}, i 6= j, as well

as in transfer v;

3. marriage market matching η satisfies PAM, η(xf ) = N−1
m (Nf (xf )), and v is increasing in xf .

In a monotone equilibrium, there are three additional requirements relating to the three different

stages of this model. Under 2. and 3., we obtain that a woman’s effective type as a function of xf ,

γf (xf ) := e(xf , hf (η(xf ), xf , v(xf ))), is strictly increasing in xf , implying that γf can be inverted; and

similarly for men with γm(xm). As a result, in a monotone equilibrium, the endogenous cdf of effective

types can be written as follows:14

Ñ(t) =
1

2
Nf (γ−1

f (t)) +
1

2
Nm(γ−1

m (t)). (5)

This discussion highlights an important point. The equilibrium hours function, hf , not only depends

on her own skill type xf but also on marriage market outcomes: the skill type of her partner, η(xf ), as

well as the transfer guaranteed to her in the marriage v(xf ); and similarly regarding the factors the male
14To see this, observe that the probability that x̃ ≤ t is:

Ñ(t) =
1

2
P[γf (xf ) ≤ t] +

1

2
P[γm(xm) ≤ t] =

1

2
P[xf ≤ γ−1

f (t)] +
1

2
P[xm ≤ γ−1

m (t)] =
1

2
Nf (γ−1

f (t)) +
1

2
Nm(γ−1

m (t)).
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hours function hm depends on. As a result, labor supply choices form the link between the marriage

market (they are determined by the household and depend on who marries whom, captured by η) and

the labor market (they affect the effective skill cdf Ñ , and thus labor market matching µ and wages w).

This interdependence of marriage and labor market sorting is the crucial feature of our model. But

it also makes the problem challenging from a theoretical point of view, since we must simultaneously

equilibrate two intertwined matching markets, which are related through the time allocation choices.

5 Analysis

In this section we show how the primitives of our model—in particular, home production p and labor

market production z—shape equilibrium. To gain tractability, we focus on a certain class of models

(the quasi-linear class) that yields the transferable utility (TU) property. This circumvents a further

potential complication of imperfectly transferable utility (ITU), in which the hours functions and thus

the public good production depend on transfer v.

5.1 The Quasi-Linear Class

The TU representation of our model obtains if the utility function falls into a known class, the Gorman

form, which guarantees that utility is linear in the private good (possibly after a monotone transforma-

tion); see also Mazzocco (2007); Browning et al. (2014).15 We assume the utility function:

u(ci, p) = ci + p, (6)

which has the important property of being quasilinear in ci.16 Then the household’s aggregate demand

for private consumption c and public consumption p can be determined irrespective of the couple’s

sharing rule, v. As a consequence, the hours functions (hf , hm) are independent of v. In the marriage

stage, in turn, the couple’s marital surplus is independent of the sharing rule v. As a result, the matching

problem can be solved by maximizing the total value of marriage, independent of how it is shared (as

in Shapley and Shubik, 1971 and Becker, 1973).

5.2 Conditions for Monotone Equilibrium

Our objective is to derive conditions under which any equilibrium that satisfies certain basic regularity

properties is monotone in the sense of Definition 2. To summarize these regularity properties in a

compact way, we first define regular equilibrium.

15More generally, the Gorman form of i’s utility is given by ui(p, c1, ..., cn) = zi(c2, ..., cn) + k(p)c1, which is linear in at
least one private consumption good, with common coefficient k(p), meaning that the marginal utility w.r.t. c1 is equalized
across partners, so that utility can be transferred between them at a constant rate.

16We here choose the simplest functional form in the Gorman class to reduce notation that obscures the main mechanism.
In Online Appendix OB.1 we provide examples of other utility functions in this class under which our model features TU.
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Definition 3 (Regular Equilibrium). An equilibrium is regular if household problem (3) has a unique

solution that is interior and continuous in (xm, xf ), and Ñ is atomless.

In what follows, we will focus on equilibria that are regular. We detail in Appendix A.2 why these

regularity assumptions are important. At the cost of much additional technical detail, we could justify

the regularity properties of Definition 3 in terms of primitives.17 The approach we follow, however,

allows us to focus on the monotone structure of the model in a more direct way. The monotone

equilibrium will be our benchmark. We first state our main result and we then unpack its components.

Proposition 1 (Monotone Equilibrium). Assume p is strictly supermodular in (`m, `f ), and z is strictly

supermodular in (x̃, y) and convex in x̃ for each y. Then any regular equilibrium is monotone.

The proof is in Appendix A.2. A crucial condition for the monotone equilibrium is the comple-

mentarity of spousal time in home production (supermodular p, p
`m`f

> 0), which gives rise to a

‘progressive’ way of organizing the household with gender balance in hours as opposed to specialization.

In this case, if an individual puts many hours into labor market work then the partner will do the same,

at the cost of less home production. The positive correlation of partners’ hours within the household

is clearly a force toward PAM in the marriage market: Having a partner with similar skills makes it

easier to work similar hours in the labor market and, on the flip side, to put similar hours into home

production, reaping the full benefits from home production complementarity. In turn, positive sorting

in the labor market stems from the complementarity between individuals’ effective skills and jobs’ skill

requirements (supermodular z, zx̃y > 0).

For the interested reader, we now unpack the technical details underlying Proposition 1, going over

the three requirements of monotone equilibrium and why they are satisfied under the stated premises.

Positive Sorting in the Labor Market. As is well known, if technology z is supermodular,

then the worker-firm assignment in the labor market will satisfy positive sorting—that is, the market-

clearing matching function µ is increasing, where µ(x̃) = G−1(Ñ(x̃)) is the firm matched to worker x̃.

Hours are increasing on own and partner’s type. With quasi-linear utility (6), the house-

hold problem (3) takes the form:

max
hm,hf

w(x̃m) + w(x̃f )− v + 2p(1− hm, 1− hf ), (7)

s.t. 0 ≤ hi ≤ 1, i = f,m

where we substituted both the household’s budget constraint and the wife’s constraint to receive at

least utility v into the objective function. As a consequence of TU, the overall split between public
17Here we provide a sketch: The property of interior solutions of the household problem can be justified based on Inada

conditions on p. In turn, we can specify conditions on the objective function of the household problem that render a
unique solution (which also implies stability of the equilibrium in a tatonnment sense). Uniqueness, in turn, allows for
the application of the Implicit Function Theorem, which guarantees differentiability and therefore continuity of the hours
functions in (xm, xf ). Finally, an atomless Ñ can be guaranteed if, in addition, the effective type function e is assumed
to be Morse (i.e., a function with only isolated critical points).
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and private consumption can be made independently of how utility is shared, captured by v. As a

consequence, the hours functions (hf , hm) will only depend on types (xf , xm) but no longer on v.

The FOCs of household problem (7) with respect to hf and hm at an interior solution are given by:

w′(x̃f )eh(xf , hf )− 2p
`f

(1− hm, 1− hf ) = 0 (8)

w′(x̃m)eh(xm, hm)− 2p
`m

(1− hm, 1− hf ) = 0. (9)

In any interior solution for the hours choices of partners, each of these FOCs equalizes the marginal

benefit of an additional hour in the labor market, captured by the wage gain, with its marginal cost

stemming from a reduction in home production that affects both partners (hence the multiplication by 2).

To characterize under which conditions hours are increasing in own and partner’s type, we apply a

monotone comparative statics argument. In Appendix A.2, we show that the hours functions feature

the discussed monotonicity in both skills if: (i) home production hours are complementary (p is super-

modular) and if (ii) wages are supermodular in skills and hours, (w)
xih

= w′′exieh + w′exih > 0 where

h = hi(xm, xf ) (guaranteed by convex and supermodular z, which renders the wage function convex).

We show that hours are strictly increasing in partners’ skills at any (xm, xf ) and thus also along the

marriage market equilibrium assignment (η(xf ), xf ).18

Positive Sorting in the Marriage Market. Given the equilibrium hours functions (hf , hm),

we obtain the value of marriage Φ as the value of household problem (7):

Φ(xm, xf , v(xf )) =

w(e(xm, hm(xm, xf ))) + w(e(xf , hf (xm, xf )))− v(xf ) + 2p(1− hm(xm, xf ), 1− hf (xm, xf )). (10)

Complementarities among partners’ types in Φ determine marriage market matching patterns. Under

TU, (Φ)xmxf = Φxmxf . If Φxmxf > 0, then marriage matching is PAM, and thus η′ > 0.19

Using once more a monotone comparative statics argument, we show that Φ is supermodular if

wages are complementary in types, (w)xmxf > 0. Zooming in, this complementarity in types derives

from wages that are supermodular in type and hours, (w)
xfh

> 0 and (w)
xmh

> 0, in combination with

labor hours that are increasing in the partner’s type—a property that holds in monotone equilibrium.

These sorting conditions are intuitive: There is PAM in the marriage market, so that xf is matched to

η(xf ) = N−1
m (Nf (xf )), if the labor hours of spouses are complementary in the sense that an individual’s

labor hours are increasing in partner’s type and if, at the same time, working more hours boosts the

marginal wage return to skill. In turn, the property that own labor hours are increasing in the partner’s
18An additional important consequence of the strict monotonicity of the hours functions is that the distribution of

effective types, Ñ , can be pinned down and is given by (5). Moreover, Ñ is atomless and X̃ is an interval in this case.
19Under ITU (Legros and Newman, 2007), (Φ)xmxf

> 0 is equivalent to Φxmxf >
Φxf

Φv
Φxmv (Chade, Eeckhout, and

Smith, 2017). To see this, plug the FOC of problem (4), Φxf + Φvv
′ = 0, into (Φ)xmxf

= Φxmxf + Φxmvv
′. In the

quasi-linear class, the condition for PAM simply becomes Φxmxf > 0 since Φxmv = 0.
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type crucially derives from the home production complementarity, as we have shown above. This

highlights the importance of the home production function also at the marriage stage.20

5.3 Properties of Monotone Equilibrium and Stylized Facts

We now connect the properties of monotone equilibrium with our stylized facts from Section 3 in a

qualitative way, before accurately replicating our facts in our quantitative analysis below.

Marriage Market Sorting. The property of positive sorting in the marriage market resembles

our empirical finding of positive sorting on partners’ education in Table 1.

Labor Market Sorting. In a monotone equilibrium, more skilled individuals work more in the

labor market than at home compared with the less skilled, a feature that is reinforced by having more

skilled partners. As a result, more skilled individuals have higher effective types, and thereby obtain more

productive labor market matches: There is positive sorting in the labor market in (x, y), which captures

the positive correlation between education and jobs’ skill requirements in the data (Figure 1, left).

Marriage Market and Labor Market Sorting. The unique feature of our model is the link

between labor and marriage market equilibrium and, in particular, labor and marriage sorting. This

link becomes most transparent when highlighting how the labor market matching function depends on

the marriage market matching function. Consider the total derivative (µ)xf (for i = m, this is similar),

which—when positive—indicates PAM on the labor market in skills and skill requirements (x, y):

(µ)xf = µ′
(
exf + eh

(
∂hf
∂xm

η′ +
∂hf
∂xf

))
, (11)

which is based on µ(x̃f ) with x̃f = e(xf , hf (η(xf ), xf )). Equation (11) illustrates how labor market

sorting µ depends on marriage market sorting η. When marriage market sorting is positive, η′ > 0,

then higher x are matched to higher y, (µ)x > 0 (given that the hours of spouses are complementary

∂hf/∂xm > 0). The intuition is straightforward. PAM in the marriage market induces individuals with

higher xi to have a better partner xj = η(xi) and therefore to work more hours, which translates into a

higher effective type x̃i and thus a better labor market match y = µ(x̃i), compared with when marriage

market sorting is not positive. In a stylized way, this property of the monotone equilibrium is related to

our empirical fact that labor market sorting is stronger for positively sorted couples (Figure 1, right).

The Role of Hours. In a monotone equilibrium, labor hours are complementary within couples:

Increasing, say, female skills, not only pushes up her own labor hours but also induces her partner to
20Analogous to the labor market, we can complete the equilibrium construction in the marriage market by obtaining the

market-clearing price v. Maximizing (10) with respect to xf , while taking into account that hm(xm, xf ) and hf (xm, xf )
are already optimized so that they do not respond to further changes in xf (by the envelope theorem), yields:

(Φ)xf
= 0 ⇔ w′(x̃f )exf (xf , hf (xm, xf ))− v′(xf ) = 0,

which will be evaluated at η. The transfer to the female partner, v, reflects the marginal impact of her type on her wage:
When a man chooses a woman, he trades off the marginal benefits of choosing a higher type (which equals the marginal
impact on her wage, w′exf ) with the marginal costs (which equals the marginal increase in transfer to her, v′).
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work more. As a result, partners’ hours comove. There are two drivers behind this result. First, for a

given male partner type xm (for exogenous marriage matching), an increase in female skills increases

her labor hours. But this reduces her home hours, which induces her partner to also work less at home

and more in the market due to the home production complementarity, p
`m`f

> 0. As a result, both

partners increase their labor hours as the female skill improves. Second, this complementarity in hours

is reinforced under endogenous marriage market sorting: Under PAM, an increase in her skill xf leads

to a better partner xm = η(xf ), who by himself puts in more labor hours and fewer home hours. And

since p
`m`f

> 0, the wife adjusts hours in the same direction (fewer home hours and more labor hours),

reinforcing the comovement of hours within the couple. Thus, PAM in the marriage market fuels the

complementarity of hours within couples—a feature we observe in the data (Figure 2).

Finally, an interesting feature of a monotone equilibrium is that it can be consistent with a gender

gap in labor market sorting: If the home production function is such that women spend relatively more

time at home (e.g., if they are relatively more productive at home), then men will be ‘better’ matched

in the labor market compared with women of the same skill. Thus, our competitive model can generate

a gender gap in sorting and wages even in the absence of discrimination or differential frictions.

To see this, consider labor market sorting in terms of skills and firm productivity (xi, y) and how it

varies across gender i ∈ {f,m}. Consider a man and a woman with xf = xm. We say that xm is ‘better

sorted’ than xf if µ(e(xm, hm)) > µ(e(xf , hf )). For each man and woman of equal skills, xf = xm, man

xm is better sorted if he works more hours in the labor market, hm(xm, η
−1(xm)) > hf (η(xf ), xf ), which

will help rationalize our finding in the data on the differential sorting of men and women in the labor

market (solid lines Figure 1, left). But controlling for hours worked, hm(xm, η
−1(xm)) = hf (η(xf ), xf ),

closes the sorting gap in the model and considerably shrinks it in the data (dashed lines Figure 1, left).

5.4 Non-Monotone Equilibrium

The monotone equilibrium captures—albeit in a stylized way—several salient features of the data. Some

features of the monotone equilibrium—in particular, the complementarity of spouses’ hours—may be

in contrast to the traditional and more standard view of the household, which relies on specialization.

Historically, it is plausible that a different equilibrium was in place, in which partners’ hours in home

production were substitutable and positive sorting in the marriage market was less pronounced or sorting

was even negative, giving rise to the specialization of household members. We capture this different

regime by an equilibrium that—with some abuse—we call non-monotone equilibrium and we highlight

the role played by properties of the home production function. We define a non-monotone equilibrium

as the monotone one with two differences. First, there is negative assortative matching (NAM) in the

marriage market. And second, labor hours are decreasing in partner’s type.

Proposition 2 (Non-Monotone Equilibrium). Assume p is strictly submodular in (`m, `f ), and z is

strictly supermodular in (x̃, y) and convex in x̃ for each y. Then any regular equilibrium is non-monotone.
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The proof is in Appendix A.3. This result highlights the crucial role of home production complemen-

tarities/substitutabilities in shaping equilibrium. Making hours at home substitutable, p
`m`f

< 0, gives

rise to an equilibrium that relies on ‘specialization’, in which a more skilled partner puts in more labor

hours while own labor hours go down in response. At the same time, the partner spends less time in

home production, while own home production time increases. This specialization within the household

is clearly a force toward NAM in the marriage market, which indeed materializes. The reason is that

increasing the partner’s type pushes own labor hours down—which hurts own labor market prospects,

especially for skilled individuals. Skilled individuals then prefer to match with less skilled partners.

The only feature that both equilibria have in common is PAM in the labor market, not only in (y, x̃)

(guaranteed by supermodular z) but, importantly, also in (y, x), which follows from equation (11).21

Thus, complementarity vs. substitutability of home hours shapes equilibrium. In particular, p
`m`f

≶

0 determines whether marriage partners match positively and whether their hours—both at home and

at work—are complementary. The monotone equilibrium captures ‘progressive’ times, while the non-

monotone one reflects a ‘traditional’ division of labor. To our knowledge, this mechanism, in which home

production complementarities are the main determinant of both marriage and labor market outcomes, is

new in the literature. We now investigate the nature of home production and our mechanism in the data.

6 Quantitative Model

To evaluate the quantitative importance of our main insights in Section 5, we now augment our model

so that it can match the data while preserving its mechanism.

6.1 Setup and Decisions

Our first objective is to build a quantitative version of our model that can match key facts of the data

while minimally departing from our original setup. To this end, we augment the model by including

shocks in each of the three stages—marriage market, household decision stage, and labor market—so

that we capture the following: imperfect sorting and non-participation in both marriage and labor

markets, as well as heterogeneity in hours choices across couples of the same type. Importantly, we

show in Proposition O1 (Online Appendix OB.2) that under conditions similar to those in the baseline

model, the properties of monotone equilibrium hold on average in our augmented model.

We make three changes. First, in order to capture mismatch in the labor market along (x, y), we

augment individuals’ education/skill x by an idiosyncratic productivity component ν. We assume that

individuals are characterized by discrete human capital s := k(x, ν) ∈ S, distributed according to cdf

Ns, where s takes the role of x from the baseline model. We assume ν (and thus s) is observed by the

agents in the market, but not by us. In the labor market, the match-relevant attribute of a worker is

her effective human capital s̃ := e(s, h) (instead of x̃), whose distribution we denote by Ñs. A firm with
21Further note that the distribution of effective types Ñ(t) = 1

2
Nf (γ−1

f (t)) + 1
2
Nm(γ−1

m (t)) will be pinned down as in a
monotone equilibrium, since own labor hours are still increasing in own type so that γi is still invertible.
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productivity y now solves: maxs̃ z(s̃, y)− w(s̃).

Second, we account for heterogeneity in labor supply within (sf , sm)-type couples and within si-type

singles (and for non-participation) by introducing idiosyncratic labor supply shocks. We denote by δhi

the idiosyncratic preference of an agent for hours alternative hi, i ∈ {f,m}. In this quantitative version

of our model, hours are discrete elements of choice set H, hi ∈ H. Each decision-maker (single or couple)

draws a vector of labor supply shocks, one for each alternative hi. These shocks realize after marriage.

In the household decision stage, partners now maximize utility plus labor supply shock:

max
cm,cf ,hm,hf

u(cm, p
M (1− hm, 1− hf )) + δhm (12)

s.t. cm + cf − w(s̃m)− w(s̃f ) = 0

u(cf , p
M ) + δhf ≥ v,

where we denote by pM the home production technology of couples (M stands for married).

Similarly, the consumption-time allocation problem of singles i ∈ {f,m} is given by

max
ci,hi

u(ci, p
U (1− hi)) + δhi (13)

s.t. ci − w(s̃i) = 0,

where we denote by pU the home production function of singles (U stands for unmarried).

Third, to accommodate the fact that marriage market matching on human capital s may not be

perfectly assortative and to account for non-participation/singlehood, we introduce an idiosyncratic

taste shock for partners’ s-types. We denote by βsm and βsf the idiosyncratic taste of man m and woman

f for a partner with human capital s ∈ {S ∪ ∅}, where s = ∅ indicates the choice to remain single.

Each individual draws a vector of taste shocks, one for each discrete alternative s. Thus, individuals in

the marriage market value potential partners not only for their impact on the economic joint surplus

(as before) but also for their impact on the non-economic surplus (which depends on preference shocks

βsf or βsm). The marriage problem of a man with human capital sm now reads

max
s

Φ(s, sm, v(s)) + βsm,

where the choice of marrying a woman of any human capital type s = sf must be weighed against the

choice of remaining single s = ∅ (Φ(∅, sm, v(∅)) is the economic value of remaining single).

Similar to the baseline model, Φ captures the economic surplus from marriage. Different from the

baseline model, due to the introduction of labor supply shocks that have not yet realized at the time

of marriage, Φ is the expected economic surplus from marriage. The expectation is taken over the

different hours alternatives of the couple whose choice probabilities are pinned down at the household

stage (details are in Appendix B). Since marriage market matching is no longer pure (due to both the

discreteness of match attribute s and the idiosyncratic shocks βs), η : {S ∪∅}2 → [0, 1] here denotes the

matching distribution (as opposed to the matching function). We then denote by η(sm,sf ) the fraction

20



of couples with human capital types (sm, sf ), where
∑

(sm,sf )∈{S∪∅}2 η(sm,sf ) = 1.

6.2 Functional Forms

We parameterize our model as follows. The labor market production function is given by z(s̃, y) =

Az s̃
γ1yγ2 + K, where Az is a TFP term, (γ1, γ2) are the curvature parameters reflecting the elasticity

of output with respect to effective human capital and firm productivity, and K is a constant.

For couples, the public good production function is assumed to be CES

pM (1− hm, 1− hf ) = Ap

[
θ
(
1− hf

)ρ
+ (1− θ)

(
1− hm

)ρ] 1
ρ
,

where Ap is the TFP in home production, θ is the relative productivity of a woman, and ρ is the

parameter that determines the elasticity of substitution, σ := 1/(1− ρ), where σ < (>)1 indicates that

spouses’ home hours are strategic complements (substitutes). We assume that home production for

singles is given by pU (1− hi) = ApΘi

(
1− hi

)
, where Θi ∈ {θ, 1− θ} depending on gender.

The utility function of individual i is given by u(ci, p) = ci + p, where p ∈ {pM , pU} for spouses

and singles, and where we assume that both men and women have the same preferences. We adjust the

private consumption of singles by the McClemens equivalence scale (Anyaegbu, 2010).22

Human capital as a function of skill and productivity shock is given by s ∝ x+ ν, where we assume

that s is proportional to the sum of observed skill and (to us) unobserved productivity.

We then specify the effective human capital functions as

s̃f = ψsfhf (14)

s̃m = smhm,

where, if a man and a woman have the same (s, h)-combination, s̃f ≤ s̃m if ψ ≤ 1. We thus allow for a

labor market penalty for women that could reflect gender discrimination or productivity differences.

Finally, both marriage taste shocks and labor supply shocks follow type-I extreme-value distributions:

βs ∼ Type I(β̄t, σtβ) for t ∈ {M,U} and s ∈ {S ∪ ∅}

δh
t ∼ Type I(δ̄, σδ) for t ∈ {M,U} and ht ∈ H,

where we allow for different preference shock distributions for marriage partners and singles and index t

indicates the household type.23 We normalize the location parameter of both labor supply and marriage
22The McClemens equivalence scale is a standard adjustment of the consumption of singles so that it can be compared

to that of married individuals who enjoy economies of scale in consumption.
23Note that without the different scales for partner and single choices, our parsimonious model (featuring no

couple/single-specific parameters) would have difficulty generating enough singles. Allowing for different scales, how-
ever, means that our marriage market resembles a nested logit problem with degenerate (single) nest, associated with
known identification issues for the scale of the degenerate nest (Hunt, 2000). This is why we fix σUβ outside of the main
estimation below.

21



market preference shocks to zero, δ̄ = β̄M = β̄U = 0. Moreover, we specify the labor supply shocks as

δh
t

=

δhi , i ∈ {f,m} if t = U

δhf + δhm if t = M.

That is, when making hours choices, a decision-making unit draws a single labor supply shock, δht ,

that is extreme-value distributed. In the case of singles, the decision-making unit is just one person

and hence, as is standard, this agent draws a shock for each hours alternative. In the case of spouses,

however, the decision-making unit is the couple. Therefore, a household draws a single shock for each

joint time allocation of the spouses (equivalently, the sum of the spouses’ shocks is assumed to be

extreme-value distributed).24 We make this adjustment to the standard setting, where each individual

agent draws an extreme-value shock when making a discrete choice, in order to obtain tractable choice

probabilities for the joint hours allocation that help with computation and identification of the model.25

6.3 Model Solution

Appendix B describes the numerical solution of the quantitative model in detail. It consists of solving

a fixed-point problem in the wage function w (or, equivalently, in the hours functions (hf , hm)). For

any given wage function, agents make optimal marriage and household choices as well as labor market

choices. Labor market choices then give rise to a new wage function that, in equilibrium, needs to

coincide with the initially postulated wage function. We implement a search algorithm that iterates

between the problem of households and firms, producing a new wage function at each round, and

halts when the wage function satisfies a strict convergence criterion. Our procedure ensures that at

convergence, both the labor and the marriage market are in equilibrium and households act optimally.

A challenge in our fixed-point algorithm is that when partners determine whether a particular hours

choice is optimal (which, as discussed, can be understood as an ‘investment’ in effective skills), they must

compare the payoff of this investment with all alternative investments. But the competitive wage only

determines the price for equilibrium investments.26 In order to obtain the off-equilibrium wages without

significantly perturbing the equilibrium wages, we use a tremble strategy. We postulate that a small

fraction of agents are tremblers who make a mistake by choosing off-equilibrium hours. This ensures

that off-equilibrium choices will be also priced and individuals can compare all investment choices when

solving the household problem. While trembling is a widely used concept in game theory, we believe

the application to matching markets with investment is new.
24Given the assumed quasi-linear utility function, the household problem depends on the sum of spouses’ shocks.
25Gayle and Shephard (2019) follow a similar approach in their numerical solution (see their footnote 24), in which they

assume households draw one shock for each of the couple’s joint hours combinations.
26This issue is similar to the one in Cole, Mailath, and Postlewaite (2001), who study bargaining in a matching problem

with pre-match investment. Apart from trembling, the hours shocks also help us here to price all investment alternatives.
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7 Estimation

We first show that our model is identified. We then estimate it and assess whether partners’ home

production time is complementary or substitutable in the data.

7.1 The Data

We again use data from the GSOEP combined with information from the dataset of occupational char-

acteristics (BIBB). The challenge is to bridge our static model with the panel data which is intrinsically

dynamic and contains life-cycle features. We deal with this as follows. For the estimation of worker

unobserved heterogeneity (which will be done outside of the model), we exploit the full panel structure

in order to make use of techniques that control for unobserved time-invariant characteristics. In turn,

for the structural estimation of the model, we construct a dataset that features each individual only

once while accounting for his/her ‘typical’ outcomes. To be able to assess the typical outcomes, we focus

in our baseline analysis, on a restricted time period (2010-2016) so that each individual is captured in

only one life-cycle stage and we focus on observations that are not too different in age (25-50). We

consider each individual as one observation and generate summary measures (or ‘typical’ outcomes)

of the life-cycle stage we observe them in. We then define for each individual the typical occupation

(based on a combination of tenure and job-ladder features), typical labor hours and typical wage for

that occupation, and typical home hours while holding that occupation, as well as the typical marital

status. In line with our model, we only consider those individuals who are either married/cohabiting or

have never been married and are thus single. We drop divorced and widowed people because they likely

behave differently from the singles in our model. Our final sample contains 5,153 individuals, 50% of

whom are men. In Online Appendix OC.2, we provide details on the sample construction.

7.2 Identification

We need to identify 10 parameters and two distributions. We group the parameters into 5 categories

and discuss the identification group-wise. We have parameters pertaining to the home production

function (θ, ρ,Ap), the production function (γ1, γ2, Az,K), labor supply and marriage preference shock

distributions (σδ, σ
M
β ), and a labor productivity wedge (ψ). Finally, we have the distributions of worker

human capital and job productivity (Ns, G). We provide formal identification arguments in Appendix

C.1 and summarize the logic here. Our estimation will mostly be parametric. Nevertheless, we consider

it useful to lay out non-/semi-parametric arguments in order to understand the source of data variation

that pins down our parameter estimates. We will also clarify which parametric restrictions (mainly

pertaining to the shock distributions) are important.

The home production function, and thus (θ, ρ, Ap), is identified from choice probabilities for home

hours by households of different s-types. The formal identification uses the assumption that the labor

supply shock for different hours choices of husband and wife follows a type-I extreme-value distribution.
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The production function, and thus (γ1, γ2, Az,K), is identified from wage data. In our competitive

environment, there is a tight link between wages and the marginal product (and thus technology), which

allows us to do so. We follow arguments from the literature on the identification of hedonic models

(Ekeland, Heckman, and Nesheim, 2004). In turn, the constant in the production function (K) can be

identified from the minimum observed hourly wage.

The pair (σδ, σ
M
β ) associated with our shock distributions is identified as follows (note that in each

distribution, we make one normalization choice). In the absence of labor supply shocks, any two couples

of the same type (sf , sm) would choose the same combination of hours. Hence, the variation in hours

choices by couple type pins down the scale parameter of the labor supply shock distribution σδ. Similarly,

in the absence of any preference shocks for marriage partners (σMβ = 0), the model would produce perfect

assortative matching in the marriage market with corr(sf , sm) = 1. The extent of marriage market

sorting and mismatch identifies the scale parameter of preference shocks for partners, σMβ . Note that the

standard result in the literature, whereby the scale parameter is not identified separately from the utility

associated with the discrete choices (e.g., Keane, Todd, and Wolpin, 2011), does not apply in our context.

The reason is that we are able to identify utility in a prior step from household labor supply choices.

Importantly, we do not exploit variation in partner choices to identify the utility, and therefore this

variation can be used to identify the scale of the marriage shock distribution. Our identification result

relies on the extreme-value assumption of the shock distributions, yielding tractable choice probabilities.

The productivity or discrimination wedge of women, ψ, is identified by the hourly gender wage

gap conditional on hours and s-type. If there was no wedge, ψ = 1, women and men with the same

(s, h)-bundle should receive the exact same wage. A gap can only be rationalized by ψ 6= 1.

Finally, worker and job heterogeneity will be identified directly from the data. We use the empirical

distributions of workers’ human capital and occupations’ productivity for (Ns, G). In sum:

Proposition 3 (Identification).Under the assumed functional forms, the model parameters are identified.

Our identification result informs the moments we choose to pin down our parameters. To identify

the home production function, we use five moments related to the division of labor and to the comple-

mentarity of hours within households (the ratio of labor force participation of women to men; ratio of

labor force participation of married to single individuals, by gender; ratio of fulltime work of women

to men; and correlation of spouses’ home production hours). To identify the production function, we

use four moments related to the hourly wage distribution (its mean, variance, and the 90-10 and 90-50

percentiles). To identify the marriage shock parameter, we use two marriage market moments (the cor-

relation of spouses’ human capital types and fraction of single men). To identify the scale of the labor

supply shock, we use four moments related to the hours variation across households of given human

capital (female labor force participation rate by couple type and single type, where we select two types).

Finally, we identify the female labor wedge with two moments related to the gender wage gap conditional

on (s, h). In total we have 17 moments, described in detail in Table O4 in Online Appendix OD.
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7.3 Two-Step Estimation

We propose a two-step estimation procedure. The first step estimates worker and job heterogeneity as

well as the constant in the production function outside of the model. In a second step, given the worker

and job distributions, we estimate the remaining parameters within the model.

7.3.1 First Step: Estimation Outside the Model

In a first step, we estimate worker types s (or (x, ν)) and job types y. Except for x (education), these

types are not directly observed. Moreover, even though we observe the educational group of a worker,

we need to translate it into productivity units.

Estimation of Worker Types. Based on our theory, we specify an empirical model for hourly

wages as a function of effective types (which in turn are a function of education, ability, and hours

worked). We then make use of the longitudinal structure of the GSOEP to estimate workers’ unobserved

heterogeneity ν from individual fixed effects in a panel wage regression. For computational tractability,

we divide individuals in each education bin ed ∈ {hs, voc, c} (standing for high school or less, vocational

training and college, respectively) into two groups depending on their ν (above or below the median).

Hence, individuals belong to one of six human capital bins (three education types times two ability

types). We then order individuals by their human capital si = αedxedi + νi (where xedit are indicator

variables for the education group of an individual, meant to capture x in our model, and αed are the

estimated returns to education in the panel wage regression). This gives us a global ranking of worker

types. We use the empirical cdf of si as our estimate for workers’ human capital distribution Ns.

We address three challenges in implementing the panel wage regression: First, we use an instrumental

variable (IV) approach to account for the endogeneity of worked hours. Second, we apply a Heckman

selection correction (Heckman, 1979) to account for non-random selection in labor force participation.

Third, we impute the fixed effects for those individuals for whom we cannot estimate their human capital

types, since they appear less than two periods in our panel.

We provide details on this estimation of worker types, including the IV, selection, and imputation

in Appendix C.2. The estimation results are in Table 6 and the estimated skill distribution in Ta-

ble 7. Note that our panel wage regression—under the IV approach—delivers a causal effect of worked

hours on hourly wages, where we find that increasing weekly hours worked from 30 to 40 increases

hourly wages by around 4%.27

Estimation of Job Types. The empirical counterpart of our model’s firms are occupations (we

do not observe firms in the GSOEP). As in Section 3, we measure occupations’ productivity y from

data on their task complexity. Our main dataset is the BIBB (comparable to the O*NET in the US)
27This estimated effect in our sample of men and women in Germany is smaller but comparable to effects estimated on

US data: Aaronson and French (2004) also use a panel regression with fixed effects with an IV for hours and find that
increasing hours from 20 to 40 per week increases the hourly wage by 25%; Bick et al. (2020) (who focus on men) find
that increasing hours from 30 to 40 per week increases the hourly wage by 11%.
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that contains extensive information on tasks performed in each occupation. We focus on 16 tasks

measured on a comparable scale. We measure the occupations’ types in two steps. First, we use a Lasso

wage regression to select the important/pay-off relevant tasks. In a second step, we run a principal

component analysis (PCA) to reduce the task dimensions further to a single one, in which we use the

(normalized) first principal component as our one-dimensional occupation characteristic y. Importantly,

we use the wage regression only to select the relevant tasks, but we do not use the estimated coefficients.

In Appendix C.3, we provide the details of this approach and alternative approaches we pursued for

robustness and which yielded similar results.

Estimation of the Constant in Production Function. We assume that the constant in the

production function is not shared between workers and firms, but accrues to the worker in the form of

a minimum hourly wage (i.e., the wage of someone with the lowest human capital who will be matched

to the lowest productive occupation, y = 0). In this way, we obtain K = 6.32.

7.3.2 Second Step: Internal Estimation

There are nine remaining parameters of the model, Λ ≡ (θ, ρ, Ap, γ1, γ2, Az, ψ, σδ, σ
M
β ). They are disci-

plined by 17 moments that we chose based on our identification arguments (Section 7.2). To estimate

these parameters, we apply the method of simulated moments (McFadden, 1989; Pakes and Pollard,

1989). For any vector of parameters, Λ, the model produces the 17 moments, momsim(Λ), that will also

be computed in the data, momdata. We then use a global search algorithm to find the parameter values

that minimize the distance between simulated and observed moments. Formally, the vector Λ̂ solves

Λ̂ = arg min
Λ

[momsim(Λ)−momdata]
′V[momsim(Λ)−momdata],

where V is specified as the inverse of the diagonal of the covariance matrix of the data.

7.4 Results and Fit

We report the parameters we fixed outside of the structural estimation, (K, δ̄, β̄M , β̄U , σU ), in Table 10

(Appendix C.4.1). The estimated parameters are in Table 2. The result we want to highlight is that our

estimates indicate that spouses’ hours at home (and therefore in the labor market) are complements with

ρ = −0.54, giving an elasticity of substitution of spousal home production inputs of 0.65 and pushing

the model toward the monotone equilibrium of the model. The main data moment calling for a negative

ρ is the strong positive correlation of spouses’ home hours.28 Further, the estimated home production

function indicates that women are significantly more productive at home than men (θ = 0.78). The

large differences in labor force participation and full-time work across genders call for this relatively

high female productivity at home. In terms of labor market production, our estimates indicate that it is
28Further, if ρ > 0 (i.e., if hours were strategic substitutes), then marriage market sorting would be random; see Figure

7d, where marriage sorting drops significantly as ρ becomes positive.
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concave in both the workers’ effective human capital as well as the jobs’ productivity (γ1 < 1, γ2 < 1).29

Labor market TFP Az is estimated to be higher than home production TFP, Ap. The empirical gender

wage gap conditional on hours and human capital calls for a female productivity/discrimination wedge,

which we estimate as ψ = 0.84. This implies that for any given type and choice of hours, women’s

effective human capital is 16% lower than that of men.

Finally, regarding the marriage preference and labor supply shocks, our estimated scale parameters

ensure that we match the fraction of singles, the extent of mismatch in the marriage market, and

the heterogeneity in hours choices by households of the same human capital type. We also report

the standard errors of the estimates.30 The last column presents our sensitivity analysis (Andrews,

Gentzkow, and Shapiro, 2017), in which we report the most important moments that explain 50% of

the impact on each parameter in estimation.31 Our sensitivity analysis is in line with our identification

arguments. For example, the correlation of spouses’ hours, M5, is an important moment that disciplines

the home production complementarities, ρ; or the female productivity wedge, ψ, is most related to the

within-type gender wage gaps, M12 and M13.

Table 2: Estimated Parameters

Parameter Estimate s.e. Top Sensitivity Moments

Female Relative Productivity in Home Production, θ 0.78 0.02 M11, M2, M9
Complementarity Parameter in Home Production, ρ -0.54 0.22 M5, M3, M13
Home Production TFP, Ap 41.38 0.98 M11
Elasticity of Output w.r.t. s̃, γ1 0.59 0.05 M2, M11, M8, M9
Elasticity of Output w.r.t. y, γ2 0.16 0.07 M2, M8, M11
Production Function TFP, Az 42.33 2.28 M2, M11, M8
Female Productivity Wedge, ψ 0.84 0.03 M13, M12
Labor Supply Shock (scale), σδ 7.51 0.40 M2, M11
Preference Shock for Partners (scale), σMβ 0.19 0.02 M11, M2, M13, M10
Notes: s.e. denotes standard errors. Top Sensitivity Moments reports the most important moments explaining 50% of the total impact on each
parameter in estimation, based on our sensitivity measure (see footnote 31). M1, ...,M17 denote the 17 targeted moments (see Table 11, Appendix C.4).

Figure 4 summarizes the fit between model and data moments, in which we plot all 17 moments (red dots

indicate the level of these moments in the model) and their blue confidence interval of the corresponding

data moment (computed from a bootstrap sample). We rescaled some moments (M6 −M9) to be able

to plot them all in the same graph. Table 11 in Appendix C.4 reports the fit in detail and indicates the

moments corresponding to numbers M1-M17. Our model achieves a good fit with the data despite its

parsimony, with nearly all model moments lying in the confidence interval of their data moments.
29Convexity of z is only sufficient but not necessary for monotone equilibrium.
30The covariance matrix of the estimator is computed as matrix V ar =

[
D′mVDm

]−1
D′mVCV ′Dm

[
D′mVDm

]−1, where
Dm is the 10 × 17 matrix of the partial derivative of moment conditions with respect to each parameter evaluated at
Λ = Λ̂, C is the covariance matrix of the data moments, and V is the weighting matrix used in estimation.

31We compute the sensitivity of each parameter to the moments as |Sensitivity| = | −
[
D′mVDm

]−1
D′mV|, defined by

Andrews et al. (2017); see footnote 30 for notation.
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Figure 4: Model Fit: Model Moments (red) with Data Confidence Intervals (blue)

7.5 Model Validation

Apart from fitting the aggregate moments targeted in estimation, our model reproduces rich, untargeted

features of the data: the relation between marriage and labor market sorting, and the link (hours)

between them that we documented in Section 3.2.

Marriage Market Sorting. Table 12, Appendix C.4 displays the matching frequency of mar-

riages by three education types (low, medium, and high) in data and model. The main panel indicates

the frequencies of different types of couples and the bottom row (right column) indicates the frequencies

of single men (women) by education. Data frequencies are in parentheses. In our estimation, we only

targeted the overall correlation of couples’ human capital types (i.e., s-types), since s is the relevant

matching characteristic in the marriage market in our model. We did not target marital matching on

education, x, and especially not the detailed matching frequencies. Nevertheless, the model matches

well the observed marriage frequencies by education type: A considerable fraction of couples matches

along the diagonal, while the off-diagonal cells indicate that mixed couples (especially high-low cou-

ples) are rare—a sign of positive assortative matching on education. Our model also captures the fact

that medium educated men and women are most likely to be single, even though we only targeted the

average fraction of male singles.

Labor Market Market Sorting. We report in Figure 5, left panel, the labor market matching

function for men (blue) and women (red) in the model (solid) and data (dashed). This is given by job

productivity y as a function of individuals’ human capital s. Our model captures again the fact that

labor market sorting is PAM and that men are better matched for any given level of human capital.

Relationship between Labor Market Sorting and Marriage Market Sorting. We

documented, in Section 3.2, a strong link between labor market and marriage market sorting in the data,

whereby labor market sorting is maximized for individuals who are well matched in the marriage market.

Figure 6 (left panel), which compares data and model, shows that our model reproduces this pattern.
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Note that consistent with our quantitative model, here we proxy marriage market sorting by spouses’

differences in human capital s-types (as opposed to differences in education that we used in Section 3.2),

also in the data. Similarly, labor market sorting is measured by the correlation of (s, y) (instead of (x, y)).

Hours as the Link between Marriage Market Sorting and Labor Market Sorting. A

major feature of our model is that marriage and labor markets are linked in equilibrium; namely, through

the household’s time allocation choice. Here we show that the model replicates salient features of the

data, according to which hours are associated with both marriage and labor market outcomes. Figure

6, right panel, shows that in both the data (dashed) and the model (solid), the correlation of spouses’

home production hours is highest when marriage market sorting is strongest (i.e., when partners’ human

capital is equalized sf ≈ sm, around the vertical line at ‘zero’). This is a natural prediction of our model:

Spouses of similar human capital can better act on the hours complementarity in home production and

better align their hours relative to couples with large human capital differences who tend to specialize.

Finally, households’ time allocation choices in our model are also related to labor market sorting.

Figure 5 (right) shows the labor market matching function controlling for hours worked. The difference

in sorting across gender nearly vanishes in both the model (solid) and the data (dashed), relative

to what we see in the left panel. In sum, the monotone equilibrium of our model—driven by home

hours complementarity—fits well the rich empirical patterns of marriage sorting, labor sorting, hours

allocations, and their interconnections.

Figure 5: Labor Market Matching Function, Original (left) and with Hours Partialled Out (right)
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8 Application: The Drivers of Inequality
In our main quantitative exercise, we use our model to shed new light on how home production comple-

mentarity affects gender disparities in the labor market and household income inequality. Our analysis

focusses on two contexts: Germany in a recent cross-section (Section 8.1) and over time (Section 8.2).
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Figure 6: Labor Market Sorting and Marriage Market Sorting (left); Home Production Hours and
Marriage Market Sorting (right)
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8.1 Inequality Through the Lens of our Model

We first focus on a recent period, 2010-2016. Throughout, we keep the focus on West Germany. We an-

alyze the gender wage gap and income inequality within and between households through the lens of our

model. We start by investigating the performance of our model in reproducing the observed inequality.

We then analyze comparative statics with respect to the model’s key determinants of inequality.

8.1.1 Inequality in the Data and the Model

To assess the extent of inequality in data and model, we focus on four measures: the gender wage gap and

household income variance, including its decomposition into between- and within-household components.

These statistics are reported in Table 3.32 While our model underestimates the level of the income

variance (83 in the model versus 98 in the data), we capture the split of within- and between-household

inequality quite well (54-46 split in the model vs. 50-50 in the data). Moreover, regarding inequality

within households, the model captures the gap between men and women accurately: It predicts that the

share of female wages in overall household wage income is 31% (in the data, it is 33%). Last, our model

produces a sizable unconditional gender wage gap (23%), slightly overestimating the observed gap (20%).

Our model is thus able to reproduce the core features of observed inequality that were not targeted

in estimation. This validation suggests that our model is an adequate tool with which we can investigate

the main drivers of inequality and understand the sources of changing inequality in Germany over time.
32The gender wage gap is computed as the difference in mean wages of men and women over men’s mean wage. The

within-component of household income is measured by the variance of wages within a couple, averaged across all couples.
The between-component is measured as the variance of the average income of each couple. Our measure of the gender
wage gap includes all individuals in the sample, singles and in couples, conditional on employment. In turn, both the
female’s share of household income and the total income variance and its decomposition are computed based on the sample
of couples. All couples are included, independent of employment status.
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Table 3: Gender and Household Inequality

Model Data

Total Household Wage Variance 83.4822 97.7822
Within-Household Wage Variance 38.0682 49.1806
... share in total variance 0.4560 0.5030
Between-Household Wage Variance 45.4140 48.6017
... share in total variance 0.5440 0.4970
Share of Female Wage in Overall Household Wage Income 0.3144 0.3285
Gender Wage Gap 0.2314 0.1973

8.1.2 Comparative Statics with Respect to Key Drivers of Inequality

To highlight the main forces behind inequality, we begin with comparative statics exercises in our

estimated model. This will help us understand changes in inequality over time through the lens of our

model below. The gender wage gap in our model is driven by (endogenous) gender differences in hours

worked, and (exogenous) differences in labor productivity. In turn, differences in hours worked across

gender are mostly impacted by the relative productivity of women at home, θ, the home production

complementarity, ρ, and the labor market productivity wedge ψ. Clearly, if both θ = 0.5 (men and

women are equally productive at home) and ψ = 1 (men and women are equally productive in the labor

market/women are not discriminated against), this would eliminate the gender wage gap. But given

that θ > 0.5, ψ < 1, the level of complementarities in home hours, ρ, is a third key determinant of

gender inequality in our model. We are interested in the comparative statics effects of these parameters

on the gender wage gap, and also on intra- and inter-household income inequality.

We can think of several policies and technological changes that impact these parameters. Anti-

discrimination policies (such as gender quotas or equal pay policies) can affect ψ. Childcare availability

and parental leave policies (such as “daddy months”) might affect θ. Since the child-related tasks women

were expected to perform at home are performed by someone else, gender differences in productivity of

home hours are likely to decline. Further, changes in home production technologies that facilitate the

house chores women traditionally specialized in (Greenwood et al., 2016; Greenwood, 2019) can affect θ

and ρ. Finally, an increase in the returns to parents’ joint investment in children (Ramey and Ramey,

2009; Lundberg, Pollak, and Stearns, 2016) could also impact ρ.

The Effect of ρ. We first investigate a change in home production technology that increases the

complementarities in spouses’ home hours. Recall that our estimate ρ = −0.54 indicates that home

hours are strategic complements. We are interested in the effects on inequality when ρ becomes even

more negative, and in the underlying mechanism (changes in marriage sorting, hours, labor sorting).

Figure 7, first row, plots the effect of ρ on different inequality measures: the gender wage gap (panel

a), within- and between-household income inequality (panel b), and overall household income inequality
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(panel c). It shows that a decline in ρ (moving from the right to the left on the x-axis) decreases the

gender gap significantly. Starting from our estimate ρ = −0.54 and decreasing this parameter to -2

decreases the gender wage gap by almost 13%. This is due to a direct effect of complementarities on

hours and several indirect effects through sorting: First, because complementarity in home production

(and thus in labor hours) between partners increases, complementarity between spouses’ types in the

marriage value becomes stronger, resulting in more positive assortative matching (panel d). Both

increased marriage sorting (indirectly) and stronger complementarities in home production (directly)

induce spouses to better align their hours. Women increase their labor hours while men decrease theirs,

leading to a smaller gender gap in labor hours (panel e), which puts downward pressure on the wage

gap. Moreover, because women ‘improve’ a sorting-relevant attribute (work hours) relative to men, the

gender gap in labor market sorting declines (panel f), reducing the gender wage gap even further.

How does this change in home production complementarities affect household income inequality?

Figure 7c shows that overall income inequality declines with stronger complementarities. This decline

is driven by the decrease in within-household inequality (mirroring the decline in the gender wage gap),

which dominates the increase in between-inequality that stems from stronger marriage sorting.

The Effect of θ. Next, we are interested in the effect of women’s relative productivity at home

on our inequality measures. Eliminating the gap in home productivity (reducing θ from the estimate

θ = 0.78 to θ = 0.5) would cut the gender wage gap by almost half (Figure 12a in Appendix D.1). The

mechanism is as follows: Making female and male home productivity more equal increases the incentive

for positive marriage sorting (panel d) and pushes away from household specialization with a smaller

gender gap in labor hours (panel e). This positively affects women’s wages directly and also indirectly,

through a smaller labor market sorting gap (panel f). Interestingly, overall household income inequality

decreases as men and women become similarly productive at home, Figure 12c. Here, this is driven by

a decrease in within-household inequality (mimicking the evolution of the gender wage gap), which

dominates the increase in between-household inequality driven by a rise in marriage sorting (Figure 12b).

In Appendix D.1, we also analyze in detail the comparative statics of the female labor market wedge

ψ. Eliminating that wedge (increasing ψ from our estimate ψ = 0.84 to ψ = 1) has qualitatively very

similar effects to reducing θ.

We derive several insights: First, eliminating asymmetries in productivity across gender (whether at

home through θ → 0.5 or at work through ψ → 1) reduces the gender wage gap. But this is not the only

way to reduce gender disparities: An increase in home production complementarity (i.e., a decrease in

ρ, the key parameter of our model in shaping equilibrium) has qualitatively similar effects. Second, a

decline in the gender wage gap tends to go hand in hand with a decline in the labor hours gap and in

the labor market sorting gap and with an increase in marriage market sorting. Third, while the effect of

these parameters on overall income inequality depends on the exercise, in all cases the gender wage gap

comoves positively with within-household inequality but negatively with between-household inequality.
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Figure 7: a. Gender Wage Gap, b. Household Income Variance Decomposition, c. Household In-
come Variance, d. Marriage Market Sorting, e. Gender Gap Labor Hours, f. Gender Gap Labor Sorting.
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8.2 Inequality Over Time

Over the last few decades, inequality in Germany has changed significantly. In Figure 8, left panel,

the turquoise bars show that household income variance is 15% higher today than 30 years ago, which

masks diverging trends of within-household inequality (which declined by 18%) and between-household

inequality (which increased by 92%). In turn, the gender wage gap declined by almost 20% over this

period. At the same time, both the marriage and the labor market have undergone notable changes.

The turquoise bars (right panel) show that marriage market PAM increased by 10%, while the gender

gap in labor hours fell by almost 30% and the gender gap in labor market sorting by almost 80%.

We are interested in how our model rationalizes these trends in a unified way. We first investigate

how the model primitives have changed over time and how these changes affected inequality. We then

ask whether the documented shifts in labor and marriage sorting amplified or mitigated inequality.

To assess over-time changes in inequality with our model, we compare our estimation for 2010-2016

with the re-estimated model in an earlier period, 1990-1996.33 For re-estimation on the 1990-1996 sam-

ple, we re-assess the skill and job distributions for the earlier period and re-estimate all parameters

except those pertaining to the labor supply preference shock, which we set to the level of our current

period benchmark (Section 7.4). This is to tie our hands and force the model mechanism to explain the
33In the GSOEP, 1990 is the first year that features the time-use variables used in our analysis of the later period.
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Figure 8: Inequality Changes over Time (left); Sorting and Hours Changes over Time (right).
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data, as opposed to giving changes in shock distributions a too prominent role.34 The model fit along

targeted moments is shown in Table 13 in Appendix D.2, which also indicates that both labor and mar-

riage market underwent statistically significant changes over time (column 5). Regarding the untargeted

inequality moments of the data (Figure 8, left panel), the model replicates the over-time changes quite

well, in which the turquoise bars indicate changes in the data and the purple bars changes in the model.

To understand the driving forces behind the inequality changes, we now zoom further into the model.

We compare the parameter estimates for both periods in Table 14, Appendix D.2. There have been

significant changes in home production, with today’s Germany being characterized by a lower ρ (drop

from −0.16 to −0.54, which indicates increased complementarity in spouses’ home hours); a lower θ

(drop from 0.88 to 0.78, meaning that men became relatively more productive at home over time); and a

narrowing labor productivity wedge ψ (increasing from 0.76 to 0.84, raising relative female productivity).

These changes indicate that Germany has become an economy with more gender equality both at home

and at work. In turn, labor market technology has become more convex in effective human capital,

resembling skill-biased technological change, and it has a higher TFP than before.

How much of the documented changes in inequality can be explained by these changes in model

parameters? Figure 9 provides a detailed decomposition. The purple bars again display the overall

change in inequality produced by the model, in which we account for all parameter changes over time.

The remaining bars give the percentage change in inequality outcomes between 1990-1996 and 2010-

2016 if one parameter group changes in isolation while the others remain fixed at the 1990-1996 level:

We consider changes in the labor market production function (blue), home production (orange), labor

productivity wedge (yellow), and human capital distribution (green).

In line with our comparative statics exercises, the documented changes in home production tech-

nology reduced gender disparities (gender wage gap and within-household inequality) as well as overall
34We did have to free up the scale of marriage shocks in 1990-1996 in order to give the model a chance to match the data.
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household inequality, while they fueled between-household inequality. Figure 9 (orange bars) shows that

these effects are also quantitatively sizable. If only home production had changed over time, within-

household inequality would have declined by 30% (accounting for more than the observed change) and

the gender wage gap by 14% (accounting for more than 70% of the observed drop). Home production

changes were thus the biggest driver of the decline in gender inequality. In turn, home production

shifts put upward pressure on between-household inequality, accounting for almost 20% of the observed

increase. But since this effect was dominated by the downward pressure on within-inequality, the net

effect of technological change in home production on overall household income inequality was negative.

Splitting home production further into the contributions of our model’s key parameters θ and ρ (Figure

13 in Appendix D.2) reveals that changes in relative productivity parameter θ were the main driver of

the inequality shifts (accounting for around 2/3 of the total home production effects), while the impact

of complementarity parameter ρ was smaller but still sizable (around 1/3 of the effects). The effects of

changes in the labor market wedge ψ on inequality (yellow bars, Figure 9)—while qualitatively similar

to those of home production technology—were quantitatively smaller. Finally, changes in labor market

technology (blue bars), especially increase in γ1 and Az, fueled inequality across the board, significantly

pushing up household income variance (through both the between and within components) and prevent-

ing gender inequality from falling even further. Thus, technological change in home production and in

labor market production have pushed inequality, and especially gender disparities, in opposite directions.

Our comparative statics in Section 8.1.2 clarify the mechanism regarding why the estimated changes

Figure 9: Mechanism behind Inequality Changes
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of home production technology and the labor wedge push toward more gender equality. Both changes

induced women to work more (leading to a decline in the gender gap of labor hours), which in turn

caused women to sort relatively better in the labor market (thus reducing the gender gap in labor sort-

ing). More gender parity in labor market outcomes, in turn, strengthened the desire for positive sorting

in marriage, reinforcing the push toward more equal labor (and home) hours across gender. Figure 8,
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right panel, demonstrates that these shifts were not only present in the model (purple bars) but also

in the data (turquoise bars). Our evidence and estimates suggest that Germany underwent significant

changes over the last decades toward an equilibrium that resembles the monotone equilibrium from our

theory, with stronger home production complementarities and, consequently, increased marriage sorting

as well as stronger comovements of spouses’ hours, labor market sorting, and wages.

We end by returning to a core feature of our model: equilibrium sorting in both labor and marriage

markets. We assess the quantitative role of changes in marriage and labor market sorting for inequal-

ity shifts. Between 1990-1996 and 2010-2016, positive marriage sorting increased by around 10% and

positive labor sorting by 8%. We compute the elasticity of each inequality outcome with respect to sort-

ing in each market as (%∆Inequality)/(%∆Labor Sorting) and (%∆Inequality)/(%∆Marriage Sorting).

Inequality refers to one of our four inequality outcomes (gender wage gap, household income variance,

within/between component) and the percentage change is computed between the baseline model in

2010-2016 and the counterfactual model. This counterfactual inputs the estimated parameters from

2010-2016 but keeps either labor market or marriage market sorting constant at the past period’s (1990-

1996) level.35 In this way, we isolate the role of the observed changes in sorting for inequality shifts.

Table 4: Elasticity of Inequality with Respect to Sorting

Income Variance Between Variance Within Variance Gender Wage Gap

Marriage Market Sorting 0.0117 0.1234 -0.1173 -0.0036
Labor Market Sorting 0.0227 0.7351 -0.7356 -1.2349

Table 4 reports the elasticities. We find that both marriage and labor sorting have had mitigating

impacts on gender inequalities (wage gap and within-household inequality) and have amplified over-

all inequality and between-household inequality. For instance, a 1% increase in marriage sorting has

decreased within-household inequality by 0.117%, while it increased between-household inequality by

0.123%. The elasticity of the gender wage gap is also negative, albeit smaller. Stronger marriage market

sorting generated more balanced labor market outcomes—in hours, sorting, and pay—across genders.

The effects of changes in labor sorting on inequality are even larger. A 1% rise in labor market sorting

increased the between-household income variance by 0.735%. In turn, a 1 % increase in labor sorting

reduced the gender wage gap by 1.235% and within inequality by 0.736%. Surprisingly at first sight, the

increase in labor sorting over the past decades significantly narrowed gender disparities. The reason is

that this increase was predominantly driven by women’s improved labor sorting (i.e., the gender gap in

labor sorting has declined over time; Figure 8, right panel), helping them to catch up with men’s pay.

Stronger positive sorting between workers and jobs—when over-proportionally benefitting women—can

spur gender convergence in labor market outcomes.
35To implement the past marriage sorting in the counterfactual model, we adjust σMβ . In turn, to implement past labor

sorting, we take into account labor market matching µ(s̃) from the past period when computing the wage function.
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9 Conclusion

Employers value workers not only for their skills but also for their time input. In such a setting, if

labor supply decisions are made at the household level so that they depend on the characteristics of both

spouses, then marriage market sorting affects labor market sorting. In turn, if individuals anticipate their

hours choices as well as labor market outcomes when deciding whom to marry, then labor market sorting

affects marriage market sorting. The interaction of both the marriage and the labor market impacts

inequality across gender and within/between households. Therefore, policies that affect who marries

whom (such as tax policies) or home production choices (such as parental leave or universal childcare)

can mitigate or amplify inequality, calling for a better understanding of these spillovers across markets.

The interplay between labor and marriage markets and its effect on inequality are at the center of

this paper. We build a novel equilibrium model in which households’ labor supply choices form the

natural link between the two markets and their sorting margins. We first show that in theory, the

nature of home production—whether partners’ hours are complements or substitutes—shapes marriage

market sorting, labor supply choices, and labor market sorting in equilibrium.

We then examine the nature of home production in the data. To this end, we estimate our model

on data from today’s Germany and find that spouses’ home hours are strategic complements, pushing

toward positive sorting in both markets and comovement of labor hours of spouses. This is in contrast

to what would happen in a ‘traditional’ economy based on substitution in home production and the

specialization of spouses. By investigating the critical drivers behind inequality, we find that the gender

wage gap and within-household income inequality would decrease not only if gender productivity differ-

ences at home or in the labor market were reduced, but also if home production hours were even more

complementary among partners. Home production complementarities induce spouses to split their time

similarly between work in the market and at home; they also increase marriage sorting and reduce the

gender gap in labor sorting, both of which further mitigate gender disparities.

Our main quantitative exercise analyzes how our model can rationalize changes in inequality over

time. We find that the home production hours of spouses have become more complementary over time

and that this technological change in home production can account for a significant part of the decline

in gender inequality in Germany. In contrast, technological change in the labor market has fueled

inequality across the board, including gender gaps. To highlight the unique feature of our model, we

show that sorting on both markets has significant quantitative effects on inequality: We find that both

stronger marriage market sorting and labor market sorting over time have amplified overall inequality

and between-household inequality, but have had a mitigating impact on gender inequalities (wage gap

and within-household inequality), revealing a new role of sorting for gender convergence in pay.

This paper opens a new research agenda on the interplay between labor and marriage sorting in an

equilibrium setting, and its implications for gender gaps and inequality. We expect that extensions of our

model can be used to study how sorting in both markets amplify or mitigate the effects of aggregate labor

market shocks and impact risk sharing within the household—issues we plan to address in future work.
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Appendix

A Theory

A.1 Spouses’ Hours as Strategic Complements or Substitutes

Totally differentiating each FOC of the household problem w.r.t. to (hf , hm), we obtain the slopes of

the ‘best response’ functions for women (men) to men’s (women’s) hours, respectively:

0 = (w′′e2
h + w′ehh)dhf + 2p

`m`f
dhm + 2p

`f `f
dhf

⇔
dhf
dhm

= −
2p

`m`f

w′′e2
h + w′ehh + 2p

`f `f

(15)

0 = (w′′e2
h + w′ehh)dhm + 2p

`m`f
dhf + 2p

`m`m
dhm

⇔ dhm
dhf

= −
2p

`m`f

w′′e2
h + w′ehh + 2p

`m`m

(16)

In any regular equilibrium (since the denominators of these expressions are negative), the best response

functions are upward (downward) sloping, and thus hours are strategic complements (substitutes), if p

is supermodular (submodular).
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A.2 Proof of Proposition 1

Labor Market Properties. Supermodularity of z implies positive sorting in the labor market.

Moreover, in a regular equilibrium, we have the following properties of Ñ : First, it is defined over an

interval. This follows from x ∈ [0, x], together with the regularity assumptions that the solution to

the household problem is interior and the functions hi, i ∈ {f,m} are continuous on [0, x] × [0, x], and

so the solution to the household problem satisfies hi ∈ [hi, hi], i ∈ {f,m} with hi > 0, hi < 1. As

a consequence, the range of the effective type function, e(·, ·), is an interval. Second, Ñ is atomless.

Then, under positive sorting, µ(x̃) = G−1(N(x̃)) with µ′ > 0. Moreover, the wage function w is given

by w(x̃) =
∫ x̃

0 zx̃(t, µ(t))dt, which is strictly increasing and strictly convex, where strict convexity follows

since z is strictly supermodular in (x̃, y) and convex in x̃ for each y.36

Marriage Market Properties. Turning to the marriage stage, consider any couple (xm, xf )

who jointly chooses hours hm and hf . The couple’s problem is

max
hm,hf∈[0,1]

(w(e(xm, hm)) + w(e(xf , hf )) + 2p(1− hm, 1− hf )) ,

where we replaced x̃m = e(xm, hm) and x̃f = e(xf , hf ), and where we denote the value of this problem by

Φ(xm, xf ). If hours are strictly increasing in (xm, xf ), then Φ(xm, xf ) is strictly supermodular and thus

PAM emerges in the marriage market. We turn to the strict monotonicity of the hours functions next.

Properties of the Hours Functions. We will show that hm strictly increases in xm and xf .

To do so, write the couple’s problem as follows:

max
hm∈[0,1]

(
w(e(xm, hm)) + max

hf∈[0,1]
(w(e(xf , hf )) + 2p(1− hm, 1− hf ))

)
.

That is, we split the joint maximization w.r.t. (hm, hf ) into two maximization problems.

Let V be the value of the inner maximization problem, that is

V (xf , hm) = max
hf∈[0,1]

(
w(e(xf , hf )) + 2p(1− hm, 1− hf )

)
.

36As is known in models with pre-match investment (see, e.g., Cole et al., 2001), a potential issue arises if off-equilibrium
hours choices are not priced. In our monotone equilibrium, however, this is something we can address in a straightforward
way. First note that, as argued above, effective types in equilibrium are distributed on an interval, x̃ ∈ [0, e(x, h)], and the
wage function w(x̃) =

∫ x̃
0
zx̃ is defined on that interval. This also implies that all off-equilibrium hours choices 0 ≤ h < h

are priced by our wage function. Finally, in order to price the off-equilibrium choices h < h ≤ 1, we follow Cole et al.
(2001) and ‘extend’ the wage function using positive sorting between (x̃, y). To do so, note that firms’ payoff is given
by π(y) =

∫ y
zy(µ−1(t), t)dt, independently of whether the effective type µ−1(y) is on or off equilibrium. But then, a

worker with skill x who chooses off-equilibrium hours h′ > h and whose effective type possibly satisfies x̃ > e(x, h) has
the well-defined payoff w(x̃) = z(x̃, µ(x̃))− π(µ(x̃)). At the core of this argument is that positive sorting between workers
and firms holds—and thus assignment µ(x̃) is well-defined—even when considering off-equilibrium effective types.
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We will first focus on the outer maximization problem

max
hm∈[0,1]

(
w(e(xm, hm)) + V (xf , hm)

)
,

taking as given the function V . We will provide conditions on V under which this problem satisfies

the strict single crossing property (SSCP) in (hm, (xm, xf )). Under SSCP, all the selections from the

optimal correspondence are increasing in xm and xf (Milgrom and Shannon, 1994, Theorem 4’).37 And

since in a regular equilibrium the hours functions satisfying the households’ optimality conditions are

unique, this unique solution is increasing in xm and xf as well. Then, we will show that hm is actually

strictly increasing in both attributes.

Since the objective function is additively separable in (xm, hm) and (xf , hm), it follows that SSCP

holds if each term is strictly supermodular (i.e., satisfies strictly increasing differences). Given the prop-

erties of e and w, we have that w(e(·, ·)) is strictly supermodular in (xm, hm) since it is the composition

of a convex function with a strictly supermodular one. So if V is also strictly supermodular in (xf , hm),

it will follow that hm is increasing in both xm and xf (we will verify the supermodularity of V below).

To show that hm is strictly increasing, we will use Edlin and Shannon (1998), Theorem 1 and

Corollary 1. Since in any regular equilibrium, the optimal hm is interior for all (xm, xf ) (which in our

case materializes due to the Inada conditions on p), the first-order condition characterizes the optimal

choices. It is given by:

w′(e(xm, hm))ehm(xm, hm) + Vhm(xf , hm) = 0.

Consider x̂m > xm. Then since w(e(·, ·)) is strictly supermodular in (xm, hm), it follows that

w′(e(x̂m, hm))ehm(x̂m, hm) + Vhm(xf , hm) > 0,

so the optimal hours for x̂m, say ĥm, are different than hm (which are the optimal hours for xm). But

since we know from SSCP that ĥm ≥ hm, it follows that we must have ĥm > hm. Hence, hm is strictly

increasing in xm. The same holds for xf under V strictly supermodular. Thus, hm is strictly increasing

in both (xm, xf ).

Let us now consider the inner maximization problem:

V (xf , hm) = max
hf∈[0,1]

(w(e(xf , hf )) + 2p(1− hm, 1− hf )) .

We first obtain that all selections of the correspondence of maximizers are increasing, as above. Note

that both terms are strictly supermodular: the first one in (xf , hf ) (since w(e(·, ·)) is the composition

of a supermodular and a convex function) and the second in (hm, hf ) (under our assumption that p is

strictly supermodular in (`m, `f )). So as above, SSCP holds and thus the unique solution (in any regular
37SSCP holds if for all (x′m, x

′
f ) > (x′′m, x

′′
f ) (in the standard vector order) and h′m > h′′m, w(e(x′′m, h

′
m)) + V (x′′f , h

′
m)−

(w(e(x′′m, h
′′
m)) + V (x′′f , h

′′
m)) ≥ 0 implies w(e(x′m, h

′
m)) + V (x′f , h

′
m)− (w(e(x′m, h

′′
m)) + V (x′f , h

′′
m)) > 0.
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equilibrium) to the household problem, hf , is increasing in both xf and hm. And since hm is strictly

increasing in xm (see above), we obtain that hf is increasing in xm as well (by taking the composition

of functions).

We now show, as above, that given that the solution of the inner maximization problem is interior for

all (xf , hm)—again ensured by the Inada conditions on p—then it must be strictly increasing. The FOC is

w′(e(xf , hf ))ehf (xf , hf )− 2p`f (1− hm, 1− hf ) = 0.

Consider x̂f > xf . Since w(e(·, ·)) is strictly supermodular, we have that

w′(e(x̂f , hf ))ehf (x̂f , hf )− 2p`f (1− hm, 1− hf ) > 0.

so the optimal hours of x̂f , say ĥf , are different than hf (which are the optimal hours of xf ). But

since we know from SSCP that ĥf ≥ hf , it follows that ĥf > hf . Hence, hf is strictly increasing in

xf . Similarly, hf is also strictly increasing in hm since p is strictly supermodular. Thus, hf is strictly

increasing in both xf and hm.

To complete the proof, it remains to show that V is strictly supermodular in (xf , hm) and differen-

tiable in hm. Note that

V (xf , hm) = w(e(xf , hf (xf , hm))) + 2p(1− hm, 1− hf (xf , hm)).

By the Envelope Theorem (note that we satisfy the assumptions of Milgrom and Segal, 2002, Corollary

4(iii), especially since the solution of the household problem is unique in a regular equilibrium), V is

differentiable in hm with Vhm(xf , hm) = −2p`m(1−hm, 1−hf (xf , hm)). Since p is strictly supermodular

and hf strictly increasing in xf , it follows that V is strictly supermodular. Hence, the premise made

above, when analyzing the choice of hm in the outer maximization, problem holds.

Since we have shown that the hours functions are strictly increasing in each attribute for any couple

type, they are also strictly increasing along the equilibrium marriage market assignment (η(xf ), xf ).

And, finally, since hours are strictly increasing in the attributes, it follows that Ñ is atomless, thus

justifying the premise made in the labor market stage, which completes the proof. �

A.3 Proof of Proposition 2

The proof is analogous to that of Proposition 1, which is why we shorten the argument and highlight

the modifications.

Labor Market Properties. The argument for positive labor market sorting follows that of

Proposition 1 and is therefore omitted.

Marriage Market Properties. Turning to the marriage stage, consider any couple (xm, xf )
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who jointly chooses hours hm and hf . The couple’s problem is

max
hm,hf∈[0,1]

(w(e(xm, hm)) + w(e(xf , hf )) + 2p(1− hm, 1− hf )) ,

where we replaced x̃m = e(xm, hm) and x̃f = e(xf , hf ), and where the value of this problem is denoted

by Φ(xm, xf ). If hours are strictly decreasing in the partner’s type, then Φ(xm, xf ) is strictly submodular

and thus negative sorting emerges in the marriage market.

Properties of the Hours Functions. We will show that hm strictly increases in xm and strictly

decreases in xf . To do so, write the couple’s problem as follows:

max
hm∈[0,1]

(
w(e(xm, hm)) + max

hf∈[0,1]
(w(e(xf , hf )) + 2p(1− hm, 1− hf ))

)
.

That is, we again split the joint maximization w.r.t. (hm, hf ) into two maximization problems.

Let V be the value of the inner maximization problem, that is

V (xf , hm) = max
hf∈[0,1]

(
w(e(xf , hf )) + 2p(1− hm, 1− hf )

)
.

We will first focus on the outer maximization problem

max
hm∈[0,1]

(
w(e(xm, hm)) + V (xf , hm)

)
,

taking as given the function V . The objective function is additively separable in (xm, hm) and (xf , hm).

Given the properties of e and w, we have that w(e(·, ·)) is strictly supermodular in (xm, hm) since it is

the composition of a convex function with a strictly supermodular one, implying that hm is increasing

in xm. And if V is strictly submodular in (xf , hm), it will follow that hm is decreasing in xf (we will

verify the submodularity of V below).

To show that hm is strictly increasing in xm, we follow the same argument as in the Proposition 1.

And to show that hm is strictly decreasing in xf , we also follow this line of argument, only taking into

account a submodular V (instead of supermodular V ).

Let us now consider the inner maximization problem:

V (xf , hm) = max
hf∈[0,1]

(w(e(xf , hf )) + 2p(1− hm, 1− hf )) .

Note that the first term of the objective function is again strictly supermodular in (xf , hf ) (since

w(e(·, ·)) is the composition of a supermodular and a convex function); and the second one is strictly

submodular in (hm, hf ) (under our assumption that p is strictly submodular in (`m, `f )). So, any optimal

hf in this problem is increasing in xf and decreasing in hm. And since hm is strictly increasing in xm
(see above), we obtain that hf is decreasing in xm as well (by taking the composition of functions).
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We now show, as above, that given that the solution of the inner maximization problem is interior

for all (xf , hm)—again ensured by the Inada conditions on p—then it must be strictly increasing in xf
and strictly decreasing in hm. ‘Strictly increasing’ follows from the same argument as in the proof of

Proposition 1. In turn, ‘strictly decreasing’ follows from the same line of argument, only taking into

account that p is strictly submodular. Thus, hf is strictly increasing in xf and strictly decreasing in hm.

To complete the proof, it remains to show that V is strictly submodular in (xf , hm) and differentiable

in hm. Note that

V (xf , hm) = w(e(xf , hf (xf , hm))) + 2p(1− hm, 1− hf (xf , hm)).

By the Envelope Theorem (Milgrom and Segal, 2002, Corollary 4(iii)), V is differentiable in hm with

Vhm(xf , hm) = −2p`m(1−hm, 1−hf (xf , hm)). Since p is strictly submodular and hf strictly increasing

in xf , it follows that V is strictly submodular. Hence, the premise made above when analyzing the

choice of hm in the outer maximization problem holds.

The remaining part of the proof is analogue to that of Proposition 1: The shown hours properties

hold also along the equilibrium assignment; and since hours are strictly monotonic in each attribute, it

follows that Ñ is indeed atomless. �

B Solution of the Quantitative Model

The solution of our quantitative model consists of solving for a fixed point in the wage function (as a

function of effective types) such that under this wage function, marital choices, household labor supply,

and labor market sorting are all consistent. That is, we find the market-clearing wage function that

induces households that form in the marriage market to optimally supply labor (pinning down their

effective types) such that, when optimally sorting into firms on the labor market, this gives rise to that

exact same wage function.

We first solve for the optimal matching in the marriage market and households’ labor supply choices

given a wage function. Given the induced labor supply decisions, individuals optimally match with

firms on the labor market. Sorting in the labor market endogenously determines a new wage function

(again as a function of effective types) that supports this particular matching. Given this new wage

function, new marriage and labor supply decisions are made that again affect wages in the labor market.

We iterate between the problem of households on the one hand and that of workers and firms on the

other until the wage function converges (until a fixed point in the wage function is found).

We next describe the solution in each decision stage, starting backwards from the labor market and

then going to household and marriage problems. Finally, we outline the algorithm to find the fixed point.
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B.1 Partial Equilibrium in the Labor Market ([lpe])

First, we show how we solve for the matching and wage functions in the labor market, (µ,w). Consider

our exogenous distribution of firms, y ∼ G, and any given distribution of effective types, s̃ ∼ Ñs. Note

that even though Ñs is an endogenous object in our model, from a partial equilibrium perspective in

which marital and household choices are taken as given, firms take the distribution Ñs as fixed.

To solve for the optimal matching between firms and workers note that the production function

z(s̃, y) is assumed to be supermodular. By the well known Becker-Shapley-Shubik result (Becker, 1973

and Shapley and Shubik, 1971) the optimal matching in the labor market is positive assortative between

y and s̃, so matching function µ is increasing in s̃. Moreover, the wage function w is derived from the

(discrete version) of firms’ optimality condition (2), evaluated at the optimal matching µ. Since G and

Ñs are discrete, we approximate the integral in (2) numerically, using trapezoidal integration.

The output from solving the equilibrium in the labor market for given marital and household choices

is the tuple (µ,w) as defined above.

B.2 Optimal Household Choices ([hh])

Second, we derive the solution of the household problem that yields spouses’ optimal private consump-

tion, (cf , cm), their optimal labor supply (hf , hm), and the distribution of effective types Ñs.

Individuals arrive at the household stage either as singles with human capital si or in a couple with

human capital bundle (sf , sm). We denote the household human capital type by the two-dimensional

vector s = (sf , sm) ∈ {S ∪ ∅}2 where, e.g., (sf , ∅) denotes the household of single woman of type sf .

When solving the household problem, agents take as given wage function w, the marriage market

matching distribution η, and the marriage market clearing price v. Couples solve problem (12) and

singles solve problem (13). Replacing the constraints in the objective function and noting the transfer-

able utility structure of the problem, the collective problem of couple (sf , sm), after labor supply shocks

realize, is given by:

max
hm,hf

w(s̃m) + w(s̃f ) + 2pM (1− hm, 1− hf ) + δhm + δhf , (17)

where w(s̃m) and w(s̃f ) depend on hours through the effective human capital types (14).

Similarly, the problem of a single woman of type sf after realization of her labor supply shock is

max
hf

w(s̃f ) + pU (1− hf ) + δhf , (18)

and the problem of a single man sm is given by

max
hm

w(s̃m) + pU (1− hm) + δhm . (19)
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To derive aggregate labor supply and the distribution of effective types Ñs, we need to introduce

some notation.

We denote the alternative of hours that a decision maker chooses by h ∈ {H∪∅}2 := {{0, ..., 1}∪∅}2

(where ∅ indicates the hours of the non-existing partner when the individual is single). We then denote

by ht the hours alternative chosen by a decision maker of type t ∈ {M,U}:

ht =

(hi, ∅), i ∈ {f,m} if t = U

(hf , hm) if t = M.

where type t = U indicates single (or Unmarried) and type t = M indicates couple (or Married).

Also, we denote the economic utility associated with hours alternative ht of household type t ∈
{M,U} with human capital type s ∈ {S ∪ ∅}2 by uts(ht), where

uts(h
t) =

w(s̃i) + pU (1− hi) if t = U

w(s̃m) + w(s̃f ) + 2pM (1− hm, 1− hf ) if t = M.
(20)

We obtain the optimal private consumption and labor supply (cm, cf , hm, hf ) for each household by

solving problems (17)-(19). Given our assumption that the labor supply shock distribution is Type-I

extreme value, we then obtain the probability that household type t ∈ {M,U} with human capital type

s ∈ {S ∪ ∅}2 chooses hours alternative h ∈ {H ∪ ∅}2 as:

πts(h
t) =

exp(uts(h
t)/σδ)∑

h̃t∈{H∪∅}2 exp(uts(h̃
t)/σδ)

. (21)

Denoting the fraction of households who are of type s by ηs, the fraction of households who are of type

s and choose hours alternative h is given by

ηs × πts(ht).

From this distribution of household labor supply we back out the distribution of individual labor

supply. To do so, we compute the fraction of men and women of each individual human capital type, si in

household s, optimally choosing each individual hours alternative hi that is associated with household

labor supply h. Given the distribution of individual labor supply, we can compute the distribution

of effective human capital types, Ñs. First, note that the support of the distribution is obtained by

applying functional forms (14) for any combination of individual hours and skill types. Second, to each

point in the support of s̃, we attach the corresponding frequencies from the individual labor supply

distribution backed out as explained above.

Given (w, µ, η), the output from solving the household problem is the tuple (hf , hm, cf , cm, Ñs).
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B.3 Partial Equilibrium in the Marriage Market ([mpe])

In the marriage stage, individuals draw idiosyncratic taste shocks for partners and singlehood, βsi , with

i ∈ {f,m} and s ∈ {S ∪ ∅}. At this stage, labor supply shocks are not yet realized. As a result, the

ex ante economic value from a marriage of types (sf , sm) is the expected value of (17); and the ex-ante

economic value from female and male singlehood is the expected value of (18) and (19). In both cases,

the expectation is taken over the distribution of δ-shocks. Denoting the utility transfer to a female

spouse of type sf by v(sf ), the values of being married (economic plus non-economic) for a female type

sf and a male type sm in couple (sf , sm) are given by

Φf (sm, sf , v(sf )) + βsmf := v(sf ) + βsmf

Φm(sm, sf , v(sf )) + β
sf
m := Eδ

{
max
hm,hf

w(s̃m) + w(s̃f ) + 2pM (1− hm, 1− hf ) + δhm + δhf
}

+ β
sf
m − v(sf )

: = σδ

[
κ+ log

( ∑
hM∈H2

exp{uMs (hM )/σδ}
)]

+ β
sf
m − v(sf ),

where κ = 0.57722 is the Euler constant, u is defined in (20) and Eδ indicates that the expectation is

taken over the distribution of δ-shocks.

In turn, the values of being single for woman sf and man sm are respectively given by:

Φf (∅, sf ) + β∅f := σδ

[
κ+ log

( ∑
hU∈H

exp{uU(sf ,∅)(h
U )/σδ}

)]
+ β∅f

Φm(sm, ∅) + β∅m := σδ

[
κ+ log

( ∑
hU∈H

exp{uU(∅,sm)(h
U )/σδ}

)]
+ β∅m.

Every man with type sm and every woman with type sf then choose the skill type of their partner

or to remain single in order to maximize their value on the marriage market:

max {max
sf∈S

Φm(sm, sf , v(sf )) + β
sf
m ,Φm(sm, ∅) + β∅m}

max {max
sm∈S

Φf (sm, sf , v(sf )) + βsmf ,Φf (∅, sf ) + β∅f}.

In practice, using the transferable utility property of our model, we solve for the optimal marriage

matching by maximizing the total sum of marital values across all individuals in the economy, using a

linear program. We denote the matching distribution by η, which solves

max
η(s,s′)∈[0,1]

∑
(s,s′)∈{S∪∅}2

η(s,s′) ×
(
Φ(s, s′) + β̃

)
s.t.

∑
s∈S

ηs = 1/2

∑
s′∈S

ηs′ = 1/2,
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where η(s,s′) denotes the mass of household type (s, s′) ∈ {S ∪ ∅}2 under matching η; ηs denotes the

marginal distribution of η with respect to the first dimension; ηs′ denotes the marginal distribution

of η with respect to the second dimension; Φ(s, s′) denotes the economic value from marriage for the

different types of households, Φ(s, s′) ∈ {Φm(s, s′, v(s′)) + Φf (s, s′, v(s′)),Φf (∅, s′),Φm(s, ∅)}; and β̃

denotes βsmf + β
sf
m for couples and β∅i (i = {f,m}) for singles. Note that the restrictions of this linear

program impose that the mass of women and men across all households (couples or singles) must be

equal to the total mass of women and men in the economy (which is 1/2 for both sexes).

We obtain the equilibrium matching in the marriage market, η, by solving this linear program,

taking prices and allocations in households and the labor market, (w, µ, hf , hm, Ñs), as given.

B.4 General Equilibrium of the Model

Once we have derived the solution of each of the stages taking the output from the other stages as given,

we solve for the general equilibrium of the model by searching for the prices, allocations, and assignments

such that all markets are simultaneously in (partial) equilibrium. To preview, we start “backwards” from

the output of the labor market stage with an arbitrary initial wage function indicating a wage offered

to each effective type. In the household stage, each potential household takes those wages as given and

makes their labor supply choices. These optimal labor supply choices (in each potential household) are

then used by each individual in the marriage market to compute the value of singlehood and marriage

with different partners, leading to marriage choices. The hours choices of formed households give rise to

a distribution of effective types. With this endogenous distribution of effective types we go back to the

labor market stage, where we match workers’ effective types with firms’ productivities optimally. This

labor market matching gives rise to a new wage function supporting this allocation. With the new wage

function in hand, we solve and update the household and marriage problems and iterate in this manner

until convergence of the wage function, i.e. until we have found the fixed point in the wage function.

B.4.1 Trembling Effective Types

A challenge in the search for the equilibrium is that each household type needs know the wage for any

hours choice in order to make its optimal labor supply choices. However, it may be the case that at a

given iteration of our fixed point algorithm, the wage function is such that certain levels of hours are not

chosen by some household types. Therefore, in the next iteration, agents would face a wage function

that only maps realized effective types to a wage (i.e., a wage function ‘with gaps in the support’), see

subsection B.1. The problem then is that agents do not know the payoff from all potential hours choices

when they try to make their optimal choice.

To address this issue, we develop a trembling strategy. We draw a small random sample of women

and men and force them to supply a suboptimal amount of hours from the set of unchosen hours in

each iteration. In practice, for each group of women with skill type sf and each group of men with skill

type sm, we track their optimal choices for a given wage function and determine the hours that were not
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chosen with positive probability. We then draw a 1% random sample of women and men within each

of those skill types (the ‘tremblers’) and assign them uniformly to the unchosen hours, forcing them to

choose sub-optimal hours. Finally, we construct the distribution of effective types Ñs by taking into

account both ‘trembling’ effective types and ‘optimal’ effective types.

B.4.2 Fixed Point Algorithm

To solve for the general equilibrium, we denote by Ñ∗s the distribution of realized effective types (based

on optimal hours choices, as opposed to trembling hours choices). Similarly, we denote by w∗ the wage

as a function of realized effective types only, while the full support wage function is denoted by w. The

fixed point algorithm we designed to solve for the equilibrium is as follows:

0. Initiate a round-zero wage function for all possible effective types, w0.

At any round r ≥ 1

1. Input wr−1 and solve [hh] and [mpe]. Update Ñ∗rs .

2. Input Ñ∗rs and solve [lpe]. Update w∗r.

3. Update wr:

(a) We determine w∗r from step 2. above.

(b) Simultaneously, we fill in the wage for effective types that did not realize at round r by

solving step 2. for trembling types. Along with (a) this yields wr.

4. Move to round r+ 1 by going back to step 1. above and continue iterating until the wage function

converges, that is, wr+1(s̃)− wr(s̃) < ε for ε > 0 and small, element-by-element (for each s̃).

5. (OUTPUT) Compute the general equilibrium as the tuple of outputs from [hh], [mpe], and [lpe]

at the round where the wage function wr converged.

C Estimation

C.1 Identification

C.1.1 Identification of the Worker and Job Distribution

We identify the distributions (G,Ns) directly from the data. We treat the distribution of occupational

attributes G as observable. We identify the workers’ human capital distribution Ns from workers’

education and fixed effects in a panel wage regression. See Section 7.3 for the details on estimation.

C.1.2 Proof of Proposition 3

As is standard in discrete choice models, our argument relies on variation in choice probabilities of hours

and partners. That is, generically, individuals of a given type choose different hours alternatives with

different probabilities; and individuals of a given type choose different marriage partners with different

probabilities and, moreover, these choice probabilities also vary across types.
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Identification of the Production Function. We follow arguments on the estimation of hedonic models

to show identification of the production function z. In principle, this argument is non-parametric, but

in line with our parametric estimation, we focus here on the parametric approach. We mainly follow

Ekeland et al. (2004), Section IV.D, and also make use of their discussion of the identification strategy

proposed by Rosen (1974) and criticized by Brown and Rosen (1982). The identification is based on

the firm’s FOC and exploits the non-linearity of our matching model, which is an important source of

identification just as in Ekeland et al. (2004). Recall the firm’s optimality condition satisfies:

w′(s̃) = zx̃(s̃, µ(s̃)) (22)

This equation can be used to identify the parameters of interest. We treat w′(s̃) as observed (it can be

obtained as the derivative of the kernel regression of w (observed) on s̃ in the subsample of men, where

ψ = 1 by assumption), and denote its estimate by ŵs̃.

We can then identify the production function from FOC (22) after applying a log transformation

and taking into account measurement error:

log(ŵs̃(s̃)) = log(zx̃(s̃, µ(s̃))) + ε (23)

where, for concreteness, we assume the functional form z(s̃, y) = Az s̃
γ1yγ2 + K (see main text), and

where we treat s̃ and the matching µ as observed. Note that this functional form of z circumvents the

identification problem of Rosen (1974), discussed in Brown and Rosen (1982) and Ekeland et al. (2004),

since the slope of the wage gradient in s̃ is not equal to the slope of the marginal product in s̃. We

assume that ε is the measurement error of the marginal wage, with mean zero and uncorrelated with

the right-hand-side (RHS) variables. Regression (23) identifies (Az, γ1, γ2).

In turn, the constant in the production functionK is identified from the wage of the lowest productive

type s̃, who—due to PAM in the labor market—matches with the lowest firm type y = 0 and thus

z(s̃, 0) = K, meaning any positive wage w(s̃) > 0 can only be attributed to K, i.e., w(s̃) = K.

Identification of the Female Productivity Wedge. We can identify ψ from the within (s, h)-type

(agents with the same s and same work hours h) wage gap across gender. Denote the gender wage

gap within individuals of hours-human-capital type (s, h) = (ŝ, ĥ) by gap(ŝ, ĥ), which we treat as

observed for any (ŝ, ĥ). We here focus on any ‘interior’ type with ĥ > 0. Moreover, to ease exposition,

we focus on identifying ψ ∈ [0, 1], as this is the empirically relevant case (but the argument can be

extended to ψ > 1).

Then, given the wage function and our assumption that effective skill types of women and men are
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given by s̃f = ψsfhf and s̃m = smhm, the observed gender wage gap for (ŝ, ĥ) can be expressed as:

gap(ŝ, ĥ) =
w(ŝĥ)− w

(
ψŝĥ

)
w(ŝĥ)

,

where we made the dependence of the female wage on ψ explicit. Note that (G,Ns) were identified

directly from the data and so we observe which worker matches to which firm. Thus, we can consider

labor market matching µ as known at this stage.

Then, for any observed gap(ŝ, ĥ) with 0 ≤ gap(ŝ, ĥ) ≤ 1−K/w(ŝĥ), the female wage is given by:

w
(
ψŝĥ

)
= w(ŝĥ)(1− gap(ŝ, ĥ)) (24)

For a given (observed) µ, the RHS is independent of ψ, positive and finite. In turn, the LHS is positive

and finite; and it is a continuous and strictly increasing function of ψ with w
(
ψŝĥ

)
= K for ψ = 0 and

w
(
ψŝĥ

)
= w(ŝĥ) for ψ = 1.

Hence, one of the following is true: either there is an interior gap, 0 < gap(ŝ, ĥ) < 1 − K/w(ŝĥ),

and so by the Intermediate Value Theorem there exists a unique ψ ∈ (0, 1) for which (24) holds; or, the

minimal gap gap(ŝ, ĥ) = 0 pins down ψ = 1; or the maximal gap gap(ŝ, ĥ) = 1 −K/w(ŝĥ) pins down

ψ = 0. Thus, ψ is identified from gender wage gaps of agents with the same (s, h)-combination.

Identification of the Scale of the Labor Supply Shock. Recall that the choice set of singles differs from

that of couples. In Appendix B, we introduced the notation where we denote the alternative of hours

that a decision maker t ∈ {M,U} chooses by ht ∈ {H ∪ ∅}2 := {{0, ..., 1} ∪ ∅}2 with:

ht =

(hi, ∅), i ∈ {f,m} if t = U

(hf , hm) if t = M.

where type t = U indicates unmarried and type t = M indicates married.

Also, we denote the sum of economic utility and utility derived from preference shocks of decision-

maker t with human capital type s ∈ {S ∪ ∅}2 by uts(ht) + δh
t , where

uts(h
t) + δh

t
=

u(ci, p
U (1− hi)) + δhi , i ∈ {f,m} if t = U

u(cf , p
M (1− hm, 1− hf )) + u(cm, p

M (1− hm, 1− hf )) + δhf + δhm if t = M.

The probability that household type t with human capital s chooses hours alternative ht is

πts(h
t) =

exp(uts(h
t)/σδ)∑

h̃t∈{H∪∅}2 exp(uts(h̃
t)/σδ)

(25)

which follows from our assumption on the preference shock distribution (Type-I extreme value).
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Let hU = 0 := (0, ∅) denote the hours for a single who puts all available time into home production

and works zero hours in the labor market. We consider alternative hU = 0 as our normalization choice

and obtain for a single male of human capital type s = (sm, ∅)) the relative choice probabilities:

πUs (hU )

πUs (0)
=

exp(uUs (hU )/σδ)

exp(uUs (0)/σδ)

log

(
πUs (hU )

πUs (0)

)
=

uUs (hU )− uUs (0)

σδ

=
w(smhm)− w(sm0) + pU (1− hm)− pU (1− 0)

σδ

=
w(smhm) + pU (1− hm)− pU (1)

σδ
(26)

where the wage from not working is set to zero and where hm is the male hours associated to this single

household’s hours choice, hU = (hm, ∅). We treat human capital types as observed at this stage and

consider two single types s′ = (s′m, ∅) and s′′ = (s′′m, ∅). Then we can consider the difference in relative

choices of these two single men:

log

(
πUs′ (h

U )

πUs′ (0)

)
− log

(
πUs′′(h

U )

πUs′′(0)

)
=

1

σδ

(
w(s′mhm)− w(s′′mhm)

)
.

The LHS is observed in the data (how does the relative choice probability for hours alternative hU 6= 0

change in the population of male singles as one varies human capital sm), and on the RHS, the wage

difference (it is the effect of men’s human capital on wages given the hours choice hU 6= 0) is also

observed and different from zero as the wage strictly increases in human capital. Thus, σδ is identified.

Identification of the Home Production Function. Let hM = 1 := (1, 1) denote the vector of hours for

couples in which both spouses put zero hours into home production and thus work fulltime in the labor

market. Alternative hM = 1 is our normalization choice and we obtain the relative choice probabilities

of married couple s of choosing hours hM 6= 1 versus hM = 1 as:

πMs (hM )

πMs (1)
=

exp(uMs (hM )/σδ)

exp(uMs (1)/σδ)

log

(
πMs (hM )

πMs (1)

)
=
w (ψsfhf )− w (ψsf ) + w(smhm)− w(sm) + 2pM (1− hm, 1− hf )

σδ
(27)

where we used that 2pM (0, 0) = 0 by assumption in our quantitative model. Note that the LHS of

(27) (relative choice probabilities) is observed, and on the RHS, wages of men and women with types

(sf , sm) conditional on hours are also observed in the data, and σδ is known at this stage. Thus,

home production function pM is non-parametrically identified since we can specify (27) for all hours

alternatives hM chosen in the data. Note that we can identify pM from a couple of any type s = (sf , sm).

By a similar argument the home production function of singles, pU , is identified.
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Identification of the Scale of the Marriage Taste Shock. We now show that σMβ is identified once the

parameters of the utilities are identified.

Let η(sf ,sm) be the probability that a man sm chooses woman sf on the marriage market, conditional

on marrying. Under the assumption that the taste shock is extreme-value distributed (and following

the same derivations as for the choice probabilities of hours), η(sf ,sm) is given by:

η(sf ,sm) =
exp(Φ(sm, sf , v(sf )))/σMβ )∑
s′f

exp(Φ(sm, s′f , v(s′f )))/σMβ )

where, as before, we denote by Φ(sm, sf , v(sf )) the expected value of man sm from being married to

woman sf and paying her the transfer v(sf ). This value is given by:

Φ(sm, sf , v(sf )) := σδ

[
κ+ log

( ∑
hM∈H2

exp

{
uMs (hM )/σδ

})]
− v(sf )

: = σδ

[
κ+ log

( ∑
hM∈H2

exp

{
w(smhm) + w (ψsfhf ) + 2pM (1− hm, 1− hf )

σδ

})]
− v(sf )

Using the ratio of probabilities of choosing two different women s′′f and s′f , we obtain:

log

(
η(s′′f ,sm)

η(s′f ,sm)

)
=

Φ(s′′f , sm, v(s′′f ))− Φ(s′f , sm, v(s′f ))

σMβ
.

Then, we can compare the ratio of these choice probabilities across male types (s′m, s
′′
m):

log

(
η(s′′f ,s

′′
m)

η(s′f ,s
′′
m)

)
− log

(
η(s′′f ,s

′
m)

η(s′f ,s
′
m)

)
=

Φ(s′′f , s
′′
m, v(s′′f ))− Φ(s′f , s

′′
m, v(s′f ))

σMβ
−

Φ(s′′f , s
′
m, v(s′′f ))− Φ(s′f , s

′
m, v(s′f ))

σMβ
,

which, using the expression for Φ(sm, sf , v(sf )) from above, we can spell out as:

log

(
η(s′′f ,s

′′
m)

η(s′f ,s
′′
m)

)
− log

(
η(s′′f ,s

′
m)

η(s′f ,s
′
m)

)
=

σδ
σMβ

(
log
( ∑

hM∈H2

exp

{w(s′′mhm) + w
(
ψs′′fhf

)
+ 2pM (1− hm, 1− hf )

σδ

})

− log
( ∑

hM∈H2

exp

{w(s′′mhm) + w
(
ψs′fhf

)
+ 2pM (1− hm, 1− hf )

σδ

})

− log
( ∑

hM∈H2

exp

{w(s′mhm) + w
(
ψs′′fhf

)
+ 2pM (1− hm, 1− hf )

σδ

})

+ log
( ∑

hM∈H2

exp

{w(s′mhm) + w
(
ψs′fhf

)
+ 2pM (1− hm, 1− hf )

σδ

}))
.

The LHS is observed. Moreover, all objects on the RHS are either observed (wages) or identified at
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this stage (home production function and σδ), except σMβ . We can solve this equation for σMβ , giving a

unique solution. Thus, σMβ is identified.

C.2 Estimation of Worker Types

Sample Selection. Our sample consists of individuals in the GSOEP from 1984-2018 who are between

20 and 60 years old and are either married/cohabiting or single. We exclude individual-year observations

when the individual indicated self-employment and when they worked in poorly defined occupations

(kldb92≥ 9711). We also exclude observations with missing information on education or with missing

(not zero) labor force experience. Our panel consists of around 212,000 person-year observations.

Method. We aim to estimate the distribution of workers’ human capital Ns. To do so, we need to

estimate the returns to education to obtain a proxy for x in our model, as well as individual unobserved

heterogeneity, capturing ν in our model. We use our theoretical wage function as guidance for specifying

the empirical log hourly wage of individual i at time t (where t is a year in our sample) as

lnwit = νi +
∑

ed∈{voc,c}

αedxedit + β1hit + β2h
2
it + β′zZit + κs + ρt + εit, (28)

where xedit are indicator variables for the education group of an individual (meant to capture x in our

model) at time t. Coefficient αed gives the ‘value’ of education ed in terms of log wage units, where

0 < αvoc < αc would indicate positive returns to education. While these coefficients indicate the

average return to education for all individuals in a certain education group, νi is a person fixed effect

that captures unobserved time-invariant ability, with model counterpart ν. In turn, hit denotes weekly

labor hours (which captures the time ‘investment’ in productivity in our model). Finally, Zit are time-

varying controls for the individual, κs and ρt are state and time fixed effects, and εit is a mean-zero

error term.38 We implement (28) as a panel wage regression and deal with three challenges below:

selection into labor force participation; endogeneity of hours worked; agents who hold jobs for less than

two periods in our sample.

Key Variables. For weekly hours, we use reported actual hours which, when positive, we winsorized

by 10 hours from below and 60 hours from above to deal with outliers. For labor force experience we

use the reported labor force experience, and we impute it by potential experience if this information

is missing.39 For education, we use three categories: In the group of low education, there are those

whose highest degree is lower secondary, high school or vocational with weakly less than 11 years of

education (around 35%). In the group of medium education (which we sometimes denote by voc), there

are those with vocational degree and above 11 years of education (around 44%). In the group of high
38We do not include occupation fixed effects since in our model, conditional on s̃ (which we control for here by controlling

for (x, ν, h)), the wage does not depend on occupation in our competitive equilibrium. But even doing so—which we have
done for robustness—does not significantly change the impact of x or ν on the hourly wage.

39For men, potential and actual experience are almost perfectly correlated, which is why this imputation should work
well for them. For women, the correlation is much lower, which is why we do not impute here.
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education (sometimes denoted by c), there are those with college degree or more (around 20%). For

occupation codes, we use the variable kldb92_current, which consistently codes occupations across the

entire panel. Our wage variable are log hourly wages, inflation-adjusted in terms of 2016 Euros. For

the definition of ‘demographical cells’ in the selection stage below, we additionally use a variable that

indicates whether there are children below 3 years old in the household, age bins (≤ 25, > 25 and ≤ 40,

> 40 and ≤ 50, > 50) and the state of residence.

Selection Equation. To account for selection into labor force participation in the wage regression,

we first run a selection regression. To do so, we need an instrument that affects participation but is

excluded from wage regression (28). Since the variation in participation in our sample is mainly due

to women, we use the ‘progressiveness’ in an individual’s narrowly defined demographic cell. We proxy

progressiveness by the share of females working in a narrowly defined demographic cell. Our cells are

defined by a combination of state, year, age and an indicator whether a child under the age of 3 is in

the household.40 When defining this variable for a particular individual, we employ the ‘leave-one-out’

method and do not count the individual’s labor force participation when computing this statistic. We

further drop cells with less than five observations. We end up with around 2,500 cells with more than

5 observations in each. Note that we experimented with additional cell characteristics (education and

country of origin) but there is a trade-off between number of observations by cell and making the cells

more specific to the demographic groups. Defining the cells by these additional variables would imply

to drop more than twice as many observations due to small cell size.

Our assumption on this IV (i.e., our progressiveness variable) is that the following exclusion restric-

tion holds: ‘progressiveness of an individual’s demographic cell’ only affects wages through labor force

participation but not in other ways.

We run the following probit selection regression:

empit = αsharej(i)t +
∑

ed∈{voc,c}

αedxedit + β′zZit + κs + ρt + εit (29)

where the dependent variable is an indicator of whether individual i is employed at time t, sharej(i)t
is the progressiveness measure in the demographic cell j of individual i at time t (given by the share

of women working in the cell, see description of this IV above), xedit captures education indicators

(‘low education’ is the reference group), Zit is a vector of demographic individual controls (linear and

quadratic labor force experience in years, household size) and κs and ρt are state and year fixed effects

and εit is a mean-zero error term. We cluster standard errors on the cell level.

The results are in Table 5, where we label our IV sharej(i)t by Share of Working Women in Cell.

There is a strong positive effect of the share of women working in the demographic cell on labor force

participation of an individual in that cell (coefficient of 1.355 with standard error 0.0284).
40German children start kinder-garden when they are 3 years old. Before age 3, children are predominantly at home (in

2013, only 29% of children aged 0-2 were in daycare (OECD, 2016)), so age 3 is an important threshold when it comes to
mothers’ labor force participation.
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Table 5: Selection Regression

(1)

Employed

Share of Working Women in Cell 1.355∗∗∗

(0.0284)

Experience 0.0919∗∗∗

(0.00216)

Experience2 -0.00164∗∗∗

(0.0000599)

Medium Educ 0.453∗∗∗

(0.00932)

High Educ 0.851∗∗∗

(0.0115)

HH Size -0.0462∗∗∗

(0.00539)

Constant -0.918∗∗∗

(0.0358)

Observations 212,894

Pseudo R2 0.144

Notes: Results are based on regression (29). A Cell is defined by state, age, year and
presence of children under 3 in the household. The regression includes year and state fixed
effects. Standard errors clustered at cell level in parentheses. ∗∗∗Significant at the 1% level.

Panel Wage Regression. One potential issue for our specification of the wage regression is that there

may be confounding factors that impact both hours and wages. While we deal with time-invariant un-

observed heterogeneity using the panel regression with individual fixed effects, time-varying unobserved

heterogeneity—such as productivity shocks or health shocks—could still be problematic. To address

this concern, we use an IV approach. In our model, there is a systematic relationship between the

hours worked of an individual and the hours worked by their partner, so we use the partner’s hours as

an instrument for own hours. Identification relies on changes in spousal labor hours over time. The

identifying assumption is that conditional on the individual fixed effect and education, partner’s hours

are exogenous in the wage regression and that partner’s labor hours impact own wage only through

own labor hours, which is satisfied in our model. In particular, we instrument hours worked and hours

worked squared by (i) the hours worked by the partner, (ii) the hours worked by the partner squared

and (iii) whether a partner is present (where we set partner’s hours to zero in both cases, if partner is

present but not working and if partner is not present). We therefore drop observations whose partner

reports to be employed but has zero reported labor hours and observations whose partner has missing

employment and hours information. Since we include individual fixed effects we also drop singleton ob-

servations (those who only show up in a single year of the panel). We further restrict the sample to those

that are employed and have non-missing hourly wage. This leads to a sample of 133,214 person-year
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observations. Based on our model wage function, we choose the following regression specification:

lnwit = νi + β0IMRit + β1hit + β2h
2
it +

∑
ed∈{voc,c}

αedxedit + β′zZit + κs + ρt + εit (30)

where νi is a individual fixed effect, IMRit is the inverse mills ratio of individual i in year t from the

selection probit regression above, hit are weekly hours worked, and xedit , Zit, κs and ρt are as in the

selection regression (29). Note that we could not include hit into the selection equation since hit = 0

versus hit > 0 is a perfect predictor of employment. Nevertheless, based on our model, it is important to

control for hours worked in the hourly wage regression. We again cluster standard errors on the cell level.

Table 6 contains the results. In column (1) an (2) we report the first stage regressions (for two

variables to be instrumented: weekly hours and weekly hours squared) and column (3) contains the

second stage regression. The three IV’s for the hours worked variables (partner’s hours, partner’s

hours squared and partner present) are not subject to the weak instrument problem according to the

F-statistics. Regarding the second stage, we note that the inverse mills ratio is positive and signifi-

cant, indicating that individuals are positively selected into working and not controlling for selection

here would have biased the coefficients upward. Moreover, we note that weekly hours worked have

a strong positive effect on wages, justifying our model assumption that hours affect productivity and

thus hourly wages. In particular, increasing hours from 30 to 40 hours per week yields an hourly wage

return of (40× 0.119− 402 × 0.00164)− (30× 0.119− 302 × 0.00164) = 0.042, so of around 4%.

Imputation. Based on these results, we are able to obtain x-types and ν-types (and thus s-types) for

around 17,000 individuals. We impute fixed effects of the remaining ones (around 11,600 individuals)

based on themultiple imputation approach. As auxiliary variables in this imputation we choose covariate

in our data set that are most correlated with the individual fixed effects (such as education, gender and

full time labor force participation). After imputation, we use the subset of individuals for structural

estimation the comply with our final sample restrictions, Appendix OC.2. In our final estimation sample

(for baseline period, 2010-2016), we have 3,857 unique individuals. For 24% of them we have imputed νi.

Distribution of Workers’ Human Capital. We then divide individuals into the three education

groups and assess within each group whether an individual has a low (below median) or high (above

median) fixed effect, so there are two subgroups in each education bin. We compute the subgroup fixed

effect, νedj , as the mean of the individual fixed effects belonging to subgroup j of education bin ed. This

way we obtain six fixed effects groups (two for each education group). Finally, we compute the human

capital type for each individual as si = αedxedi + νedj (i) where νedj (i) is the fixed effect of individual i’s

group. We obtain six s-types. The resulting human capital distribution (s-types by education group)

is displayed in Table 7.
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Table 6: Wage Regression
(1) (2) (3)

Weekly Hours Worked Weekly Hours Worked2 Log Hourly Wage
Partner’s Weekly Hours Worked -0.0574∗∗∗ -4.607∗∗∗

(0.00480) (0.389)
Partner’s Weekly Hours Worked2 0.000895∗∗∗ 0.0796∗∗∗

(0.000105) (0.00857)
Partner Present 1.133∗∗∗ 60.85∗∗∗

(0.164) (12.57)
Experience 0.377∗∗∗ 28.53∗∗∗ 0.0332∗∗∗

(0.0251) (1.718) (0.00182)
Experience2 -0.00460∗∗∗ -0.362∗∗∗ -0.000555∗∗∗

(0.000399) (0.0298) (0.0000286)
Medium Educ 0.242 27.28∗ 0.0264∗∗

(0.216) (15.89) (0.0103)
High Educ 4.289∗∗∗ 299.8∗∗∗ 0.195∗∗∗

(0.458) (30.93) (0.0244)
HH Size -1.280∗∗∗ -80.32∗∗∗ 0.0218∗∗∗

(0.0510) (3.495) (0.00467)
Inverse Mills Ratio -3.519∗∗∗ -215.2∗∗∗ 0.133∗∗∗

(0.255) (18.38) (0.0197)
Weekly Hours Worked 0.119∗∗∗

(0.0156)
Weekly Hours Worked2 -0.00164∗∗∗

(0.000211)
Observations 133,214 133,214 133,214
F 69.92 59.52 162.902
R2 -0.386
Notes: All specifications include year and state fixed effects. The table reports the IV version of regression (30), where we instrument Weekly Hours
Worked and Weekly Hours Worked squared by the partner’s Weekly Hours Worked (linear and squared) and whether the partner is present. Columns
(1) and (2) are the first stage regressions while Column (3) is the second stage regression. Standard errors (clustered at the cell level) are in parentheses.
A Cell is defined by state, year, age, and presence of children under 3 in the household. ∗∗∗Significant at the 1% level. ∗∗Significant at the 5% level.

Table 7: Worker Distribution of s-Types by Education

s-type (ed, νed)
Education (low,low) (med,low) (low,high) (med,high) (high,low) (high,high) Total

Low Educ 523 0 601 0 0 0 1,124
Medium Educ 0 617 0 1,046 0 0 1,663
High Educ 0 0 0 0 447 623 1,070

Total 523 617 601 1,046 447 623 3,857
Notes: Low Educ includes high school and vocational education with less than 11 years of schooling. Medium Educ is defined as
vocational education with more than 11 years of schooling. High Educ is defined as college and more. We obtain six s-types by ordering
their value of si = αedxedi + νedj (i) where parameters αed are estimated based on regression (30) and where νedj (i) is the fixed effect of
individual i in education group ed and subgroup j, also computed from model (30) as the average individual fixed effects in that group.

C.3 Estimation of Job Types

Data and Sample Selection. Our main data source for measuring occupation types is the BIBB

collected in 2012 by the German Federal Institute of Vocational Training, and the German Federal

Institute for Occupational Safety and Health. This survey is representative of the German employed

population. In particular, it contains data on task usage in 1,235 occupations defined by the 4-digit code
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kldb92, which we also use for our analysis in the GSOEP. This data is reported by individuals who work

in these occupations. In order to reduce the problem of noisy reporting, we drop occupations in which

the task information is based on less than 5 individuals. We are left with task data for 613 occupations.

These are the most common occupations and we will base our structural estimation exercise on the subset

(608 occupations) that can be merged to the occupations held by individuals in our GSOEP sample,

using the four-digit occupational codes kldb92 from the German Classification of Occupations 1992.

Task Data. The BIBB contains data on how intensely different 4-digit occupations use different types

of tasks.These intensity measures are continuous and we normalize them to be on the unit interval. The

reported tasks are comprised of: Detailed Work, Same Cycle, New Tasks, Improve Process, Produce

Items, Tasks not Learned, Simultaneous Tasks, Consequence of Mistakes, Reach Limits, Work Quickly,

Problem Solving, Difficult Decisions, Close Gaps of Knowledge, Responsibility for Others, Negotiate,

Communicate.

Model Selection Stage. We merge the task data from the BIBB into occupations held by individuals

in the GSOEP. As with the worker types, we here use the entire GSOEP panel (here: pooled). We run

a Lasso regression of log hourly wages on the task descriptors listed in the last paragraph in order to

systematically select the tasks that matter for pay. This procedure selects 13 tasks (all tasks from the

dataset except: Improve Process, Consequence of Mistakes and Difficult Decisions).

Principal Component Analysis. Because we want to reduce the occupational type to a single

dimension, we collapse the information of the 13 selected tasks into a single measure using a standard

dimension reduction technique (principal component analysis, or in short, PCA). We then select the first

principal component, which captures the most variation of the underlying task variables in the sample

of employed workers in the GSOEP: It captures around 43% of the underlying variation and—based on

the loadings on the underlying task descriptors—our interpretation of this component is task complexity

or high skill requirement. This interpretation is based on positive loadings on all task variables except

detailed work and same cycle, which arguably are the only tasks in the dataset that indicate routine

work. We report a scree-plot with eigenvalues of the different principal components and a plot with

loadings of the first PC in Figure 10, left and right panel, respectively.

Figure 10: Principal Component Analysis
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Table 8: Correlation Across Alternative Measures

y (baseline) y (PCA) y (Lasso)
y (baseline) 1
y (PCA) 0.983∗∗∗ 1
y (Lasso) 0.946∗∗∗ 0.922∗∗∗ 1
Observations 608
Notes: y(baseline) is our main measure, based on two steps: Lasso and PCA.

∗∗∗Significant at the 1% level.

Table 9: Summary Statistics of Alternative Measures

mean sd min max
y (baseline) .573 .193 0 1
y (PCA) .585 .188 0 1
y (Lasso) .565 .196 0 1
Notes: y(baseline) is our main measure, based on two steps: Lasso and PCA.

Distribution of Jobs’ Task Complexity. We then compute the mean of this measure by occupation

and denote it by ŷ. Once matched to our main sample (see Appendix OC.2), we define our final measure

of occupational or job type as the rank of occupations in the task complexity distribution, i.e. y = Ĝ(ŷ),

where Ĝ is the cdf of ŷ. So y ∼ G where G = U [0, 1]. The reason for this transformation is that the

occupational task data only has an ordinal interpretation. Note that our production function is flexible

enough to capture the true output as a function of non-transformed types ŷ. Examples of occupations

in the top 5% of the G distribution include engineers and programmers. Examples of occupations in

the lowest 5% include janitors and cleaners.

Alternative Approaches. We considered 2 alternative approaches for the estimation of occupational

types. The first alternative is to not use wage data at all but instead, to directly reduce the multi-

dimensional task data to a single measure by PCA. The second alternative is to rely more heavily on

wages by first selecting important tasks via Lasso and then using the predicted wage based on these

important tasks as our measure for occupation types. With all three approaches, we get very similar

results. We show the summary statistics and correlations of all three measures in Tables 8 and 9.

We also considered determining the occupational types through an occupational fixed effect in the

wage regression we used to recover worker types (equation (28)). This would have meant to run a

two-way fixed effects regression. We chose our alternative approach that does not rely on occupational

fixed effects for the following reasons: First, based on our model featuring a competitive labor market,

the wage function does not depend on an occupational fixed effect/type when controlling for workers’

effective types: all workers with the same effective type s̃ should be matched to the same occupation.

Second, the two-way fixed effects approach is known to be problematic under limited worker mobility

(limited mobility bias) and when one is interested in sorting (since the correlation between worker and

firm/occupation fixed effects is not accurately capturing sorting).
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C.4 Internal Estimation

C.4.1 Parameters Set Outside the Model

Table 10: Exogenously Fixed Parameters

Parameter Value

Hourly Minimum Wage K 6.32
Labor Supply Shock (location) δ̄ 0.00
Preference Shock for Partners (location) β̄M 0.00
Preference Shock for being Single (location) β̄U 0.00
Preference Shock for being Single (scale) σUβ 29.25

C.4.2 Results

Table 11: Targeted Moments

Model Data

M1. LFP Female to Male Ratio 0.7426 0.7864

M2. Full Time Work Female to Male Ratio 0.4046 0.3834

M3. LFP Married to Single Ratio, Men 0.8612 0.8556

M4. LFP Married to Single Ratio, Women 0.9890 1.2534

M5. Correlation of Spouses Home Hours 0.3159 0.3120

M6. Mean Hourly Wage 17.7271 17.6354

M7. Variance Hourly Wage 51.1067 53.9061

M8. Upper Tail (90-50) Wage Inequality 3.0852 2.9686

M9. Overall (90-10) Wage Inequality 1.7294 1.7271

M10. Correlation between Spouses’ Human Capital Types 0.4403 0.4468

M11. Fraction of Single Men 0.2055 0.1976

M12. Gender Wage Gap by Effective Type 2 0.1227 0.1557

M13. Gender Wage Gap by Effective Type 4 0.1414 0.1464

M14. Female LFP by Couple Types 3 and 4 0.7242 0.7308

M15. Female LFP by Couple Types 5 and 6 0.8468 0.8071

M16. Female LFP of Single Women Type 3 and 4 0.8076 0.7320

M17. Female LFP of Single Women Type 5 and 6 0.8583 0.8429
Notes: LFP stands for Labor Force Participation. Moments are computed as discussed in Section OD.1.1 and Table O4 of the Online
Appendix. Types refer to human capital types, where each number 1-6 corresponds to the corresponding column of Table 7.

Table 12: Un-targeted Moments: Marriage Matching Frequencies - Model and (Data)

Low Educ Men Medium Educ Men High Educ Men Single Women

Low Educ Women 0.0820 (0.0747) 0.0721 (0.0449) 0.0230 (0.0126) 0.0361 (0.0365)

Medium Educ Women 0.1016 (0.0860) 0.1246 (0.2159) 0.0984 (0.0695) 0.0787 (0.0747)

High Educ Women 0.0361 (0.0149) 0.0459 (0.0485) 0.0754 (0.0986) 0.0557 (0.0562)

Single Men 0.0557 (0.0527) 0.0656 (0.0714) 0.0492 (0.0430) 0.0000

Notes: Low Educ includes high school and vocational education with less than 11 years of schooling. Medium Educ is defined as vocational
education with more than 11 years of schooling. High Educ is defined as college and more. Table shows model frequencies with data frequencies
in parenthesis.
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D Quantitative Analysis

D.1 Comparative Statics

The Effect of ψ. Last, we analyze the comparative statics of the female labor market wedge. Figure

11a in Appendix D.1 shows that eliminating the wedge (increasing ψ from our estimate ψ = 0.84 to

ψ = 1) would reduce the gender gap by about 25%. There is a direct positive effect of ψ on female

productivity—and thus wages—but also several indirect effects: First, the wife’s labor hours increase in

productivity ψ relative to the husband’s, reducing the gender hours gap (panel e) and thus the gender

wage gap. Second, the reduction in the gender hours gap leads to a decline in the labor market sorting

gap (panel f), further curbing the gender wage gap. Third, smaller gender disparities in the labor market

are associated with an increase in marriage market sorting (panel d), since in a world in which men and

women are more equal, the motive for positive sorting strengthens. The increase in marriage sorting

reinforces the drop in both hours and labor sorting gaps, further dampening the gender wage gap.

In Figures 11b and c, we study the effects of ψ on the variance of income, both within and across

households. An increase in ψ leads to lower within-household inequality, but higher between-household

inequality (driven by the increase in marriage sorting), with ambiguous effects on overall inequality.

Figure 11: a. Gender Wage Gap, b. Household Income Variance Decomposition, c. Household In-
come Variance, d. Marriage Market Sorting, e. Gender Gap Labor Hours, f. Gender Gap Labor Sorting.
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Figure 12: a. Gender Wage Gap, b. Household Income Variance Decomposition, c. Household In-
come Variance, d. Marriage Market Sorting, e. Gender Gap Labor Hours, f. Gender Gap Labor Sorting.
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D.2 Inequality Over Time
Table 13: Data and Model Moments: 1990-1996 versus 2010-2016

Past Period Current Period Data Diff.
Model Data Model Data p-value

M1. LFP Female to Male Ratio 0.6266 0.5875 0.7426 0.7864 0.0000
M2. Full Time Work Female to Male Ratio 0.2374 0.3336 0.4046 0.3834 0.2324
M3. LFP Married to Single Ratio, Men 0.7768 0.6343 0.8612 0.8556 0.0190
M4. LFP Married to Single Ratio, Women 1.0057 1.0844 0.9890 1.2534 0.0000
M5. Correlation of Spouses’ Home Hours 0.1672 0.1518 0.3159 0.3120 0.0019
M6. Mean Hourly Wage 16.9807 17.0106 17.7271 17.6354 0.0000
M7. Variance Hourly Wage 35.3776 37.2476 51.1067 53.9061 0.0026
M8. Upper Tail (90-50) Wage Inequality 2.5262 2.3486 3.0852 2.9686 0.0000
M9. Overall (90-10) Wage Inequality 1.5604 1.5841 1.7294 1.7271 0.0000
M10. Correlation between Spouses’ HK Types 0.3864 0.4052 0.4403 0.4468 0.0000
M11. Fraction of Single Men 0.1186 0.1147 0.2055 0.1976 0.2069
M12. Gender Wage Gap by Effective Type 2 0.1682 0.1814 0.1227 0.1557 0.0000
M13. Gender Wage Gap by Effective Type 4 0.1719 0.1839 0.1414 0.1464 0.4885
Notes: LFP stands for Labor Force Participation. Moments are computed as discussed Section OD.1.1 and Table O4 of the Online
Appendix. The last column of the table reports the p-value of the hypothesis test of the differences between the data moments in the
two samples being zero. We use a standard T-test for differences in means (M6), a standard Levene test for differences in variances (M7)
and standard tests for differences in proportions (M11). We use a Fisher transformation to construct the test statistic for the differences
in correlations between samples (M5 and M10). We use a two-sample Wald test for differences in ratios across samples (M1, M2, M3,
M4, M8, M9, M12 and M13). To construct the statistic for the Wald tests for difference in ratios, we use bootstrap techniques for the
variance estimation.
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Table 14: Estimated Parameters: 1990-1996 versus 2010-2016

Past Period Current Period
Estimate s.e. Estimate s.e.

Female Relative Productivity in Home Production θ 0.88 0.01 0.78 0.02
Complementarity Parameter in Home Production ρ -0.16 0.19 -0.54 0.22
Home Production TFP Ap 38.48 1.52 41.38 0.98
Elasticity of Output w.r.t. s̃ γ1 0.41 0.07 0.59 0.05
Elasticity of Output w.r.t. y γ2 0.16 0.12 0.16 0.07
Production Function TFP Az 40.50 5.17 42.33 2.28
Female Productivity Wedge ψ 0.76 0.03 0.84 0.03
Preference shock for Partners (scale) σMβ 0.05 0.01 0.19 0.02

Notes: s.e. denotes standard errors. See Section 7.4 for a description of how these standard errors are computed.

Figure 13: Inequality Changes Over Time: Detailed Decomposition
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