
# Pulp Friction: The Value of Quantity Contracts in Decentralized Markets

Olivier Darmouni, Simon Essig Aberg, and Juha Tolvanen

Columbia Business School, University of Michigan, and University of Vienna

### The Pulp and Paper Industry



Market structure:

- Quantity contracts (> 80%): Quantity set often year in advance, prices negotiated monthly
  - Used also in other intermediate goods markets like coal, steel, plywood, gas...
- Decentralized spot (< 20%)</li>

### Research Question

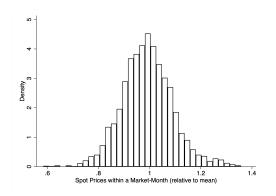
Why does the pulp and paper industry rely on long-run quantity contracts? How would welfare change under alternative market structures?

Coase (1937): Market structure minimizes transaction costs.

Price dispersion in the decentralized spot market (search and bargaining frictions) + inelastic production

# 2 Answers

Using invoice and production data from a large seller we quantify 2 reasons:


- Contracts allow avoiding search frictions by locking in high surplus partners (estimate: 75% of the value)
- **2** Serve as quantity insurance (estimate: 25% of the value)

Trade-off:

 $\begin{array}{l} \mbox{Contractual relationships} \Rightarrow \mbox{lock in good partners \& mitigate q risk} \\ \mbox{vs.} \\ \mbox{Spot trade} \Rightarrow \mbox{ex-post optimal allocation of quantity} \end{array}$ 

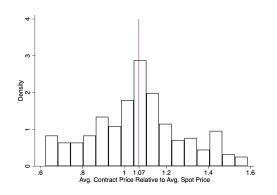
## Price Dispersion at the Spot

Figure: There Is Substantial Spot Price Dispersion



*Notes.* Mill gate price among spot buyers after removal of a market-month fixed effect, relative to mean of one. Market is defined as product-region.

## Production is inelastic

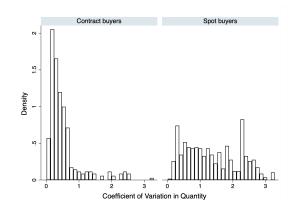

Table: Total Sales and Production Inelastic to Market Price in the Short Run

|                  | (1)             | (2)             | (3)             |
|------------------|-----------------|-----------------|-----------------|
|                  | Log Total Sales | Log Production  | Log Inventory   |
| Log Market Price | -0.17<br>(0.11) | -0.01<br>(0.16) | -0.38<br>(0.15) |
| Observations     | 72              | 72              | 72              |
| R-squared        | 0.19            | 0.07            | 0.28            |
| Year FE          | YES             | YES             | YES             |

*Notes.* Robust standard errors in parentheses. Observations are at the monthly level. Market price is the average price among the seller's trading partners.

## Contract Buyers Are on Average Better

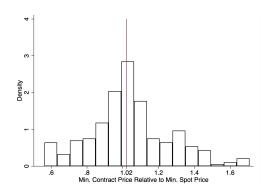
Figure: Average Contract Price > Average Spot Price




*Notes.* The median and mean values equal 1.07. Each observation is trade within a region, fiber, and month. The price measure is mill gate price.

Logistics costs a big part of this

## Contract Buyers Are More Reliable


Figure: Contract Buyers Are More Reliable Than Spot Buyers



*Notes.* The coefficient of variation equals the standard deviation of quantity over the mean quantity. Each observation is a buyer within a region, fiber, and year.

## Allocation Ex-Ante but not Ex-Post Optimal

Figure: Often: Lowest Contract Price<Lowest Spot Price



*Notes.* The median value equals 1.02 and the mean value equals 1.04. Each observation is trade within a region, fiber, and month.

Allocation not ex-post optimal⇒ Cost of inflexible contract quantities

# Why quantity insurance?

Claim: Price dispersion (F1) + inelastic supply (F2)  $\Rightarrow$  Risk Aversion Intuition: Consider selling fixed Q to

- **1** A big customer buying random  $q_c$  for fixed price p
- 2 Rest to spot market with price dispersion where you can choose the best offers
  - the  $q_s$ th unit sold there fetches price  $p_s(q_s)$  with p' < 0
  - Revenue from spot then  $\int_0^{q_s} p_s(q) dq$

Total revenue:

$$\Pi(q_c)=pq_c+\int_0^{Q-q_c}p_s(q)dq$$

$$\Rightarrow \Pi''(q_c) = p'(Q-q_c) < 0$$

Seller endogenously risk-averse with respect to contracted quantity!

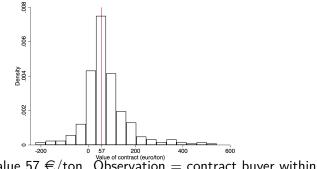
When contract buyer buys more, it replaces better spot buyers than what can be found when it buys less.

### Structural Model

We estimate value of quantity contracts with a structural model matching main market institutions. Outline:

- 1 Each year negotiate q contracts with buyers
  - quantities set to max expected surplus
  - rebates set to split expected surplus via Nash-in-Nash
- 2 Each month:
  - Market shocks realize, *q* contracts supplied, market conditions determine "market price" on which buyer gets the rebate
  - Remaining supply traded to spot where
    - Seller meets randomly an exogenous fraction of potential buyers
    - Selects the best of them and makes them take-it-or-leave-it offers

Information and contracting frictions preclude complete contracts at step 1

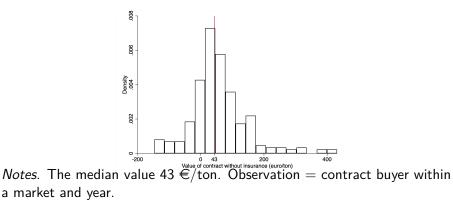

• Would require transfer of info about spot market outcomes...

Estimate with SMM in two steps

# Counterfactual 1: Value of contracts

For each contract buyer consider moving them to spot. Calculate difference in surplus compared to current allocation.

Figure: Quantity Contracts Are Valuable




*Notes.* Median value 57  $\in$ /ton. Observation = contract buyer within a market and year. Median market price in Europe for hardwood pulp: 775 $\in$ /ton.

# Counterfactual 2: Value of insurance vs. buyer selection

Predict for each contract buyer what their quantity variance at spot would be. Then calculate value of contracts with this new variance.

Figure: Quantity Contracts Are 25% Less Valuable Without Quantity Insurance



# Counterfactual 3: Role of trading frictions at spot

Change the exogenous fraction of buyers ( $\gamma$ ) the seller meets at spot. Reallocate buyers between spot and contract.

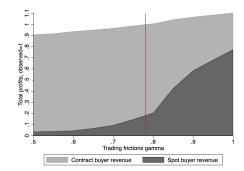



Figure: Profits Are Higher When Trading Frictions Diminish

With lower frictions more traded at spot and profits are higher.

# The End

Thank you!