Explaining Greenium in a Macro-Finance Integrated Assessment Model

Biao Yang

Bocconi University

シック・ 単国 《ヨ》 《ヨ》 《国》 《ロ》

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

CLIMATE CHANGE IS ACCELERATING

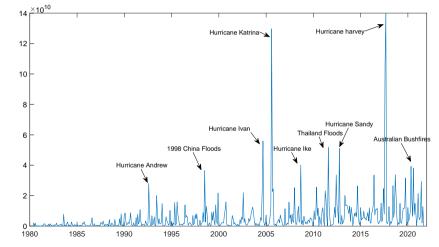


Figure 1: Global economic losses (in USD) due to climate disasters (Source: The International Disaster Database)

Introduction	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
0●000	00000000	00000	000000000	O

Question

How do climate disasters affect the equity returns and investments of green and brown firms?

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
0000	0000000	00000	00000000	0
				1

This Paper

Question

How do climate disasters affect the equity returns and investments of green and brown firms?

What I do

▶ provide <u>novel evidence</u> that relates disaster shocks with stock returns and investments of green and brown firms ⇒ rationalizes the greenium

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
0000	0000000	00000	00000000	0

Question

How do climate disasters affect the equity returns and investments of green and brown firms?

What I do

- ▶ provide <u>novel evidence</u> that relates disaster shocks with stock returns and investments of green and brown firms ⇒ rationalizes the greenium
- a Macro-finance Integrated Assessment Model (IAM) <u>quantitatively</u> explain *quantities* & *prices* in the data

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

Question

How do climate disasters affect the equity returns and investments of green and brown firms?

What I do

- ▶ provide <u>novel evidence</u> that relates disaster shocks with stock returns and investments of green and brown firms ⇒ rationalizes the greenium
- a Macro-finance Integrated Assessment Model (IAM) <u>quantitatively</u> explain *quantities* & *prices* in the data

Contribution

• Empirically: <u>first</u> to attribute greenium to climate disaster risk with novel evidence

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

Question

How do climate disasters affect the equity returns and investments of green and brown firms?

What I do

- ▶ provide <u>novel evidence</u> that relates disaster shocks with stock returns and investments of green and brown firms ⇒ rationalizes the greenium
- a Macro-finance Integrated Assessment Model (IAM) <u>quantitatively</u> explain *quantities* & *prices* in the data

Contribution

- Empirically: <u>first</u> to attribute greenium to climate disaster risk with novel evidence
- ► Theoretically: improves traditional climate economics models to explain asset prices

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	00000000	00000	000000000	O

STYLIZED FACTS

1. A negative greenium in the cross section of global stock market

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	00000000	00000	00000000	0

STYLIZED FACTS

- 1. A negative greenium in the cross section of global stock market
 - ► definition of a firm's "greenness"? third-party ESG score within industry

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0
0000	0000000	00000	00000000	0

- 1. A negative greenium in the cross section of global stock market
 - ► definition of a firm's "greenness"? third-party ESG score within industry
 - ▶ green stocks carry <u>lower</u> expected returns (3.83%) than brown stocks

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- 1. A negative greenium in the cross section of global stock market
 - ► definition of a firm's "greenness"? third-party ESG score within industry
 - ▶ green stocks carry <u>lower</u> expected returns (3.83%) than brown stocks
 - result is robust with other greenness measures & controlling for common AP factors and firm-level characteristics

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- 1. A negative greenium in the cross section of global stock market
 - ► definition of a firm's "greenness"? third-party ESG score within industry
 - ▶ green stocks carry <u>lower</u> expected returns (3.83%) than brown stocks
 - result is robust with other greenness measures & controlling for common AP factors and firm-level characteristics
- 2. Green stocks have a lower exposure to climate disaster shocks

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- 1. A negative greenium in the cross section of global stock market
 - ► definition of a firm's "greenness"? third-party ESG score within industry
 - green stocks carry <u>lower</u> expected returns (3.83%) than brown stocks
 - result is robust with other greenness measures & controlling for common AP factors and firm-level characteristics
- 2. Green stocks have a lower exposure to climate disaster shocks
 - ▶ a (adverse) disaster shock depreciates green stocks <u>less</u> than brown stocks, i.e., green is safer

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- 1. A negative greenium in the cross section of global stock market
 - ► definition of a firm's "greenness"? third-party ESG score within industry
 - green stocks carry <u>lower</u> expected returns (3.83%) than brown stocks
 - result is robust with other greenness measures & controlling for common AP factors and firm-level characteristics
- 2. Green stocks have a lower exposure to climate disaster shocks
 - ▶ a (adverse) disaster shock depreciates green stocks <u>less</u> than brown stocks, i.e., green is safer
 - ▶ result is robust controlling for proximity to disaster, i.e., not driven by the physical damage

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- 1. A negative greenium in the cross section of global stock market
 - ► definition of a firm's "greenness"? third-party ESG score within industry
 - green stocks carry <u>lower</u> expected returns (3.83%) than brown stocks
 - result is robust with other greenness measures & controlling for common AP factors and firm-level characteristics
- 2. Green stocks have a lower exposure to climate disaster shocks
 - ▶ a (adverse) disaster shock depreciates green stocks <u>less</u> than brown stocks, i.e., green is safer
 - result is robust controlling for proximity to disaster, i.e., not driven by the physical damage
 - mechanism?

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- 1. A negative greenium in the cross section of global stock market
 - ► definition of a firm's "greenness"? third-party ESG score within industry
 - green stocks carry <u>lower</u> expected returns (3.83%) than brown stocks
 - result is robust with other greenness measures & controlling for common AP factors and firm-level characteristics
- 2. Green stocks have a lower exposure to climate disaster shocks
 - ▶ a (adverse) disaster shock depreciates green stocks <u>less</u> than brown stocks, i.e., green is safer
 - result is robust controlling for proximity to disaster, i.e., not driven by the physical damage
 - mechanism?
- 3. A disaster shock increases (decreases) capital investment of green (brown) firms

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- 1. A negative greenium in the cross section of global stock market
 - ► definition of a firm's "greenness"? third-party ESG score within industry
 - green stocks carry <u>lower</u> expected returns (3.83%) than brown stocks
 - result is robust with other greenness measures & controlling for common AP factors and firm-level characteristics
- 2. Green stocks have a lower exposure to climate disaster shocks
 - ▶ a (adverse) disaster shock depreciates green stocks <u>less</u> than brown stocks, i.e., green is safer
 - result is robust controlling for proximity to disaster, i.e., not driven by the physical damage
 - mechanism?
- 3. A disaster shock increases (decreases) capital investment of green (brown) firms
 - green firms enjoy investment compensation due to climate disasters

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

1. A simple analytical model qualitatively explain stylized facts

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- 1. A simple analytical model qualitatively explain stylized facts
 - Setup: a production economy with (i) green & brown sectors and (ii) climate feedback

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- 1. A simple analytical model qualitatively explain stylized facts
 - Setup: a production economy with (i) green & brown sectors and (ii) climate feedback
 - Key assumption: an exogenous disaster shock increases expectation of future climate damage, i.e., disaster serves as a news shock on climate feedback

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- 1. A simple analytical model qualitatively explain stylized facts
 - Setup: a production economy with (i) green & brown sectors and (ii) climate feedback
 - Key assumption: an exogenous disaster shock increases expectation of future climate damage, i.e., disaster serves as a news shock on climate feedback
 - Implications:

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- 1. A simple analytical model qualitatively explain stylized facts
 - Setup: a production economy with (i) green & brown sectors and (ii) climate feedback
 - Key assumption: an exogenous disaster shock increases expectation of future climate damage, i.e., disaster serves as a news shock on climate feedback
 - Implications:
 - 1 a disaster shock decreases (increases) optimal brown (green) investment

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- 1. A simple analytical model qualitatively explain stylized facts
 - Setup: a production economy with (i) green & brown sectors and (ii) climate feedback
 - Key assumption: an exogenous disaster shock increases expectation of future climate damage, i.e., disaster serves as a news shock on climate feedback
 - Implications:
 - 1 a disaster shock decreases (increases) optimal brown (green) investment
 - 2 green stocks appreciate relative to brown stocks under investment friction

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- 1. A simple analytical model qualitatively explain stylized facts
 - Setup: a production economy with (i) green & brown sectors and (ii) climate feedback
 - Key assumption: an exogenous disaster shock increases expectation of future climate damage, i.e., disaster serves as a news shock on climate feedback
 - Implications:
 - 1 a disaster shock decreases (increases) optimal brown (green) investment
 - 2 green stocks appreciate relative to brown stocks under investment friction
- 2. A Macro-finance IAM quantitatively explains quantities & prices

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- 1. A simple analytical model qualitatively explain stylized facts
 - Setup: a production economy with (i) green & brown sectors and (ii) climate feedback
 - Key assumption: an exogenous disaster shock increases expectation of future climate damage, i.e., disaster serves as a news shock on climate feedback
 - Implications:
 - 1 a disaster shock decreases (increases) optimal brown (green) investment
 - 2 green stocks appreciate relative to brown stocks under investment friction
- 2. A Macro-finance IAM quantitatively explains quantities & prices
 - Recursive preference: prices news about (i) productivity shock and (ii) climate damage (i.e., disasters)

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- 1. A simple analytical model qualitatively explain stylized facts
 - Setup: a production economy with (i) green & brown sectors and (ii) climate feedback
 - Key assumption: an exogenous disaster shock increases expectation of future climate damage, i.e., disaster serves as a news shock on climate feedback
 - Implications:
 - 1 a disaster shock decreases (increases) optimal brown (green) investment
 - 2 green stocks appreciate relative to brown stocks under investment friction
- 2. A Macro-finance IAM quantitatively explains quantities & prices
 - Recursive preference: prices news about (i) productivity shock and (ii) climate damage (i.e., disasters)
 - ► <u>Climate feedback</u> + <u>investment friction</u>: heterogeneous disaster exposures of green and brown stocks ⇒ greenium

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- 1. A simple analytical model qualitatively explain stylized facts
 - Setup: a production economy with (i) green & brown sectors and (ii) climate feedback
 - Key assumption: an exogenous disaster shock increases expectation of future climate damage, i.e., disaster serves as a news shock on climate feedback
 - Implications:
 - 1 a disaster shock decreases (increases) optimal brown (green) investment
 - 2 green stocks appreciate relative to brown stocks under investment friction
- 2. A Macro-finance IAM quantitatively explains quantities & prices
 - Recursive preference: prices news about (i) productivity shock and (ii) climate damage (i.e., disasters)
 - ► <u>Climate feedback</u> + <u>investment friction</u>: heterogeneous disaster exposures of green and brown stocks ⇒ greenium
 - ► Model quantitatively matches IRFs of prices & investments to a disaster ← New in this paper

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

LITERATURE

Climate risk in financial markets

Chava (2014), Görgen et al. (2019), In et al. (2017), Bolton and Kacperczyk (2020, 2021), Hsu et al. (2020), Bansal et al. (2016a,b), Engel et al. (2020), Choi et al. (2020), Pastor et al. (2019), Barnett et al. (2020), Barnett (2017), Giglio et al. (2020), etc.

This paper: links greenium with climate disaster shocks with novel evidence

IAM and Production-based AP

- IAM: Nordhaus (1992, 2013, 2014), Bosetti et al. (2006), Popp (2006), Golosov et al. (2014), Acemoglu et al. (2012), Daniel et al. (2016), Lemoine and Rudik (2017), etc.
- Production-based AP: Cochrane (1991), Jermann (1998), Croce (2014), Kaltenbrunner and Lochstoer (2010), Papanikolaou (2011), Kung and Schmid (2015), etc

This paper: bridges and improves the two approaches \Rightarrow AP in IAM and climate risk in macrofinance

Empirical Analysis

A Two-Period Model

Macro-Finance IAM

Conclusion

<□> <0><</p>

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- ► Firm-level Greenness Measure
 - Source: Refinitiv Asset4 ESG-score (Datastream code: ENSCORE)

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- ► Firm-level Greenness Measure
 - Source: Refinitiv Asset4 ESG-score (Datastream code: ENSCORE)
 - **Coverage:** 2003-2019, 7,317 **global** firms (70% world cap), 38,336 firm-year obs.

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- ► Firm-level Greenness Measure
 - Source: Refinitiv Asset4 ESG-score (Datastream code: ENSCORE)
 - **Coverage:** 2003-2019, 7,317 **global** firms (70% world cap), 38,336 firm-year obs.
- Portfolio Construction
 - Green (Brown) portfolio ≡ firms with top (bottom) 20% of ENSCORE within each industry, annually re-balanced

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- ► Firm-level Greenness Measure
 - Source: Refinitiv Asset4 ESG-score (Datastream code: ENSCORE)
 - Coverage: 2003-2019, 7,317 global firms (70% world cap), 38,336 firm-year obs.
- Portfolio Construction
 - Green (Brown) portfolio ≡ firms with top (bottom) 20% of ENSCORE within each industry, annually re-balanced
 - ► Green & Brown firms are fundamentally different in terms of Summary statistics
 - 1. financial characteristics: Size, Book/Market, Investment/Asset, etc.
 - 2. geographic characteristics: Latitude, Distant to the Sea, Vulnerability to Drought

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- ► Firm-level Greenness Measure
 - Source: Refinitiv Asset4 ESG-score (Datastream code: ENSCORE)
 - **Coverage:** 2003-2019, 7,317 **global** firms (70% world cap), 38,336 firm-year obs.
- Portfolio Construction
 - Green (Brown) portfolio ≡ firms with top (bottom) 20% of ENSCORE within each industry, annually re-balanced
 - ► Green & Brown firms are fundamentally different in terms of Summary statistics
 - 1. financial characteristics: Size, Book/Market, Investment/Asset, etc.
 - 2. geographic characteristics: Latitude, Distant to the Sea, Vulnerability to Drought
- ► Disaster Index: a first handy climate disaster risk measure
 - Monthly aggregated economic loss (in USD) due to climate-related disasters
 - 5892 Disasters: Hurricane (1922), Wildfire (197), Flood (3114), Extreme temperature (371), Drought (286), Glacial lake outburst (2)
 - ► Source: The International Disaster Dataset

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	000000	00000	00000000	0

QUANTIFYING GREENIUM: FACTOR REGRESSION

CUMULATIVE RETURNS

I regress monthly value-weighted return of Brown-minus-Green (BMG) portfolio on **global** AP factors

 $R_{BMG,t}^{ex} = \alpha + \beta \cdot F_t + \epsilon_t$

QUANTIFYING GREENIUM: FACTOR REGRESSION

I regress monthly value-weighted return of Brown-minus-Green (BMG) portfolio on **global** AP factors

 $R_{BMG,t}^{ex} = \alpha + \beta \cdot F_t + \epsilon_t$

Table 1: Abnormal return of Brown-minus-Green portfolio

Factors	Constant	CAPM	FF3	FF5	FF5&MOM
BMG α (%)	3.83***	2.43**	2.17**	3.91***	3.98***
s.e. (%)	(1.39)	(1.18)	(0.98)	(1.22)	(1.25)

QUANTIFYING GREENIUM: FACTOR REGRESSION

I regress monthly value-weighted return of Brown-minus-Green (BMG) portfolio on **global** AP factors

 $R^{ex}_{BMG,t} = \alpha + \beta \cdot F_t + \epsilon_t$

Table 1: Abnormal return of Brown-minus-Green portfolio

Factors	Constant	CAPM	FF3	FF5	FF5&MOM
BMG α (%)	3.83***	2.43**	2.17**	3.91***	3.98***
s.e. (%)	(1.39)	(1.18)	(0.98)	(1.22)	(1.25)

Takeaway:

▶ green portfolio delivers 3.83% lower average return

QUANTIFYING GREENIUM: FACTOR REGRESSION

I regress monthly value-weighted return of Brown-minus-Green (BMG) portfolio on **global** AP factors

 $R_{BMG,t}^{ex} = \alpha + \beta \cdot F_t + \epsilon_t$

Table 1: Abnormal return of Brown-minus-Green portfolio

Factors	Constant	CAPM	FF3	FF5	FF5&MOM
BMG α (%)	3.83***	2.43**	2.17**	3.91***	3.98***
s.e. (%)	(1.39)	(1.18)	(0.98)	(1.22)	(1.25)

Takeaway:

- ► green portfolio delivers 3.83% lower average return
- ► greenium remains significant after controlling for other risk factors

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

QUANTIFYING GREENIUM: ALTERNATIVE TESTS

- Double sorting See
- ► Fama-Macbeth regression See
- ► Two-pass regression See
- Subcategories of ENSCORE See
- ► Subsample analysis See
- Alternative greeness measures See

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

QUANTIFYING GREENIUM: ALTERNATIVE TESTS

- Double sorting See
- ► Fama-Macbeth regression See
- ► Two-pass regression See
- Subcategories of ENSCORE See
- ► Subsample analysis See
- Alternative greeness measures See

Takeaway: greenium is significantly negative across different specifications

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- ► Frequency: Monthly
- ► Specification 1

 $AR_{i,t} = \alpha_i + (\beta_1 + \beta_2 \cdot ENSCORE_{i,t-1}) \cdot logdamage_t + \gamma X_{i,t-1} + \epsilon_{i,t}$

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- ► Frequency: Monthly
- Specification 1

 $AR_{i,t} = \alpha_i + (\beta_1 + \beta_2 \cdot ENSCORE_{i,t-1}) \cdot logdamage_t + \gamma X_{i,t-1} + \epsilon_{i,t}$

where

- $AR_{i,t}$ is risk-adjusted stock return (in percentage)
- ENSCORE is normalized btw. 0 and 1
- $logdamage_t = log(1 + Damage_t)$
- Controls (X): size, B/M, momentum, revenue, investment intensity, tangibility, leverage

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

- ► Frequency: Monthly
- Specification 1

 $AR_{i,t} = \alpha_i + (\beta_1 + \beta_2 \cdot ENSCORE_{i,t-1}) \cdot logdamage_t + \gamma X_{i,t-1} + \epsilon_{i,t}$

where

- $AR_{i,t}$ is risk-adjusted stock return (in percentage)
- ENSCORE is normalized btw. 0 and 1
- $logdamage_t = log(1 + Damage_t)$
- Controls (X): size, B/M, momentum, revenue, investment intensity, tangibility, leverage

Specification 2

$$AR_{i,t} = \alpha_i + (\beta_1 + \beta_2 \cdot Quintile_{i,t-1}) \cdot logdamage_t + \gamma X_{i,t-1} + \epsilon_{i,t-1} + \epsilon_{i,t-1}$$

where $Quintile_{i,t}$ is a set of dummies indicating which quintile of ENSCORE that firm *i* is in (5=Green, 1=Brown)

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	00000000	00000	00000000	0

Table 2: Abnormal stock return and disaster shock

	(1)	(2)
logdamage	-0.282***	-0.285***
	(0.012)	(0.012)
$ENSCORE \times logdamage$	0.0380***	
	(0.006)	
Quintile 2		0.0239***
		(0.004)
Quintile 3		0.0160***
		(0.004)
Quintile 4		0.0209***
		(0.005)
Quintile 5		0.0257***
		(0.005)
Controls	Yes	Yes
Firm FE	Yes	Yes
Month FE	Yes	Yes
Obs.	384,224	381,554
Adj. R^2	0.04	0.04

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	00000000	00000	00000000	0

Table 2: Abnormal stock return and disaster shock

	(1)	(2)
log damage	-0.282***	-0.285***
	(0.012)	(0.012)
$ENSCORE \times logdamage$	0.0380***	
	(0.006)	
Quintile 2		0.0239***
		(0.004)
Quintile 3		0.0160***
		(0.004)
Quintile 4		0.0209***
		(0.005)
Quintile 5		0.0257***
		(0.005)
Controls	Yes	Yes
Firm FE	Yes	Yes
Month FE	Yes	Yes
Obs.	384,224	381,554
Adj. R^2	0.04	0.04

Takeaway:

 Brown stocks depreciate due to a positive disaster shock

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	00000000	00000	00000000	0

Table 2: Abnormal stock return and disaster shock

	(1)	(2)
log damage	-0.282***	-0.285***
	(0.012)	(0.012)
$ENSCORE \times logdamage$	0.0380***	
	(0.006)	
Quintile 2		0.0239***
		(0.004)
Quintile 3		0.0160***
		(0.004)
Quintile 4		0.0209***
		(0.005)
Quintile 5		0.0257***
~		(0.005)
Controls	Yes	Yes
Firm FE	Yes	Yes
Month FE	Yes	Yes
Obs.	384,224	381,554
Adj. R^2	0.04	0.04

Takeaway:

- Brown stocks depreciate due to a positive disaster shock
- Green stocks depreciate <u>less</u> compared to brown stocks

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	00000000	00000	00000000	0

Table 2: Abnormal stock return and disaster shock

	(1)	(2)
logdamage	-0.282***	-0.285***
tegaantage	(0.012)	(0.012)
$ENSCORE \times logdamage$	0.0380***	
0 0	(0.006)	
Quintile 2		0.0239***
		(0.004)
Quintile 3		0.0160***
		(0.004)
Quintile 4		0.0209***
		(0.005)
Quintile 5		0.0257***
		(0.005)
Controls	Yes	Yes
Firm FE	Yes	Yes
Month FE	Yes	Yes
Obs.	384,224	381,554
Adj. R^2	0.04	0.04

Takeaway:

- Brown stocks depreciate due to a positive disaster shock
- Green stocks depreciate <u>less</u> compared to brown stocks
- Robustness tests:
 - 1. Event study on Hurricane Katrina, U.S. Drought & Wildfires
 - 2. Controlling for geographic characteristics
 - 3. Excluding financial crisis
 - 4. Placebo tests using earthquake

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	00000000	00000	00000000	0

- ► Frequency: Quarterly
- ► Specification 1

 $Investment_{i,t} = \alpha_i + (\beta_1 + \beta_2 \cdot ENSCORE_{i,t-1}) \cdot logdamage_t + \gamma X_{i,t-1} + \epsilon_{i,t}$

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	00000000	00000	00000000	0

- ► Frequency: Quarterly
- Specification 1

 $Investment_{i,t} = \alpha_i + (\beta_1 + \beta_2 \cdot ENSCORE_{i,t-1}) \cdot logdamage_t + \gamma X_{i,t-1} + \epsilon_{i,t}$

where

- *Investment* is defined by log change of total asset (Fama and French, 2015) collected from Global Compustat
- Monthly disaster damage is aggregated at a quarterly frequency
- Controls (X): lagged total asset and tangible asset, revenue, book-to-market, leverage

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	00000000	00000	00000000	0

- ► Frequency: Quarterly
- Specification 1

 $Investment_{i,t} = \alpha_i + (\beta_1 + \beta_2 \cdot ENSCORE_{i,t-1}) \cdot logdamage_t + \gamma X_{i,t-1} + \epsilon_{i,t}$

where

- *Investment* is defined by log change of total asset (Fama and French, 2015) collected from Global Compustat
- Monthly disaster damage is aggregated at a quarterly frequency
- Controls (X): lagged total asset and tangible asset, revenue, book-to-market, leverage

Specification 2

 $Investment_{i,t} = \alpha_i + (\beta_1 + \beta_2 \cdot Quintile_{i,t-1}) \cdot logdamage_t + \gamma X_{i,t-1} + \epsilon_{i,t}$

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

Table 3: Investment and disaster shock

	(1)	(2)
logdamage	-0.110***	-0.121***
	(0.027)	(0.035)
$ENSCORE \times log damage$	0.289***	
	(0.062)	
Quintile 2		0.037
		(0.038)
Quintile 3		0.095**
		(0.042)
Quintile 4		0.163***
		(0.044)
Quintile 5		0.231***
		(0.048)
Controls	Yes	Yes
Firm FE	Yes	Yes
Quarter FE	Yes	Yes
Obs.	105,265	104,563
Adj. R^2	0.323	0.323

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

Table 3: Investment and disaster shock

	(1)	(2)
logdamage	-0.110***	-0.121***
	(0.027)	(0.035)
$ENSCORE \times log damage$	0.289***	
	(0.062)	
Quintile 2		0.037
		(0.038)
Quintile 3		0.095**
		(0.042)
Quintile 4		0.163***
		(0.044)
Quintile 5		0.231***
		(0.048)
Controls	Yes	Yes
Firm FE	Yes	Yes
Quarter FE	Yes	Yes
Obs.	105,265	104,563
Adj. R^2	0.323	0.323

Takeaway:

 Green (Brown) investments increase (decrease) after a positive disaster shock

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

Table 3: Investment and disaster shock

	(1)	(2)
log damage	-0.110***	-0.121***
	(0.027)	(0.035)
$ENSCORE \times log damage$	0.289***	
	(0.062)	
Quintile 2		0.037
		(0.038)
Quintile 3		0.095**
		(0.042)
Quintile 4		0.163***
		(0.044)
Quintile 5		0.231***
		(0.048)
Controls	Yes	Yes
Firm FE	Yes	Yes
Quarter FE	Yes	Yes
Obs.	105,265	104,563
Adj. R^2	0.323	0.323

Takeaway:

 Green (Brown) investments increase (decrease) after a positive disaster shock
 → investment flows from brown to green firms

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

Table 3: Investment and disaster shock

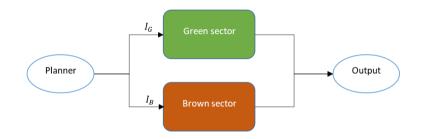
	(1)	(2)
logdamage	-0.110***	-0.121***
	(0.027)	(0.035)
$ENSCORE \times log damage$	0.289***	
	(0.062)	
Quintile 2		0.037
		(0.038)
Quintile 3		0.095**
		(0.042)
Quintile 4		0.163***
		(0.044)
Quintile 5		0.231***
		(0.048)
Controls	Yes	Yes
Firm FE	Yes	Yes
Quarter FE	Yes	Yes
Obs.	105,265	104,563
Adj. R^2	0.323	0.323

Takeaway:

- Green (Brown) investments increase (decrease) after a positive disaster shock
 → investment flows from brown to green firms
- Robustness tests:
 - 1. Event study
 - 2. Alternative measures of investment

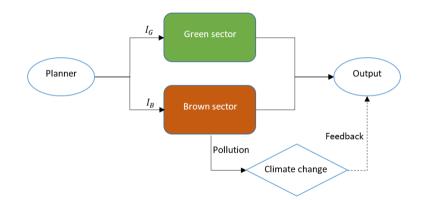
Empirical Analysis

A Two-Period Model


Macro-Finance IAM

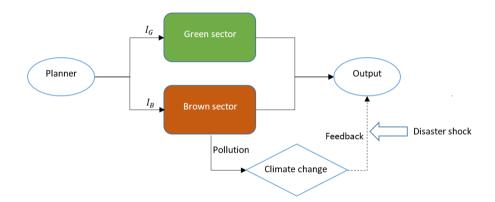
Conclusion

<□> <0><</p>


INTRODUCTION Emp	pirical Analysis A	A Two-Period Model	Macro-Finance IAM	Conclusion
00000 00	000000 0	0000	00000000	0

Scheme

INTRODUCTION Emp	pirical Analysis A	A Two-Period Model	Macro-Finance IAM	Conclusion
00000 00	000000 0	0000	00000000	0


Scheme

<ロ > < 部 > < き > < き > き = う へ ? 13/25

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	0000	00000000	0

Scheme

An exogenous disaster shock increases belief on climate feedback \Rightarrow lower brown investment and higher green investment

INTRODUCTION 00000	Empirical Analysis	A Two-Period Model	Macro-Finance IAM 00000000	Conclusion O
00000	00000000	00000	00000000	Ŭ
MODEL SETU	Р			
 Timeline 				
<i>t=0</i>		t=1	t=2	
• A climate ϵ happen	e disaster shock s	\bullet The planner observes the shock, and \bullet invests in the two sectors $I_{B,1}$ and $I_{G,1}$	 Climate damage is realized Output is consumed 	

INTRODUCTION 00000	Empirical Analysis 00000000	A Two-Period Model 00●00	Macro-Finance IAM 00000000	Conclusion O
MODE	l Setup			
Tim	eline			
	<i>t=0</i>	t=1	t=2	
	 A climate disaster shock ϵ happens 	\bullet The planner observes the shock, and \bullet invests in the two sectors $I_{B,1}$ and $I_{G,1}$	 Climate damage is realized Output is consumed 	
► Proc	duction function & clin	nate damage		

$$Y_{2} = \left(1 - \underbrace{D(I_{B,1}, \epsilon)}_{\text{climate damage}}\right) \cdot \underbrace{f(I_{G,1}, I_{B,1})}_{\text{Pre-damage output}}$$

INTRODUCTION 00000	Empirical Analysis 00000000	A Two-Period Model 00●00	Macro-Finance IAM 00000000	Conclusion O
Modei ► Time	L SETUP eline			
	<i>t=0</i>	t=1	t=2	
	 A climate disaster shock ϵ happens 	\bullet The planner observes the shock, and \bullet invests in the two sectors $I_{B,1}$ and $I_{G,1}$	 Climate damage is realized Output is consumed 	
► Proc	luction function & clin	nate damage		

$$Y_2 = \left(1 - \underbrace{D(I_{B,1}, \epsilon)}_{\text{climate damage}}\right) \cdot \underbrace{f(I_{G,1}, I_{B,1})}_{\text{Pre-damage output}}$$

- Key assumption: $\frac{\partial^2 D}{\partial I_B \partial \epsilon} > 0$
 - a disaster shock increases belief about marginal climate damage (a news shock) (Hong et al., 2020)

INTRODUCTION 00000	Empirical Analysis 00000000	A Two-Period Model 00●00	Macro-Finance IAM 00000000	Conclusion O
Mode ► Tim	L SETUP eline			
	<i>t=0</i>	t=1	t=2	
	 A climate disaster shock e happens 	\bullet The planner observes the shock, and \bullet invests in the two sectors $I_{B,1}$ and $I_{G,1}$	 Climate damage is realized Output is consumed 	
► Proc	duction function & clir	nate damage		

$$Y_2 = \left(1 - \underbrace{D(I_{B,1}, \epsilon)}_{\text{climate damage}}\right) \cdot \underbrace{f(I_{G,1}, I_{B,1})}_{\text{Pre-damage output}}$$

- Key assumption: $\frac{\partial^2 D}{\partial I_B \partial \epsilon} > 0$
 - a disaster shock increases belief about marginal climate damage (a news shock) (Hong et al., 2020)
- ► Preferences

$$U_1 = W(C_1, E_1[U_2])$$

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

Proposition 1

Optimal investment in the green (brown) sector increases (decreases) with the disaster shock ϵ , i.e., $\frac{\partial I_{G,1}}{\partial \epsilon} > 0 \left(\frac{\partial I_{B,1}}{\partial \epsilon} < 0 \right)$.

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

Proposition 1

Optimal investment in the green (brown) sector increases (decreases) with the disaster shock ϵ , i.e., $\frac{\partial I_{G,1}}{\partial \epsilon} > 0 \left(\frac{\partial I_{B,1}}{\partial \epsilon} < 0 \right)$.

Takeaway: A positive disaster shock reallocates investment towards green sector, consistent with data

INTRODUCTION Empiric	cal Analysis A	A Two-Period Model	Macro-Finance IAM	Conclusion
00000 0000	0000 0	00000	00000000	0

Proposition 1

Optimal investment in the green (brown) sector increases (decreases) with the disaster shock ϵ , i.e., $\frac{\partial I_{G,1}}{\partial \epsilon} > 0 \left(\frac{\partial I_{B,1}}{\partial \epsilon} < 0 \right)$.

Takeaway: A positive disaster shock reallocates investment towards green sector, consistent with data

Proposition 2 Stochastic discount factor (SDF) increases with disaster shock when agent is risk averse enough

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

Proposition 1

Optimal investment in the green (brown) sector increases (decreases) with the disaster shock ϵ , i.e., $\frac{\partial I_{G,1}}{\partial \epsilon} > 0 \left(\frac{\partial I_{B,1}}{\partial \epsilon} < 0 \right)$.

Takeaway: A positive disaster shock reallocates investment towards green sector, consistent with data

Proposition 2

Stochastic discount factor (SDF) increases with disaster shock when agent is risk averse enough

Takeaway: A positive disaster shock leads to bad economic state: an **adverse** shock with **negative** price of risk.

	A Two-Period Model	Macro-Finance IAM	Conclusion
000000 0000000	0000●	00000000	0

DETAILS

Proposition 3

With a convex investment friction (standard q-theory), green (brown) stock appreciates (depreciates) after a positive disaster shock, i.e.,

 $r_{i,1} = E_0[r_{i,1}] + \beta_i \epsilon, \quad \forall i \in \{B, G\}$

where $\beta_G > 0$ and $\beta_B < 0$.

Proposition 3

With a convex investment friction (standard q-theory), green (brown) stock appreciates (depreciates) after a positive disaster shock, i.e.,

$$r_{i,1} = E_0[r_{i,1}] + \beta_i \epsilon, \quad \forall i \in \{B, G\}$$

where $\beta_G > 0$ and $\beta_B < 0$.

Proposition 4

With a positive exposure to a negatively-priced risk, green stock carries lower expected return $E_0[r_{G,1}] < E_0[r_{B,1}]$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 当 9 Q ()
16 / 25

DETAILS

Proposition 3

With a convex investment friction (standard q-theory), green (brown) stock appreciates (depreciates) after a positive disaster shock, i.e.,

$$r_{i,1} = E_0[r_{i,1}] + \beta_i \epsilon, \quad \forall i \in \{B, G\}$$

where $\beta_G > 0$ and $\beta_B < 0$.

Proposition 4

With a positive exposure to a negatively-priced risk, green stock carries lower expected return $E_0[r_{G,1}] < E_0[r_{B,1}]$

Takeaway: Green stock hedges an adverse shock

DETAILS

Proposition 3

With a convex investment friction (standard q-theory), green (brown) stock appreciates (depreciates) after a positive disaster shock, i.e.,

$$r_{i,1} = E_0[r_{i,1}] + \beta_i \epsilon, \quad \forall i \in \{B, G\}$$

where $\beta_G > 0$ and $\beta_B < 0$.

Proposition 4

With a positive exposure to a negatively-priced risk, green stock carries lower expected return $E_0[r_{G,1}] < E_0[r_{B,1}]$

Takeaway: Green stock hedges an adverse shock \Rightarrow a **negative** greenium

DETAILS

Empirical Analysis

A Two-Period Model

Macro-Finance IAM

Conclusion

<□> <0><</p>

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	00000000	00000	00000000	0

Preference

► Recursive preference (Epstein and Zin, 1989)

$$W(C,U') = \left\{ (1-\beta)C^{1-\frac{1}{\psi}} + \beta \left(E\left[U'(\mathcal{S}')^{1-\gamma} \middle| \mathcal{S} \right] \right)^{\frac{1-\frac{1}{\psi}}{1-\gamma}} \right\}^{\frac{1}{1-\frac{1}{\psi}}}$$

where

- β is the subjective discount rate
- γ is the risk aversion
- ψ is the intertemporal elasticity of substitution (IES)

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

Preference

► Recursive preference (Epstein and Zin, 1989)

$$W(C, U') = \left\{ (1 - \beta)C^{1 - \frac{1}{\psi}} + \beta \left(E\left[U'(\mathcal{S}')^{1 - \gamma} \middle| \mathcal{S} \right] \right)^{\frac{1 - \frac{1}{\psi}}{1 - \gamma}} \right\}^{\frac{1}{1 - \frac{1}{\psi}}}$$

where

- β is the subjective discount rate
- γ is the risk aversion
- ψ is the intertemporal elasticity of substitution (IES)
- Standard setting: $\gamma > \frac{1}{\psi}$ i.e., agent prefers early resolution of uncertainty \Rightarrow high price of risk on news shock

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	00000000	00000	00000000	O

► CES aggregation between green & brown outputs (Acemoglu et al., 2012)

$$Y = \left(\omega Y_B^{\frac{\varepsilon-1}{\varepsilon}} + (1-\omega) Y_G^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

INTRODUCTION 00000	Empirical Analysis 00000000	A Two-Period Model 00000	Macro-Finance IAM	Conclusion O

► CES aggregation between green & brown outputs (Acemoglu et al., 2012)

$$Y = \left(\omega Y_B^{\frac{\varepsilon-1}{\varepsilon}} + (1-\omega)Y_G^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

where sector outputs are produced by

$$Y_i = K_i^{\alpha} \left(Al_i\right)^{1-\alpha}, \quad i \in \{G, B\}$$

 \Rightarrow Same technology and common productivity shock

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

► CES aggregation between green & brown outputs (Acemoglu et al., 2012)

$$Y = \left(\omega Y_B^{\frac{\varepsilon-1}{\varepsilon}} + (1-\omega)Y_G^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

where sector outputs are produced by

$$Y_i = K_i^{\alpha} \left(A l_i\right)^{1-\alpha}, \quad i \in \{G, B\}$$

 \Rightarrow Same technology and common productivity shock

Long-run productivity risks (Croce, 2014)

$$\Delta \log(A') = \mu + x + \epsilon'_a, \quad x' = \rho_x x + \epsilon'_x$$

・ロト・4部・4車・4車・ 車車 めんぐ

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

► CES aggregation between green & brown outputs (Acemoglu et al., 2012)

$$Y = \left(\omega Y_B^{\frac{\varepsilon-1}{\varepsilon}} + (1-\omega)Y_G^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}}$$

where sector outputs are produced by

$$Y_i = K_i^{\alpha} \left(A l_i\right)^{1-\alpha}, \quad i \in \{G, B\}$$

 \Rightarrow Same technology and common productivity shock

► Long-run productivity risks (Croce, 2014)

$$\Delta \log(A') = \mu + x + \epsilon'_a, \quad x' = \rho_x x + \epsilon'_x$$

Capital accumulation with convex investment friction (Jermann, 1998)

$$K'_{i} = (1 - \delta_{K}) K_{i} + I_{i} - K_{i} G (I_{i}/K_{i}) \quad i \in \{B, G\}$$

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

$CLIMATE \ FEEDBACK$

Climate feedback on the level of output (Golosov et al., 2014)

$$\tilde{Y} = \left[1 - e^{-\lambda (M - \bar{M})}\right] \cdot Y$$

where

- λ is the damage intensity \Leftarrow key risk factor for greenium
- ► *M* is the carbon concentration

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

$CLIMATE \ FEEDBACK$

Climate feedback on the level of output (Golosov et al., 2014)

$$\tilde{Y} = \left[1 - e^{-\lambda(M - \bar{M})}\right] \cdot Y$$

where

- λ is the damage intensity \Leftarrow key risk factor for greenium
- ► *M* is the carbon concentration
- ► *M* is accumulated through carbon emission (brown activity)

$$M' = (1 - \rho_M)\overline{M} + \rho_M M + \zeta (K_B/A) \rightarrow \text{emission}$$

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

CLIMATE FEEDBACK

Climate feedback on the level of output (Golosov et al., 2014)

$$\tilde{Y} = \left[1 - e^{-\lambda(M - \bar{M})}\right] \cdot Y$$

where

- λ is the damage intensity \Leftarrow key risk factor for greenium
- ► *M* is the carbon concentration
- *M* is accumulated through carbon emission (brown activity) $M' = (1 - \rho_M)\overline{M} + \rho_M M + \zeta (K_B/A) \rightarrow \text{emission}$

• λ is driven by disaster shocks, i.e., a news on climate damage $\lambda' = (1 - \rho_{\lambda})\overline{\lambda} + \rho_{\lambda}\lambda + \epsilon'_{\lambda} \rightarrow \text{disaster shock}$

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

CLIMATE FEEDBACK

Climate feedback on the level of output (Golosov et al., 2014)

$$\tilde{Y} = \left[1 - e^{-\lambda(M - \bar{M})}\right] \cdot Y$$

where

- λ is the damage intensity \leftarrow key risk factor for greenium
- ► *M* is the carbon concentration
- *M* is accumulated through carbon emission (brown activity) $M' = (1 - \rho_M)\overline{M} + \rho_M M + \zeta (K_B/A) \rightarrow \text{emission}$
- ► λ is driven by disaster shocks, i.e., a news on climate damage $\lambda' = (1 - \rho_{\lambda})\overline{\lambda} + \rho_{\lambda}\lambda + \epsilon'_{\lambda} \rightarrow \text{disaster shock}$
- Shocks in the model $\epsilon_a, \epsilon_x, \epsilon_\lambda \sim N(0, \Sigma)$

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

MODEL SOLVING AND CALIBRATION

► I first derive the F.O.C. of the optimization problem

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

MODEL SOLVING AND CALIBRATION

- ► I first derive the F.O.C. of the optimization problem
- ► The equilibrium is solved through perturbation method using Matlab Dynare++

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

MODEL SOLVING AND CALIBRATION

- ► I first derive the F.O.C. of the optimization problem
- ► The equilibrium is solved through perturbation method using Matlab Dynare++
- ► Calibration (i) follows literature, (ii) uses regressions and GMM

Calibration Sensitivity analysis In-sample simulation

Quantitative performance?

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	00000000	00000	000000000	0

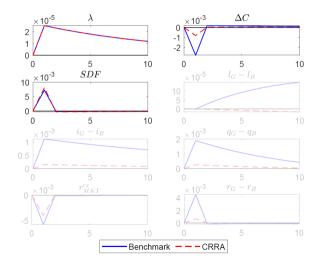
MATCHING MOMENTS IN THE DATA

	Dat	ta	Μ	lodel
	Estimate	SE	Macrofin IAM	Traditional IAM
	Pa	nel A. Econom	ic quantities	
$\sigma(\Delta y)$ (%)	2.43	(0.31)	2.42	
$\sigma(\Delta c)$ (%)	2.05	(0.25)	2.77	
$\sigma(\Delta i_B)$ (%)	3.32	(0.51)	2.98	
$\sigma(\Delta i_G)$ (%)	6.52	(0.80)	6.40	
	P	anel B. Climate	e quantities	
$\sigma(\Delta T)$ (°C)	0.12	(0.01)	0.13	
$\sigma(\Delta M)$ (ppm)	0.65	(0.06)	0.53	
$\sigma(\Delta E)$ (ppm)	0.06	(0.01)	0.07	
		Panel C. Ass	et prices	
$E(R_B - R_G)$ (%)	3.83	(1.54)	3.22	
$E(R_{MKT}^{ex})$ (%)	6.68	(1.90)	6.43	
$E(r_f)$ (%)	0.85	(0.51)	0.79	

Table 4: Data and model simulation

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	00000000	00000	000000000	0

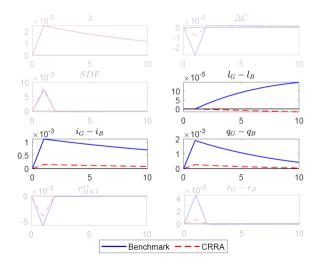

MATCHING MOMENTS IN THE DATA

	Da	ta	М	odel
	Estimate	SE	Macrofin IAM	Traditional IAM
	Pa	nel A. Econom	ic quantities	
$\sigma(\Delta y)$ (%)	2.43	(0.31)	2.42	2.25
$\sigma(\Delta c)$ (%)	2.05	(0.25)	2.77	2.57
$\sigma(\Delta i_B)$ (%)	3.32	(0.51)	2.98	6.24
$\sigma(\Delta i_G)$ (%)	6.52	(0.80)	6.40	23.27
	Р	anel B. Climate	e quantities	
$\sigma(\Delta T)$ (°C)	0.12	(0.01)	0.13	0.13
$\sigma(\Delta M)$ (ppm)	0.65	(0.06)	0.53	0.55
$\sigma(\Delta E)$ (ppm)	0.06	(0.01)	0.07	0.04
		Panel C. Asse	et prices	
$E(R_B - R_G)$ (%)	3.83	(1.54)	3.22	0.49
$E(R_{MKT}^{ex})$ (%)	6.68	(1.90)	6.43	-0.72
$E(r_f)$ (%)	0.85	(0.51)	0.79	19.86

Table 4: Data and model simulation

Takeaway: Macro-finance IAM is important – captures both quantities and asset prices

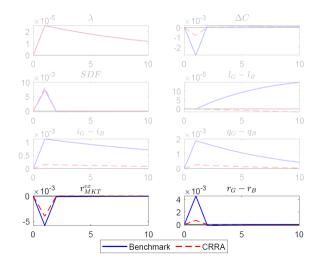
INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	000000000	0



After a disaster shock:

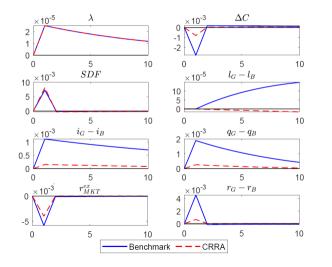
• SDF increase \Rightarrow an adverse shock

・ロト・(中・・川・・(日・・(日・))


INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	000000000	0

After a disaster shock:

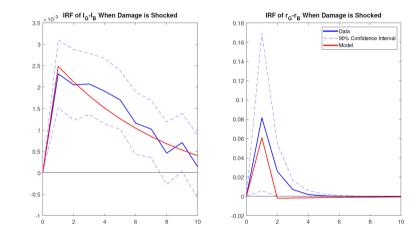
- SDF increase \Rightarrow an adverse shock
- ► Labor & investment flows to green sector ⇒ a higher Tobin Q of green


INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	000000000	0

After a disaster shock:

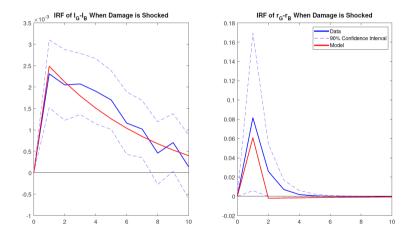
- SDF increase \Rightarrow an adverse shock
- ► Labor & investment flows to green sector ⇒ a higher Tobin Q of green
- Green stock appreciates relative to brown stock
 - \Rightarrow negative greenium

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	000000000	0



After a disaster shock:

- SDF increase \Rightarrow an adverse shock
- ► Labor & investment flows to green sector ⇒ a higher Tobin Q of green
- Green stock appreciates relative to brown stock
 - \Rightarrow negative greenium


INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

IMPULSE RESPONSE FUNCTIONS: MODEL VS. DATA

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

IMPULSE RESPONSE FUNCTIONS: MODEL VS. DATA

Model matches IRFs in the data: Novel in the literature

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

• SCC corresponds to the *shadow price of carbon*, Q_M , which follows the AP rule

$$Q_{M} = \mathbf{E} \left[\Lambda' \left(\rho_{M} Q'_{M} + \lambda' \tilde{Y}' \right) \middle| \mathcal{S} \right]$$

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

• SCC corresponds to the *shadow price of carbon*, Q_M , which follows the AP rule

$$Q_M = \mathrm{E}\left[\Lambda'\left(\rho_M Q'_M + \lambda' \tilde{Y}'\right) \middle| \mathcal{S}
ight]$$

- Q_M depends on the covariance between marginal damage due to carbon emission $(\lambda \tilde{Y})$ and the SDF (Λ)
 - productivity risk channel: $Cov(\tilde{Y}, \Lambda) < 0$
 - climate risk channel: $Cov(\lambda, \Lambda) > 0$

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

• SCC corresponds to the *shadow price of carbon*, Q_M , which follows the AP rule

$$Q_{M} = \mathbf{E} \left[\Lambda' \left(\rho_{M} Q'_{M} + \lambda' \tilde{Y}' \right) \left| \mathcal{S} \right] \right]$$

- Q_M depends on the covariance between marginal damage due to carbon emission $(\lambda \tilde{Y})$ and the SDF (Λ)
 - productivity risk channel: $Cov(\tilde{Y}, \Lambda) < 0$
 - climate risk channel: $Cov(\lambda, \Lambda) > 0$

• This paper: $\lambda \tilde{Y}$ negatively covaries with $\Lambda \Rightarrow$ positive premium on Q_M & low present value

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

• SCC corresponds to the *shadow price of carbon*, Q_M , which follows the AP rule

$$Q_{M} = \mathbf{E} \left[\Lambda' \left(\rho_{M} Q'_{M} + \lambda' \tilde{Y}' \right) \middle| \mathcal{S} \right]$$

- Q_M depends on the covariance between marginal damage due to carbon emission $(\lambda \tilde{Y})$ and the SDF (Λ)
 - productivity risk channel: $Cov(\tilde{Y}, \Lambda) < 0$
 - climate risk channel: $Cov(\lambda, \Lambda) > 0$
- This paper: $\lambda \tilde{Y}$ negatively covaries with $\Lambda \Rightarrow$ positive premium on Q_M & low present value
- High risk premium $(r_{Q_M} r_f)$ drives down the present value (55.6 \rightarrow 40.4)

	SCC	r_{Q_M}	r_{f}
Benchmark	40.38	4.71%	0.83%
No risk	55.61	3.53%	3.53%

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	0

• SCC corresponds to the *shadow price of carbon*, Q_M , which follows the AP rule

$$Q_{M} = \mathbf{E} \left[\Lambda' \left(\rho_{M} Q'_{M} + \lambda' \tilde{Y}' \right) \middle| \mathcal{S} \right]$$

- Q_M depends on the covariance between marginal damage due to carbon emission $(\lambda \tilde{Y})$ and the SDF (Λ)
 - productivity risk channel: $Cov(\tilde{Y}, \Lambda) < 0$
 - climate risk channel: $Cov(\lambda, \Lambda) > 0$
- This paper: $\lambda \tilde{Y}$ negatively covaries with $\Lambda \Rightarrow$ positive premium on Q_M & low present value
- High risk premium $(r_{Q_M} r_f)$ drives down the present value (55.6 \rightarrow 40.4)

	SCC	r_{Q_M}	r_{f}
Benchmark	40.38	4.71%	0.83%
No risk	55.61	3.53%	3.53%

Takeaway: SCC is 40.4 USD per tonne of Carbon: a new lower bound in literature

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	•

Empirics:

• Greener stocks have lower expected returns: **negative greenium**

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	•

Empirics:

- Greener stocks have lower expected returns: **negative greenium**
- ► A positive disaster shock
 - 1. appreciates green stocks relative to brown stocks
 - 2. reallocates investments towards green firms
 - \hookrightarrow green stocks hedge climate disasters, contributing to the greenium

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	•

Empirics:

- ► Greener stocks have lower expected returns: **negative greenium**
- ► A positive disaster shock
 - 1. appreciates green stocks relative to brown stocks
 - 2. reallocates investments towards green firms
 - \hookrightarrow green stocks hedge climate disasters, contributing to the greenium

Theory:

► Climate feedback + disaster-driven damage intensity ⇒ heterogeneous disaster exposures of green and brown firms

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	•

Empirics:

- ► Greener stocks have lower expected returns: negative greenium
- ► A positive disaster shock
 - 1. appreciates green stocks relative to brown stocks
 - 2. reallocates investments towards green firms
 - \hookrightarrow green stocks hedge climate disasters, contributing to the greenium

Theory:

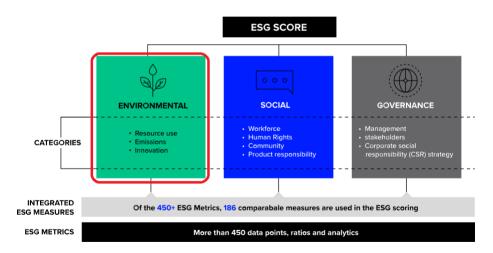
- Climate feedback + disaster-driven damage intensity ⇒ heterogeneous disaster exposures of green and brown firms
- Macro-Finance IAM: bridges and improves traditional IAM and production-based asset pricing

INTRODUCTION	Empirical Analysis	A Two-Period Model	Macro-Finance IAM	Conclusion
00000	0000000	00000	00000000	•

Empirics:

- ► Greener stocks have lower expected returns: negative greenium
- ► A positive disaster shock
 - 1. appreciates green stocks relative to brown stocks
 - 2. reallocates investments towards green firms
 - \hookrightarrow green stocks hedge climate disasters, contributing to the greenium

Theory:


- ► Climate feedback + disaster-driven damage intensity ⇒ heterogeneous disaster exposures of green and brown firms
- Macro-Finance IAM: bridges and improves traditional IAM and production-based asset pricing

What we learn:

► Marginal climate damage commands high discount rate, and carbon price is low

ASSET4 ESG SCORE

BACK

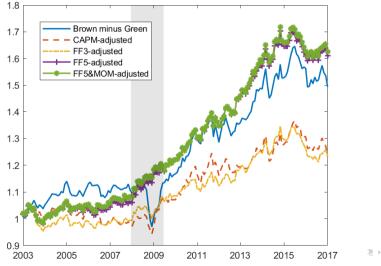
SUMMARY STATISTICS

Portfolios	Brown	Green	BMG
ENSCORE (0 \sim 100)	0.13	68.99	-68.86*
Observations	475	482	-7
	Panel A. Financial chara	cteristics	
Market Value (billion \$)	6.23	26.53	-20.3*
Book/Market (%)	53.77	60.41	-6.64
Investment/Asset (%)	4.44	1.90	2.54^{*}
Revenue/Asset (%)	84.36	87.60	-3.24
R&D/Asset (%)	6.07	3.12	2.95*
Tangibility (%)	27.09	31.45	-4.36*
Leverage (%)	38.35	40.68	-2.33*
F	anel B. Geographic char	acteristics	
Latitude	34.25	39.98	-5.73*
Dist2Sea (km)	152.98	120.87	32.11*
PDSI ¹	-0.89	-1.57	0.68^{*}

Table 5: Portfolio summary statistics (annual average)

": Palmer Drought Severity Index (Palmer, 1965)

*: significant at 5%


<ロト < 団 > < 三 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2/24

INDUSTRIES WITH HIGHEST WEIGHTS IN THE H AND L PORTFOLIOS

High ENSCORE port	folio	Low ENSCORE portfolio				
Industries	FF49 code	Industries	FF49 code			
Retail	43	Business Services	34			
Utilities	31	Computer Software	36			
Petroleum and Natural Gas	30	Retail	43			
Communication	32	Communication	32			
Business Services	34	Pharmaceutical Products	13			
Transportation	41	Petroleum and Natural Gas	30			

EVIDENCE OF GREENIUM: RISK-ADJUSTED ABNORMAL RETURN

▶ < 클 > 클|= ∽ < ↔ 4/24

EVIDENCE OF GREENIUM: DOUBLE SORTING (1/2)

- 1. In each year, I first divide firms into two groups according to one characteristics of previous year relative to industry peers
- 2. Then within each group, I further divide firms into five portfolios according to their ENSCORE

	L	2	3	4	Н	L - H	L	2	3	4	Н	L - H
			Panel A	. MV					Panel B	. BV/M	V	
L	12.71	12.53	11.93	10.80	11.85	0.87	10.18	8.42	7.35	8.77	7.07	3.11**
	(4.48)	(4.53)	(4.56)	(4.41)	(4.61)	(1.53)	(4.11)	(3.74)	(3.8)	(3.49)	(3.03)	(1.63)
Н	9.63	9.42	8.92	7.36	6.61	3.02**	10.69	8.72	11.24	9.82	7.05	3.64**
	(4.1)	(4.29)	(3.73)	(3.29)	(3.24)	(1.44)	(4.25)	(4.79)	(4.55)	(3.74)	(3.93)	(1.59)
			Panel C	. I/A					Panel E	0. REV/A	A	
L	9.46	10.13	8.07	6.33	6.32	3.14**	10.24	8.57	10.51	8.66	6.78	3.45**
	(3.99)	(4.32)	(3.8)	(3.49)	(3.33)	(1.53)	(4.42)	(4.32)	(4.1)	(3.82)	(3.34)	(1.58)
Н	10.26	6.55	9.57	8.55	6.29	3.98***	11.80	9.22	8.29	8.90	7.42	4.39***
	(4.36)	(3.92)	(4.01)	(3.76)	(3.23)	(1.59)	(3.83)	(3.97)	(4.09)	(3.81)	(3.17)	(1.32)

BACK

EVIDENCE OF GREENIUM: DOUBLE SORTING (2/2)

	L	2	3	4	Н	L - H	L	2	3	4	Н	L - H
		F	Panel E. I	R&D/A					Panel I	F. PPE/A		
L	10.90	10.23	10.30	8.74	7.42	3.48**	10.67	9.93	10.54	7.80	6.47	4.20***
	(4.44)	(4.34)	(4.1)	(3.36)	(3.4)	(1.71)	(4.07)	(4.45)	(4.51)	(3.45)	(3.4)	(1.58)
Н	12.95	8.42	7.70	8.03	7.05	5.90***	10.92	7.99	8.80	9.52	8.02	2.90**
	(4.82)	(5.22)	(4.41)	(3.61)	(3.62)	(2.45)	(4.47)	(4.33)	(3.79)	(3.96)	(3.19)	(1.7)
	Panel G. Lev						Panel H. Latitude					
L	9.84	8.67	9.34	8.54	6.48	3.36**	10.81	8.46	8.77	9.31	6.81	4.00***
	(4.1)	(4.08)	(4.37)	(3.35)	(3.13)	(1.72)	(3.98)	(4.23)	(3.79)	(3.71)	(3.23)	(1.34)
Н	11.72	9.18	9.63	8.27	8.02	3.69**	11.45	11.03	7.45	9.87	7.17	4.28***
	(4.54)	(4.19)	(3.72)	(4.04)	(3.4)	(1.64)	(4.43)	(4.32)	(4.65)	(3.36)	(3.36)	(1.76)
		Pan	el I. Dista	ance to S	ea				Panel	I. PDSI		
L	11.66	9.99	10.49	9.42	7.64	4.03***	9.90	7.44	6.89	8.01	6.76	3.14**
	(4.2)	(4.42)	(3.88)	(3.37)	(3.46)	(1.24)	(4.04)	(3.91)	(4.32)	(3.67)	(3.26)	(1.59)
Н	9.32	6.60	9.90	7.40	6.59	2.73**	11.93	9.19	9.42	12.65	7.48	4.44***
	(3.95)	(3.74)	(4.59)	(3.84)	(3.2)	(1.58)	(4.21)	(4.73)	(3.88)	(4.01)	(3.32)	(1.52)

BACK

EVIDENCE OF GREENIUM: FAMA-MACBETH REGRESSION $R_{i,t} = \beta_0 + \beta_1 ENSCORE_{i,t-12} + \beta_2 X_{i,t-12} + \epsilon_{i,t}$

	(1)	(2)	(3)	(4)	(5)
ENSCORE	-1.37**	-1.02*	-0.96*	-0.86**	-0.86**
Litteente	(0.56)	(0.55)	(0.49)	(0.40)	(0.42)
MV	(0.00)	-0.94*	-0.52	-0.52	-0.51
		(0.53)	(0.47)	(0.37)	(0.35)
BV/MV		1.06	1.65	2.82*	2.89**
		(0.80)	(1.11)	(1.59)	(1.43)
I/A		. ,	-0.50	-0.88	-0.82
			(0.55)	(1.08)	(1.13)
REV/A			1.09***	1.37**	1.48**
			(0.38)	(0.64)	(0.64)
R&D/A				2.14**	2.03**
				(0.99)	(0.98)
PPE/A				-1.30*	-1.06
				(0.72)	(0.68)
Lev				0.85	0.83
				(0.81)	(0.80)
Latitude					0.30
					(0.70)
Dist2Sea					-0.42
					(0.42)
PDSI					1.42*
					(0.81)
Industry FE	Yes	Yes	Yes	Yes	Yes
Adj. R^2	0.110	0.118	0.118	0.147	0.165
Óbs.	475128	446232	435264	203316	188712

EVIDENCE OF GREENIUM: PRICE OF RISK (1/2)

- 1. I construct a *Brown Minus Green* factor using the excess return of a low-minus-high portfolio on ENSCORE
- 2. I identify price of risk using a two-pass regression

$$\begin{aligned} R_t^p &= \beta_{0,p} + \beta_{1,p} \cdot F_t + \beta_{BMG,p} \cdot BMG_t + v_{p,t} \\ E[R_t^p] &= \lambda_0 + \lambda_1 \cdot \hat{\beta}_{1,p} + \lambda_{BMG} \cdot \hat{\beta}_{BMG,p} + u_p \end{aligned}$$

where

- R_t^p is the return of a testing portfolio from Kenneth French's data library
- F_t is the FF5 factors

A positive λ_{BMG} means that the greenium exists in a wide cross-section of testing portfolios

EVIDENCE OF GREENIUM: PRICE OF RISK (2/2)

Portfolio sets	λ_{MKT}	λ_{SMB}	λ_{HML}	λ_{RMW}	λ_{CMW}	λ_{BMG}
Size & BV/MV (25)	8.58**	1.92	0.89	1.24	2.55	3.55
	(4.34)	(1.69)	(1.75)	(1.29)	(1.72)	(2.29)
Size & INV (25)	8.52**	1.31	8.57***	-0.94	1.31	5.11^{*}
	(4.34)	(1.69)	(2.38)	(1.42)	(1.34)	(2.76)
Size & OP (25)	8.57**	2.24	0.65	2.89***	2.16	6.87***
	(4.34)	(1.69)	(2.13)	(1.07)	(1.96)	(2.43)
Size & BV/MV & INV (32)	8.70^{*}	2.01	-0.07	3.74***	1.05	7.41***
	(4.34)	(1.69)	(1.75)	(1.26)	(1.34)	(1.93)
Size & BV/MV & OP (32)	8.35**	2.15	0.63	3.64***	-1.11	7.84***
	(4.34)	(1.69)	(1.75)	(1.09)	(1.61)	(1.91)
BV/MV & INV & OP (32)	8.67**	1.88	6.61***	3.10***	1.16	0.28
	(4.34)	(1.69)	(1.89)	(1.07)	(1.33)	(1.96)

EVIDENCE OF GREENIUM: SUBCATEGORY OF ENSCORE (1/3)

	L	2	3	4	Н	L - H
		Panel A	A. Emission sc	ore		
$E[R^{ex}]$	10.59	9.05	9.16	7.48	7.78	2.81**
	(4.03)	(4.18)	(4.16)	(3.62)	(3.25)	(1.23)
CAPM α	2.63	1.05	1.53	0.77	1.10	1.54^{*}
	(1.22)	(1.53)	(1.47)	(1.03)	(0.87)	(1.06)
FF3 α	2.82	1.14	1.95	1.07	1.54	1.28^{*}
	(0.99)	(1.55)	(1.39)	(1.01)	(0.77)	(0.91)
FF5 α	4.74	0.78	2.21	0.82	1.99	2.74**
	(1.15)	(1.69)	(1.47)	(1.1)	(1)	(1.31)
FF5 & MOM α	4.76	0.76	2.27	0.76	1.95	2.81**
	(1.16)	(1.71)	(1.44)	(1.12)	(1.05)	(1.38)

シック・ 単国・ イヨ・ イヨ・ イロ・

BACK

EVIDENCE OF GREENIUM: SUBCATEGORY OF ENSCORE (2/3)

	L	2	3	4	Н	L - H
		Panel B.	Innovation sc	ore		
$E[R^{ex}]$	10.11	10.42	9.04	10.79	8.81	1.30
	(4.46)	(5.36)	(4.36)	(4.37)	(4.16)	(1.13)
CAPM α	2.17	0.68	1.32	3.55	1.57	0.60
	(1.52)	(1.75)	(1.87)	(2.19)	(1.37)	(1.09)
FF3 α	2.39	0.89	1.64	3.70	1.90	0.49
	(1.51)	(1.65)	(1.85)	(2.14)	(1.41)	(1.14)
FF5 α	4.99	2.86	2.17	4.92	3.11	1.88^{*}
	(2.07)	(1.51)	(2.12)	(2.72)	(2.05)	(1.32)
FF5 & MOM α	5.09	3.05	2.33	4.93	3.23	1.86*
	(2.02)	(1.52)	(2.05)	(2.68)	(2.05)	(1.32)

EVIDENCE OF GREENIUM: SUBCATEGORY OF ENSCORE (3/3)

	L	2	3	4	Н	L - H
		Panel C	C. Resource sco	ore		
$E[R^{ex}]$	9.81	9.38	9.09	8.11	7.56	2.25*
	(4.29)	(4.52)	(3.52)	(4.02)	(3.18)	(1.44)
CAPM α	1.60	1.29	2.00	0.89	0.94	0.66
	(1.14)	(1.44)	(1.04)	(1.21)	(1.02)	(1.1)
FF3 α	1.74	1.18	2.30	1.18	1.43	0.31
	(0.98)	(1.45)	(1)	(1.25)	(0.81)	(0.96)
FF5 α	3.68	2.58	3.21	0.80	1.70	1.98**
	(1.12)	(1.78)	(1.16)	(1.13)	(0.91)	(1.07)
FF5 & MOM α	3.72	2.66	3.08	0.77	1.68	2.04**
	(1.1)	(1.73)	(1.22)	(1.12)	(0.93)	(1.12)

EVIDENCE OF GREENIUM: U.S. SAMPLE

	L	2	3	4	Н	L - H
$E[R^{ex}]$	12.73	12.05	10.66	11.22	8.37	4.36**
	(4.55)	(4.58)	(3.92)	(3.64)	(3.26)	(1.88)
CAPM α	2.61	1.79	1.47	2.26	0.07	2.54^{*}
	(1.45)	(1.79)	(1.64)	(1.31)	(0.95)	(1.64)
FF3 α	2.25	1.88	1.36	2.20	0.05	2.20*
	(1.18)	(1.84)	(1.62)	(1.32)	(1)	(1.6)
FF5 α	2.97	0.81	0.62	1.25	-0.40	3.37**
	(1.24)	(1.64)	(1.82)	(1.39)	(1.16)	(1.49)
q5 α	4.33	3.98	2.71	1.76	-0.82	5.15***
-	(1.54)	(1.39)	(1.48)	(1.29)	(1.03)	(1.47)

・ロト・(日・(日・(日・(日・)))

13 / 24

EVIDENCE OF GREENIUM: SUBSAMPLE

	$E[R^{ex}]$	CAPM α	FF3 α	FF5 α	FF5_MOM α
Full sample	3.83***	2.43**	2.17**	3.91***	3.98***
	(1.39)	(1.18)	(0.98)	(1.22)	(1.25)
2004-2019	3.80***	2.45**	2.46***	4.77***	4.98***
	(1.48)	(1.21)	(0.97)	(1.17)	(1.21)
2005-2019	3.42**	2.19**	2.22**	4.56***	4.71***
	(1.58)	(1.29)	(1.03)	(1.21)	(1.24)
2006-2019	3.71**	2.51**	2.51***	4.51***	4.58***
	(1.67)	(1.34)	(1.07)	(1.33)	(1.36)
2007-2019	4.04^{**}	2.97**	2.71***	4.84***	4.86***
	(1.76)	(1.35)	(1.14)	(1.41)	(1.43)
2008-2019	4.39***	3.37***	2.79**	4.89***	4.88***
	(1.86)	(1.42)	(1.23)	(1.57)	(1.58)
2009-2019	5.98***	4.12**	2.31**	3.56**	3.52***
	(2.1)	(1.99)	(1.37)	(1.55)	(1.5)

BACK

EVIDENCE OF GREENIUM: SUBSAMPLE (FIXING FIRMS)

	$E[R^{ex}]$	CAPM α	FF3 α	FF5 α	FF5_MOM α
2003-2019	2.33*	0.90	0.71	1.73*	1.78*
	(1.66)	(1.68)	(1.43)	(1.34)	(1.35)
2004-2019	2.06	0.67	0.69	2.10*	2.26*
	(1.76)	(1.7)	(1.4)	(1.36)	(1.38)
2005-2019	3.31**	1.98*	2.05**	4.16***	4.41***
	(1.64)	(1.37)	(1.07)	(1.18)	(1.22)
2006-2019	3.12**	1.99*	2.06**	3.66***	3.74***
	(1.61)	(1.4)	(1.13)	(1.33)	(1.35)
2007-2019	3.32**	2.29*	2.20**	3.84***	3.87***
	(1.73)	(1.48)	(1.23)	(1.4)	(1.43)
2008-2019	3.91**	2.83**	2.48**	4.01***	3.98***
	(1.99)	(1.6)	(1.3)	(1.36)	(1.38)
2009-2019	4.94***	3.20**	2.18*	2.91**	3.00**
	(1.81)	(1.81)	(1.41)	(1.39)	(1.39)

EVIDENCE OF GREENIUM: CARBON EMISSION INTENSITY

	L	2	3	4	Н	L - H
		Panel A. Carb	on emission/	Total asset		
$E[R^{ex}]$	4.70	6.64	7.41	6.85	9.23	-4.53*
. ,	(5.74)	(4.49)	(4.76)	(4.09)	(3.53)	(3.41)
CAPM α	0.07	2.43	3.00	2.71	5.44	-5.38**
	(2.95)	(2.14)	(2.07)	(2.43)	(2.57)	(3.25)
FF3 α	-0.12	2.51	2.94	2.96	5.59	-5.71**
	(2.89)	(2.15)	(2.07)	(2.41)	(2.48)	(3.22)
FF5 α	-0.81	3.11	2.77	2.07	4.75	-5.57**
	(2.85)	(2.5)	(2.13)	(2.64)	(2.39)	(3.02)
FF5 & MOM α	-0.77	3.05	2.77	2.05	4.74	-5.51**
	(2.85)	(2.39)	(2.13)	(2.59)	(2.35)	(2.91)
		Panel B. Carl	oon emission/	/Revenue		
$E[R^{ex}]$	4.96	8.07	6.88	7.13	9.06	-4.10*
. ,	(5.27)	(4.48)	(4.72)	(4.25)	(3.53)	(2.99)
CAPM α	0.80	3.43	2.54	2.85	5.32	-4.53*
	(2.68)	(1.82)	(2.32)	(2.25)	(2.58)	(3.02)
FF3 α	0.87	3.39	2.46	3.02	5.50	-4.63*
	(2.67)	(1.71)	(2.32)	(2.25)	(2.51)	(3.03)
FF5 α	0.44	3.59	1.52	2.47	4.78	-4.34**
	(2.45)	(2.21)	(2.41)	(2.51)	(2.41)	(2.61)
FF5 & MOM α	0.41	3.51	1.57	2.46	4.76	-4.34**
	(2.43)	(2.06)	(2.46)	(2.48)	(2.34)	(2.6)

BACK

16 / 24

EVIDENCE OF GREENIUM: MSCI ENSCORE

	L	Н	L - H
$\overline{E[R^{ex}]}$	10.02	7.73	2.29
	(3.59)	(4.19)	(2.54)
	Panel	A. CAPM	
α	4.21	0.47	3.74^{*}
	(2.45)	(1.82)	(2.45)
	Pane	el B. FF3	
α	3.16	-0.74	3.89*
	(2.54)	(1.44)	(2.68)
	Pane	l C. FF5	
α	1.33	-2.89	4.22*
	(2.44)	(1.53)	(2.59)
	Panel D.	FF5 & MOM	
α	1.57	-2.37	3.94*
	(2.37)	(1.61)	(2.6)

<ロ> < 団> < 豆> < 豆> < 豆> < 豆> < 豆</p>

17 / 24

ACK

EVIDENCE OF GREENIUM: ANNUAL CHANGE OF ENSCORE

	L	2	3	4	Н	L - H
Δ ENSCORE	-7.30	-1.11	1.06	5.40	18.26	-25.57
ENSCORE	33.22	32.22	22.71	28.43	40.66	-7.44
$E[R^{ex}]$	7.62	8.76	8.49	7.70	7.02	0.60
	(3.48)	(3.75)	(4.37)	(3.43)	(3.64)	(0.8)
CAPM α	1.55	2.48	1.79	1.60	0.78	0.77
	(1)	(0.74)	(1.35)	(0.79)	(0.88)	(0.82)
FF3 α	1.59	2.50	1.80	1.63	0.82	0.77
	(0.96)	(0.73)	(1.4)	(0.77)	(0.74)	(0.82)
FF5 α	1.76	2.94	1.50	0.73	1.46	0.30
	(1.12)	(0.94)	(1.37)	(0.97)	(0.85)	(0.93)
FF5&MOM α	1.72	2.91	1.43	0.57	1.43	0.29
	(1.15)	(0.98)	(1.33)	(1.12)	(0.86)	(0.95)

EVENT STUDY ON RETURNS

	1	$R_{i,t \to t+M} = \alpha + \beta \cdot I$	$Brown_i + \gamma X_{i,t} +$	$-\epsilon_{i,t}$	
Μ	1m	2m	3m	6m	12m
		Panel A. Hurricane	Katrina (obs.=72	21)	
β	-19.61**	-17.93***	-9.10*	-8.76**	-8.79***
	(8.48)	(6.18)	(5.19)	(3.74)	(2.34)
Adj. R^2	0.14	0.20	0.09	0.19	0.18
		Panel B. 2012 US d	lrought (obs.=84	4)	
β	-22.61**	-11.83*	-6.53	-5.11	-7.18***
	(10.81)	(6.62)	(4.89)	(3.14)	(2.54)
Adj. R^2	0.16	0.13	0.12	0.04	0.22
	Pa	nel C. 2018 Californi	a wildfires (obs.=	=1475)	
β	-24.50***	-6.12	-5.49	-2.92	-0.62
	(6.88)	(5.2)	(4.37)	(3.44)	(2.41)
Adj. R^2	0.06	0.06	0.05	0.13	0.12

BACK

EVENT STUDY ON INVESTMENT

$\Delta I/A_{i,t} = \alpha + \beta \cdot Brown_i + \gamma X_{i,t} + \epsilon_i$

	$I \equiv \Delta \text{PPE}$		
	Panel A. 2012 US drought		
β	-4.62**	-6.73**	
	(2.18)	(2.74)	
Adj. R^2	0.02	0.01	
Obs.	829	827	
	Panel B. 2018 California wildfires		
β	-4.28**	-5.19**	
	(2.02)	(2.25)	
Adj. R^2	0.03	0.01	
Óbs.	1381	1374	

シック・目目 (ヨシ (ヨシ (日)) (日)

DERIVATION OF THE STOCK RETURNS

Capital accumulation under investment friction

where
$$0 < \xi < 1$$
 $K_{i,2} = G(I_{i,1}, K_{i,1}) = I_{i,1}^{\xi} K_{i,1}^{1-\xi}, \quad \forall i \in \{B, G\}$

Returns are related to investments (Cochrane 1991)

$$R_{i,1} = \underbrace{\overbrace{Q_{i,1}G'_{K_{i,1}}}^{\text{capital gain}} + \overbrace{MPK_1}^{\text{dividend}}}_{Q_{i,0}} = \frac{1}{Q_{i,0}} \left(\frac{\xi}{1-\xi} \frac{I_{i,1}}{K_{i,1}} + \alpha \frac{Y_1}{K_{i,0}} \right), \quad \forall i \in \{B, G\}$$
where $G'_{K_{i,1}} = \frac{\partial G}{\partial K_{i,1}}$, and $Q_{i,1} = \frac{1}{G'_{I_{i,1}}}$ is Tobin's Q of sector i .

きりょう 正明 ふゆきょう 御をふしゃ

SENSITIVITY ANALYSIS

	Benchmark	Subjective Discount rate	IES	Substi	tution	R&D eff	iciency
		$\beta = 0.95$	$\psi = 0.1$	$\varepsilon = 1.5$	$\varepsilon = 10$	$\nu = 0.05$	$\nu = 0.1$
SCC	40.38	30.24	11.82				
r_{SCC}	4.71%	6.56%	15.91%				
Risk-free rate	0.83%	4.67%	17.37%				
Climate damage	0.51%	0.41%	0.18%				
Temperature	0.95	0.80	0.36				
I_G/\hat{I}_{total}	62.80%	59.84%	55.49%				
l_G	61.38%	59.11%	55.32%				
R&D/Y	0.89%	0.53%	0.20%				

Table 6: Sensitivity analysis

Takeaway

► Subjective discount rate & <u>IES</u> are essential to quantify the SCC

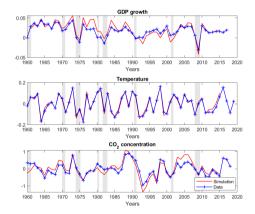
SENSITIVITY ANALYSIS

	Benchmark	Subjective Discount rate	IES	Substi	tution	R&D eff	iciency
		$\beta = 0.95$	$\psi = 0.1$	$\varepsilon = 1.5$	$\varepsilon = 10$	$\nu = 0.05$	$\nu = 0.1$
SCC	40.38			40.65	39.44	40.34	40.43
r_{SCC}	4.71%			4.69%	4.80%	4.72%	4.71%
Risk-free rate	0.83%			0.78%	0.94%	0.75%	0.95%
Climate damage	e 0.51%			0.70%	0.03%	0.55%	0.45%
Temperature	0.95			1.24	0.07	1.01	0.86
I_G/\hat{I}_{total}	62.80%			45.17%	98.36%	48.64%	76.81%
l_G	61.38%			44.47%	98.09%	47.58%	75.29%
R&D/Y	0.89%			0.65%	1.36%	0.47%	1.46%

Table 6: Sensitivity analysis

Takeaway

- ► Subjective discount rate & <u>IES</u> are essential to quantify the SCC
- ► <u>Substitution</u> & <u>R&D efficiency</u> matter for equilibrium allocation btw. green/brown investments


CALIBRATION

BACK

L	Literature Regression		GMM		
μ	1.8%	ρ_M	0.98	ρ_{λ}	0.92
σ	3.35%	ρ_T	0.17	σ_{λ}	$2.5 imes 10^{-5}$
$ ho_x$	0.96	σ_M	0.45	ξ	1.71
φ_x	0.2	σ_T	0.092	ν	0.074
ω	0.59	χ	3.088	η	0.67
ε	3			b	7.99
δ_K	0.06			ζ	1.64
α	0.34				
β	0.974				
γ	10				
$\psi \over ar\lambda$	2				
$ar{\lambda}$	5.05×10^{-5}				
k	4				
δ_H	0.1				

Table 7: Calibration

CALIBRATION

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・