Identifying the Heterogeneous Impact of Highly Anticipated Events: Evidence from the Tax Cuts and Jobs Act

Paul Borochin[†] Murat Celik[‡] Xu Tian[§] Toni Whited[¶]

- † University of Miami
- ‡ University of Toronto
- § University of Georgia
- ¶ University of Michigan

American Economic Association January, 2022

1 Introduction

- **2** Evidence from Simulations
- **3** Empirical Model

4 Results

6 Conclusion

- The market's reaction to events can be misleading, especially with high anticipation
 - Huberman and Schwert (1985), Bhattacharya et al. (2000)
- We use simulation to quantify anticipation bias
- We propose a new method to pool data across firms to capture the counterfactual outcome
- The difference is the true event impact

Three main approaches to dealing with anticipation

- Firm characteristics (Malatesta and Thompson, 1985; Brennan, 1990)
- Firm-level counterfactual estimation models using stock and options data
 - Subramanian (2004)
 - Barraclough, Robinson, Smith, Whaley (2013)
 - Borochin (2014)
 - Borochin, Golec (2016)

- Predictive markets
 - Snowberg et al. (2007)
 - Wolfers and Zitzewitz (2009)
 - Snowberg et al. (2011)
- Characteristics need customization, firm-level estimations require identifying assumptions, betting markets are illiquid
- We can recover *heterogeneous* impacts of market-wide events
 - No need to specify an ex-ante ordering of event payoffs
- Eg, TCJA effect on a particular firm depends on its R&D, overseas operations, deferred tax assets

- Anticipation of an event can break traditional econometric inference in simulations
 - at 80% anticipation, correlation between firm price reaction and true event impact is only 0.44
 - for 96% anticipation (eg. Tax Cuts and Jobs Act) the correlation drops to 0.20
 - the estimated aggregate impact across all firms is near zero at 96% anticipation, despite a meaningful true effect
- We derive a new method to let the data tell us which firm has positive/negative impact from a heterogeneous event, robust to high anticipation
- Applying this method to the TCJA yields an impact estimate of 12.36%, strongest for growth firms with high patent counts

- No satisfactory way to address highly-anticipated economy-wide effects with both winners and losers
- These are usually very important events, and simulation shows that naive analyses are very misleading
- We provide a way to address these events

The share price of a firm i exposed to an event is

$$P_{i,T+1} = \begin{cases} s_i x_i \epsilon_i & \text{if } \mathbb{I} = 1\\ x_i \epsilon_i, & \text{if } \mathbb{I} = 0 \end{cases}$$

Therefore, the stock price of firm i at time T is calculated as:

$$P_{i,T} = \mathbb{E}_{T}[\mathbb{I}(s_{i}x_{i}\epsilon_{i}) + (1 - \mathbb{I})(x_{i}\epsilon_{i})|s_{i}, x_{i}]$$

$$= qs_{i}x_{i}\mathbb{E}[\epsilon_{i}] + (1 - q)x_{i}\mathbb{E}[\epsilon_{i}]$$

$$= (qs_{i} + (1 - q))x_{i}$$

How do we estimate the impact of the event s_i ?

Given $\mathbb{I} = 1$, this is calculated as:

$$egin{array}{rcl} rac{P_{i,T+1}-P_{i,T}}{P_{i,T}} &=& rac{s_i x_i \epsilon_i - (q s_i + (1-q)) x_i}{(q s_i + (1-q)) x_i} \ &=& rac{s_i \epsilon_i - (q s_i + (1-q))}{(q s_i + (1-q))} \end{array}$$

If the event was completely unanticipated, plugging in q = 0 yields:

$$\frac{P_{i,T+1}-P_{i,T}}{P_{i,T}} = s_i \epsilon_i - 1$$

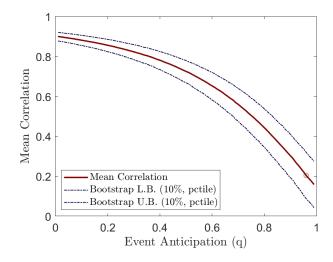
However, the traditional approach falters when q > 0, capturing only the unanticipated impact. But is it at least positively correlated?

Traditional Econometric Setup

To estimate the net aggregate impact of the event $\mu_s - 1$, the traditional event study methodology would suggest taking the average of the individual estimates:

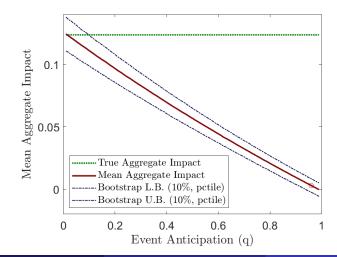
$$\frac{1}{N}\sum_{i=1}^{N}\frac{P_{i,T+1}-P_{i,T}}{P_{i,T}} = \frac{1}{N}\sum_{i=1}^{N}\frac{s_{i}\epsilon_{i}-(qs_{i}+(1-q))}{(qs_{i}+(1-q))}$$

If q = 0, this would be a reasonable estimator:

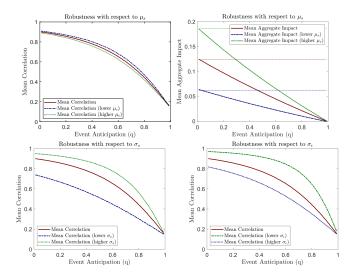

$$\mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\frac{P_{i,T+1}-P_{i,T}}{P_{i,T}}\right] = \frac{1}{N}\sum_{i=1}^{N}\left(\mathbb{E}[s_i]-1\right) = \mu_s - 1$$

However, for positive values of q, this estimator would only capture the unanticipated fraction of the aggregate impact of the event. Given that q is not clear, a low estimate may be due to a low true impact (low μ_s) or high anticipation (high q).

Borochin, Celik, Tian, Whited


Simulation of Performance of Estimator of Firm Impact

The Correlation Between $(P_{i,T+1} - P_{i,T})/P_{i,T}$ and $s_i - 1$


Simulation of Performance of Estimator of Aggregate Impact

The True and Estimated Net Aggregate Impact $\mu_s - 1$

Robustness of Simulation

Do magnitudes of true impact and noise matter?

- The 2017 Tax Cuts and Jobs Act (TCJA) was a highly anticipated event
- Moreover, the TCJA had winners and losers
- Our simulation results show that the traditional approach can fail to properly estimate firm impacts of such an event, even after it occurs
- Empirical analysis presents a roadmap for other applications of our general methodology

For a firm *i* given the stock price $S_{i,t}$ and *N* call options with unique strikes K_j and a common τ that ends after the event, the prices of the N + 1 assets are:

$$S_{i,t} = E_t(q) \cdot E_t(S_{i,u}) + (1 - E_t(q)) \cdot E_t(S_{i,d})$$

$$c_{i,1,t} = E_t(q) \cdot C(E_t(S_{i,u}), E_t(\sigma_{i,u}), K_1, \tau) + (1 - E_t(q)) \cdot C(E_t(S_{i,d}), E_t(\sigma_{i,d}), K_1, \tau)$$

...

$$c_{i,N,t} = E_t(q) \cdot C(E_t(S_{i,u}), E_t(\sigma_{i,u}), K_N, \tau) + (1 - E_t(q)) \cdot C(E_t(S_{i,d}), E_t(\sigma_{i,d}), K_N, \tau)$$

Why not puts?

- Five parameters: q_i the probability of TCJA passage, $S_{i,u}$ and $\sigma_{i,u}$ the value and volatility of firm *i* if TCJA passes, $S_{i,d}$ and $\sigma_{i,d}$ if not
- Label switching is a problem, prior settings (eg M&A, Obamacare) allow for identifying assumption such as $S_{i,u} > S_{i,d}$ that does not apply here
- Our innovation is to consider both possibilities simultaneously, and pick the more applicable one

$$egin{aligned} V_{i,t,\textit{winner}}(q, heta) &= \min_{ heta} |P_{i,t} - \hat{P}_{i,t}(q, heta)| \;\; s.t. \; S_{i,u} \geq S_{i,d} \ V_{i,t,\textit{loser}}(q, heta) &= \min_{ heta} |P_{i,t} - \hat{P}_{i,t}(q, heta)| \;\; s.t. \; S_{i,u} < S_{i,d} \end{aligned}$$

- We classify the firm as a "winner" if the $S_{i,u} \ge S_{i,d}$ restriction results in a better fit more than half of the time over the 30-day period from November 10 to December 2, 2017
- It is a "loser" otherwise. In other words, we let the data tell us which identifying restriction is more appropriate for each firm.
- Once this has been established, we repeat the optimization with the appropriate restriction in place:

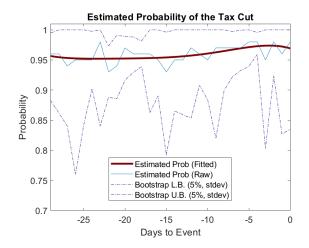
 $V_{i,t}(q,\theta) = \begin{cases} \min_{\theta} |P_{i,t} - \hat{P}_{i,t}(q,\theta)| & s.t. \ S_{i,u} \ge S_{i,d} & \text{if firm } i \text{ is a "winner"} \\ \min_{\theta} |P_{i,t} - \hat{P}_{i,t}(q,\theta)| & s.t. \ S_{i,u} < S_{i,d} & \text{otherwise} \end{cases}$

• Getting q right is key, so we develop a specialized version of the estimator for a common q across all M firms

$$W_{i,t}(q,\theta_i) = \begin{cases} |1 - \hat{P}_{i,t}(q,\theta_i)/P_{i,t}| & s.t. \ S_{i,u} \ge S_{i,d} & \text{if firm } i \text{ is a "winner"} \\ |1 - \hat{P}_{i,t}(q,\theta_i)/P_{i,t}| & s.t. \ S_{i,u} < S_{i,d} & \text{otherwise} \end{cases}$$

$$\left(q_t, \{\theta_{i,t}\}_{i=1}^{M}\right) = \arg\min_{q,\{\theta_i\}_{i=1}^{M}} \left\{\sum_{i=1}^{M} W_{i,t}(q,\theta_i)\right\}$$

- Benefit is clear, we get $M \times N$ call option restrictions (600 in our application) on q_t
- Cost is daunting, 4M + 1 parameters must be jointly estimated


- However, note that the firm-specific parameters {θ_{i,t}}^M_{i=1} depends on the results from other firms only through the common event probability q
- Thus, we first divide the range $q \in [0,1]$ into a discrete grid Q
- Then, for each firm *i*, on each date *t*, and for every $q \in Q$, we estimate $\theta_{q,i,t}$ which minimizes $W_{i,t}(q, \theta_i)$ given q
- The common probability on day t can be calculated as:

$$q_t = rgmin_q \left\{ \sum_{i=1}^M W_{i,t}(q, \theta_{q,i,t}) \right\}$$

- OptionMetrics and Compustat data over debate window, November 10 to December 2, 2017
- Top 100 firms by option volume, cumulatively between 29% and 50% of daily call volume in 2017Q4, 22% of Compustat market cap
- Adding more firms increases reliance on zero-volume contracts, ie uninformative and stale prices
- We also add innovation measures and tax assets and liabilities

Probability of TCJA Passage

Confidence interval from bootstrap standard deviation, 1000 simulations each day of 100 firms drawn with replacement

		CAR[-3,0] 0.96%			CAR[-10,0] 2.29%
S_u/S_d -	- 1 RET	CAR[-3,0]	CAR[-5,0]	CAR[-7,0]	CAR[-10,0]
1.000	0.135	0.183	0.133	0.197	0.233

What Makes Winners and Losers?

We split the sample using the S_u/S_d ratio, and check whether characteristics are significantly different across the two groups

Firm Attributes	Differences	t-statistics
R&D Intensity	0.021***	(4.05)
Patent Count	0.498***	(5.37)
Total Citations	0.489***	(4.86)
Total Originality	0.345***	(4.53)
Total Generality	0.201***	(4.09)
Average Citations	-0.014	(-0.86)
Average Originality	-0.018***	(-3.41)
Average Generality	-0.009**	(-2.16)
Tangibility	-0.029***	(-2.98)
Sales Growth	0.040***	(6.44)
Asset Growth	0.022***	(3.39)
Employment Growth	0.011**	(2.51)
Cash Effective Tax Rate	-1.616***	(-3.59)
Indefinitely Reinvested Foreign Earnings/Asse	ts -0.048***	(-5.14)
Net Tax Assets/Assets	-0.023***	(-4.50)
Cash/Asset	-0.006*	(-1.76)
Market to Book Ratio	-0.088	(-1.64)
Size (log(assets))	0.232***	(3.56)
Leverage	-0.012*	(-1.95)
Asset Maturity	-0.727***	(-4.13)
Property Plant and Equipment/Assets	-0.029***	(-2.98)
Profitability	-0.014***	(-3.95)
Return on Assets (ROA)	-0.015***	(-4.97)
Return on Equity (ROE)	-0.057***	(-3.48)
Whited-Wu Index	-0.011***	(-3.01)
Advertising Expenses	-0.007***	(-5.54)

Borochin, Celik, Tian, Whited

Identifying Heterogeneous Impacts

Economic Significance

We split the sample into two using the median of firm characteristics, and test the S_u/S_d ratio difference

S_u/S_d ratio	Differences	t-statistics
R&D Intensity	0.026***	(3.74)
Patent Count	0.036***	(6.52)
Total Citations	0.036***	(6.52)
Total Originality	0.027***	(4.83)
Total Generality	0.020***	(3.55)
Average Citations	0.005	(0.86)
Average Originality	-0.034***	(-6.09)
Average Generality	-0.017***	(-3.00)
Tangibility	-0.006	(-1.07)
Sales Growth	0.020***	(3.67)
Asset Growth	0.012**	(2.19)
Employment Growth	0.002	(0.37)
Cash Effective Tax Rate	-0.021***	(-3.71)
Indefinitely Reinvested Foreign Earnings/Asset	s-0.021***	(-3.42)
Net Tax Assets/Assets	-0.006	(-1.11)
Cash/Asset	-0.022***	(-4.03)
Market to Book Ratio	-0.011*	(-1.94)
Size (log(assets))	0.019***	(3.46)
Leverage	-0.004	(-0.79)
Asset Maturity	-0.004	(-0.66)
Property Plant and Equipment/Assets	-0.006	(-1.07)
Profitability	-0.008	(-1.37)
Return on Assets (ROA)	-0.031***	(-5.58)
Return on Equity (ROE)	-0.017***	(-3.10)
Whited-Wu Index	-0.017***	(-3.10)
Advertising Expenses	-0.015**	(-2.24)

- We develop a method to estimate ex-ante event probabilities for highly anticipated events, which is also robust to firm-level heterogeneity in the impact of the event
 - TCJA passage more than 90% likely
 - Impact is estimated at 12.36% across a sample of the 100 large firms, compared to an average of 0.68% when ignoring anticipation

• We demonstrate the existence of a downward bias for the aggregate impact of an event across multiple firms from anticipation

- TCJA application shows that large firms with high patent counts and growth prospects are the greatest relative winners
- Two innovation strategies: the production of a few high-quality patents versus a large number of mediocre patents
- TCJA appears to encourage the latter

Thank You!