The Effects of Capital and Liquidity Requirements in a **Dynamic Model with an Interbank Market**

Chao Huang¹, Fernando Moreira², Thomas Archibald² 1. Beijing Jiaotong University; 2. University of Edinburgh Email: hchao@bjtu.edu.cn

School of Economics and Management Beijing Jiaotong University

Introduction

• The Basel Committee on Banking Supervision (BCBS) has introduced *liquidity requirements* to penalize banks' excess *reliance on the interbank market* to obtain short-term liquidity.

• Interbank Rates and Interbank Trading Volume:

Time Sequences:

①: Banks make new investment choices (l_t, c_t) , based on the systematic credit shock Z_{t-1} and new aggregate deposits

value d_t .

②: Idiosyncratic profit shock $f_{\omega,t+v}$ and idiosyncratic deposit value variation $f_{\psi,t+v}$ occur continuously within $v \in [0,1]$. The profit shock occur randomly to banks and the deposit variation makes them a probability of λ_t to become liquiditydeficit ones and a probability of $1 - \lambda_t$ to become liquidity-surplus banks. For each interval t + v, banks make decisions $(l_{t+\nu}^{j}, c_{t+\nu}^{j}, r_{t+\nu}^{j})$. Banks may default following the idiosyncratic shocks.

③: Corporate tax is levied and systematic credit shock Z_t and new aggregate deposits value d_{t+1} realise. Banks may default following the realization of these shocks.

Key Results

Capital and liquidity requirements <u>reduce</u> bank lending, interbank rates, and interbank trading volume.

	No regulation	Capital		Capital and Liquidity		
		$\kappa = 6\%$	$\kappa = 12\%$	$\iota_1 = 100\%$ $\iota_2 = 100\%$	$\iota_1 = 110\%$ $\iota_2 = 100\%$	$\iota_1 = 100\%$ $\iota_2 = 110\%$
Loans	1.896	2.1 77	2.158	1.949	1.948	1.946
Liquid Assets	-0.427	-0.048	0.086	0.172	0.174	0.176
Equity Issuance Ratio	-29.50%	-38.90%	-26.66%	4.79%	4.79%	5.09%
Pay-out Ratio	29.50%	49.50%	37.26%	5.81%	5.81%	5.51%
Interbank trading volume	0.192	0.073	0.070	0.107	0.112	0.107
Interbank rate	20.84%	11.61%	11.25%	4.24%	0.44%	4.24%
S.D. of Interbank rate	1.32%	0.80%	0.04%	2.44%	2.36%	2.43%
Bankruptcy Prob.	0.89%	0.00%	0.00%	0.00%	0.00%	0.00%
Bank Equity Value	3.494	4.034	3.982	1.971	1.970	1.970
Social Welfare	5.831	6.114	6.035	3.831	3.830	3.819
S.D. of Soc. Welfare	0.047	0.252	0.259	0.330	0.331	0.436

- This raises some macro-prudential questions:
- 1) How does these Basel-style requirements affect **banks**' **behaviour** and the **interbank market** activities?
- How do these requirements impact the <u>real economy</u> and <u>social</u> welfare?
- Has the *target* for mitigating macro-prudential issues been 3) fulfilled as expected?
- In this paper, we build up a dynamic equilibrium model to
- Investigate the impacts of Basel-style requirements on banks, interbank market, and the real economy.
- Analyse from a *macro-prudential perspective*.
- 3) Mimic bank lending and *overnight* interbank market (interbank rates and interbank trading volume).
- 4) Compare the impacts among capital and liquidity requirements.

Contributions

- Interbank trading volume is <u>*U-shaped*</u> related to Liquidity
- Interbank rate is *inversely U-shaped* related to *Requirements*

Policy Implications

• Basel-style capital and liquidity requirements could have several macro-prudential impacts on banking system, through the interbank markets.

• We evaluate the impacts of Basel-style requirements <u>macro-</u> *prudentially*, with the consideration of *interbank markets*.

- We propose a <u>'two-stage'</u> decision making process for our quantitative analysis.
- We propose a method to harmoniously incorporate both *discrete*and continuous-time factors without compromising generality.

- Liquidity requirements could, in a way, mitigate banks' reliance on the interbank to manage their liquidity issues <u>only</u> with an appropriate level of the required ratios.
- Our results imply that *the current ratio (100%) required seems ineffective* in addressing banks' reliance on the interbank market.

Contact

Chao Huang (PhD, MSc, BEng, BSc) School of Economics and Management **Beijing Jiaotong University** Email: hchao@bjtu.edu.cn Website: <u>http://sem.bjtu.edu.cn/show-594-263.html</u> Phone: +86 13120155396

Key References

- 1. De Nicolo, G., Gamba, A. and Lucchetta, M. 2014. Microprudential Regulation in a Dynamic Model of Banking. The Review of Financial Studies, 27(7), pp. 2097-2138.
- 2. Elenev, V., Landvoigt, T. and Nieuwerburgh, S. 2021. A Macroeconomic Model with Financially Constrained Producers and Intermediaries. *Econometrica*. 89, pp. 1361–1418.
- 3. Freixas, X., Martin, A. and Skeie, D. 2011. Bank Liquidity, Interbank Markets, and Monetary Policy. Review of *Financial Studies*, 24, pp. 2656–2692.
- 4. Heider, F., Hoerova, M. and Holthausen, C. 2015. Liquidity hoarding and interbank market rates: The role of counterparty risk. Journal of Financial Economics, 118, pp. 336–354.
- 5. Kim, K., Martin, A. and Nosal, E. 2020. Can the U.S. Interbank Market Be Revived? Journal of Money, Credit and Banking, 52, pp. 1645–1689.