Introduction	Survey	Scientific Information	Result	Conclusion
000	000000000		0000	000

Respondent experience and willingness to pay: Reconciling stated preference data with scientific evidence

Zhenyu Yao, Klaus Moeltner Department of Agricultural and Applied Economics Virginia Tech, Blacksburg, VA

Jan 2021

Introduction	Survey	Scientific Information	Result	Conclusion
●00	0000000000		0000	000
Introduction				

- Harmful algal blooms (HABs), known as Florida Red Tide (RT) have severe economic effects on fisheries, seafood, tourism, property price and human health.
 - Produce toxins killing fish and making shellfish dangerous to eat.
 - Lead to respiratory illness for humans via aerosolized toxins.

Introduction	Survey	Scientific Information	Result	Conclusion
●00	0000000000		0000	000
Introduction				

- Harmful algal blooms (HABs), known as Florida Red Tide (RT) have severe economic effects on fisheries, seafood, tourism, property price and human health.
 - Produce toxins killing fish and making shellfish dangerous to eat.
 - Lead to respiratory illness for humans via aerosolized toxins.
- A survey/Discrete Choice Experiment was implemented to access WTP for a hypothetical new forecast system to predict RT airborne contaminants.

Introduction	Survey	Scientific Information	Result	Conclusion
●00	000000000		0000	000
Introduction				

- Harmful algal blooms (HABs), known as Florida Red Tide (RT) have severe economic effects on fisheries, seafood, tourism, property price and human health.
 - Produce toxins killing fish and making shellfish dangerous to eat.
 - Lead to respiratory illness for humans via aerosolized toxins.
- A survey/Discrete Choice Experiment was implemented to access WTP for a hypothetical new forecast system to predict RT airborne contaminants.
- Respondents' past experience can be captured in two fundamental ways: (i) directly from the respondents, as part of the survey; (ii) scientific sources that are extraneous to the survey.

Introduction	Survey	Scientific Information	Result	Conclusion
○●○	000000000		0000	000
Introduction				

• Survey-elicited experience has potential recall problem.

Introduction	Survey	Scientific Information	Result	Conclusion
○●○	0000000000		0000	000
Introductio	n			

- Survey-elicited experience has potential recall problem.
- Survey-elicited information can lead to strategic bias.

Introduction	Surve y	Scientific Information	Result	Conclusion
○●○	000000000		0000	000
Introductio	n			

- Survey-elicited experience has potential recall problem.
- Survey-elicited information can lead to strategic bias.
- Survey-elicited experience can introduce endogeneity problems.

Introduction	Survey	Scientific Information	Result	Conclusion
○●○	000000000		0000	000
Introduction				

- Survey-elicited experience has potential recall problem.
- Survey-elicited information can lead to strategic bias.
- Survey-elicited experience can introduce endogeneity problems.
- Using outside scientific information, we can predict WTP estimates at future points in time without having to do another survey.

Introduction	Surve y	Scientific Information	Result	Conclusion
000	000000000		0000	000
Introduction				

• Check the validity of self-reported RT impacts from survey.

Introduction	Survey	Scientific Information	Result	Conclusion
000	000000000		0000	000
Introduction				

- Check the validity of self-reported RT impacts from survey.
- Incorporate scientific information in choice model as a truly exogenous measure/instrument for impacts.

Introduction	Survey	Scientific Information	Result	Conclusion
000	000000000		0000	000
Introduction				

- Check the validity of self-reported RT impacts from survey.
- Incorporate scientific information in choice model as a truly exogenous measure/instrument for impacts.
- Refine WTP predictions by intensity of RT pressure as captured by outside scientific information.

Introduction	Survey	Scientific Information	Result	Conclusion
000	000000000		0000	000
Introduction				

- Check the validity of self-reported RT impacts from survey.
- Incorporate scientific information in choice model as a truly exogenous measure/instrument for impacts.
- Refine WTP predictions by intensity of RT pressure as captured by outside scientific information.
- Predict WTP under future RT conditions without new survey-based impact data.

Introduction 000	Survey •00000000	Scientific Information	Result 0000	Conclusion

• Comparison between existing and new system:

	time frame	spatial resolution	updating
BCRS	current conditions	22 specific beaches	twice a day
RTCS	past week	20-30 specific sampling points	once a week
HABF	3-4 days ahead	22 broad regions	once a week
New system	24 hours ahead	each square mile within coverage area	hourly

э

Introduction 000	Survey •00000000	Scientific Information	Result 0000	Conclusion

• Comparison between existing and new system:

	time frame	spatial resolution	updating
BCRS RTCS	current conditions past week	22 specific beaches 20-30 specific sampling points	twice a day once a week
HABF	3-4 days ahead	22 broad regions	once a week
New system	24 hours ahead	each square mile within coverage area	hourly

• Much higher resolution

Introduction 000	Survey •00000000	Scientific Information	Result 0000	Conclusion

• Comparison between existing and new system:

	time frame	spatial resolution	updating
BCRS	current conditions	22 specific beaches	twice a day
RTCS	past week	20-30 specific sampling points	once a week
HABF	3-4 days ahead	22 broad regions	once a week
New system	24 hours ahead	each square mile within coverage area	hourly

- Much higher resolution
- Much more frequent updating

Introduction 000	Survey •000000000	Scientific Information	Result 0000	Conclusion

• Comparison between existing and new system:

	time frame	spatial resolution	updating
BCRS	current conditions	22 specific beaches	twice a day
RTCS	past week	20-30 specific sampling points	once a week
HABF	3-4 days ahead	22 broad regions	once a week
New system	24 hours ahead	each square mile within coverage area	hourly

- Much higher resolution
- Much more frequent updating
- Reach further inland

Introduction	Survey	Scientific Information	Result	Conclusion
000	⊙●○○○○○○○○		0000	000
Survey				

• A choice experiment (CE) survey was implemented in June and September 2020 in five Florida counties (Sarasota, Collier, Lee, Charlotte and Manatee).

Introduction	Survey	Scientific Information	Result	Conclusion
000	⊙●○○○○○○○		0000	000
Survey				

- A choice experiment (CE) survey was implemented in June and September 2020 in five Florida counties (Sarasota, Collier, Lee, Charlotte and Manatee).
- The new forecast system is a hypothetical but feasible better forecast system of RT air quality conditions.

urvc

Introduction 000	Survey 0●00000000	Scientific Information	Result 0000	Conclusion
Survey				

- A choice experiment (CE) survey was implemented in June and September 2020 in five Florida counties (Sarasota, Collier, Lee, Charlotte and Manatee).
- The new forecast system is a hypothetical but feasible better forecast system of RT air quality conditions.
- Three attributes: spatial coverage (6/12 miles), accuracy (50%/75%/100%) in the first/second 12-hour segment.

Introduction	Survey	Scientific Information	Result	Conclusion
	00000000			

Example of the planned forecast

イロト イヨト イヨト イヨト

Introduction	Survey	Scientific Information	Result	Conclusion
	000000000			

Example of the planned forecast

St. Armands / Lido Beach

24 hour red tide irritation forecast

Last updated: Oct. 23, 2020, 6:00 AM

Zhenyu Yao (AAEC, VT)

Jan 2021

Introduction	Survey	Scientific Information	Result	Conclusion
	000000000			

Spatial coverage

• Spatial coverage:

イロン イ理 とくほとう ほんし

Introduction	Survey	Scientific Information	Result	Conclusion
	000000000			

Spatial coverage

• Spatial coverage:

• 6 miles band: about 1300 forecasting squares 12 miles band: about 2600 forecasting squares

Introduction 000	Survey 00000●0000	Scientific Information	Result 0000	Conclusion

Forecast accuracy

イロン イ理 とくほとう ほんし

Introduction 000	Survey 000000●000	Scientific Information	Result 0000	Conclusion

Choice experiment

イロト イヨト イヨト イヨト

Introduction	Survey	Scientific Information	Result	Conclusion
000	0000000●00		0000	000

Spatial location

Zhenyu Yao (AAEC, VT)

Jan 2021

• Survey-elicited sixteen activities are impacted by red tide, such as cancel or shorten outdoor activities, cancel visits, had to see doctor and moved further from the shore, etc.

Image: Image:

- Survey-elicited sixteen activities are impacted by red tide, such as cancel or shorten outdoor activities, cancel visits, had to see doctor and moved further from the shore, etc.
- Five choices: never, sometimes, often, almost daily and cannot recall or not applicable.

- Survey-elicited sixteen activities are impacted by red tide, such as cancel or shorten outdoor activities, cancel visits, had to see doctor and moved further from the shore, etc.
- Five choices: never, sometimes, often, almost daily and cannot recall or not applicable.
- Recode frequency of effects into binary indicator: 0=never, 1=otherwise.

- Survey-elicited sixteen activities are impacted by red tide, such as cancel or shorten outdoor activities, cancel visits, had to see doctor and moved further from the shore, etc.
- Five choices: never, sometimes, often, almost daily and cannot recall or not applicable.
- Recode frequency of effects into binary indicator: 0=never, 1=otherwise.
- Combine all 16 activities to measure overall impact from RT air contamination.

effect	variable	% NO	% YES	effect	variable	% NO	% YES
outdoor activities:				other effects:			
cancel / postpone	outcancel2	38.26	61.74	guests cancelled visits	visitcancel2	66.67	33.33
shorten	outshort2	37.85	62.15	unable to open windows (home or car)	windows2	48.1	51.9
re-locate	outreloc2	48.7	51.3	unable to let pets out	pets2	75.13	24.87
				toxins enered home / car via A/C system	accar2	69.44	30.56
around house outside activities							
cancel / postpone	yardcancel2	57.17	42.83	additional actions in response to RT:			
shorten	yardshort2	53.73	46.27	moved away from coast	moved2	78.15	21.85
				sold boat / water sport equipment	soldboat2	91.11	8.89
health effects:				put house / condo on market	sellhouse2	92.93	7.07
irritation (but no doctor)	irritation2	38.99	61.01	changed job / retired early	changejob2	92.1	7.9
severe irriation, see doctor	doctor2	87.66	12.34				
bothered / sickened by dead fish smell	fishsmell2	48.52	51.48				
any activities were impacted	RTimpact2	17.6	82.4				

< □ > < 同 > < 回 > < 回 > < 回 >

æ

Introduction Survey 000 000000000		Scientific Information	Result 0000	Conclusion		
<u> </u>						

• Respiratory irritation (RI) from Mote Marine Laboratory's Beach Conditions Reporting System (BCRS)

15 / 27

Introduction	Survey	Scientific Information	Result	Conclusion
000	000000000	•00000	0000	000

- Respiratory irritation (RI) from Mote Marine Laboratory's Beach Conditions Reporting System (BCRS)
- RI reported by citizen scientists (usually lifeguards) in terms of frequency of observed coughing by beach visitors: none, slight, moderate and intense.

15 / 27

Introduction	Survey	Scientific Information	Result	Conclusion
000	000000000	•00000	0000	000

- Respiratory irritation (RI) from Mote Marine Laboratory's Beach Conditions Reporting System (BCRS)
- RI reported by citizen scientists (usually lifeguards) in terms of frequency of observed coughing by beach visitors: none, slight, moderate and intense.
- Categorized none and slight as low RI; moderate and intense as high RI.

Introduction	Survey	Scientific Information	Result	Conclusion
000	000000000	•00000	0000	

- Respiratory irritation (RI) from Mote Marine Laboratory's Beach Conditions Reporting System (BCRS)
- RI reported by citizen scientists (usually lifeguards) in terms of frequency of observed coughing by beach visitors: none, slight, moderate and intense.
- Categorized none and slight as low RI; moderate and intense as high RI.
- Calculate the number of days in two-year period (2018-2019) when RI was reported as high.

Introduction	Survey	Scientific Information	Result	Conclusion
		00000		

• Identify the three-nearest beaches for respondents and calculate the average days.

Introduction 000	Survey 0000000000	Scientific Information	Result 0000	Conclusion
Scientific	Information: I	NOAA		

• Chlorophyll-a (Chl-a) are strongly suspected to contain *K. brevis* which is the organism responsible for the RT.

Introduction	Survey	Scientific Information	Result	Conclusion
000	0000000000		0000	000
Scientific In	formation:	NOAA		

- Chlorophyll-a (Chl-a) are strongly suspected to contain *K. brevis* which is the organism responsible for the RT.
- Chl-a concentration from NOAA satellite images

Introduction 000	Survey 000000000	Scientific Information	Result 0000	Conclusion
Scientific	Information: I	NOAA		

• Make 2-mile buffers for beaches to get the daily average Chl-a

э

Introduction Survey 000 000000000		Scientific Information	Result 0000	Conclusion
c ·				

Scientific Information: NOAA

- Make 2-mile buffers for beaches to get the daily average Chl-a
- The resolution of Chl-a concentration is approximately 1000*1000 meters.

Introduction	Scientific Information	Result	Conclusion
	000000		

Scientific Information: NOAA

• Calculate the average chlorophyll for two-year period in beaches.

19/27

Introduction	Scientific Information	Result	Conclusion
	000000		

Scientific Information: NOAA

- Calculate the average chlorophyll for two-year period in beaches.
- Identify the three nearest beaches and calculate the average chlorophyll of these beaches.

Introduction	Scientific Information	Result	Conclusion
	00000		

Differences between BCRS and NOAA

• BCRS-what is in the air; NOAA-what is in the water

Introduction	Survey	Scientific Information	Result	Conclusion
		00000		

Differences between BCRS and NOAA

- BCRS-what is in the air; NOAA-what is in the water
- BCRS-key to beach goers and land activities; NOAA-key to offshore fishing

Introduction	Scientific Information	Result	Conclusion
	00000		

Differences between BCRS and NOAA

- BCRS-what is in the air; NOAA-what is in the water
- BCRS-key to beach goers and land activities; NOAA-key to offshore fishing
- Factors such as wind and wave translate what is in the water to what is in the air.

Introduction 000	Survey 000000000	Scientific Information	Result ●000	Conclusion
Impact M	odel			

• A simple binary logit model for all effects presented to investigate the relationship between scientific information and survey-elicited experience impacted by RT air contamination.

Introduction	Survey	Scientific Information	Result	Conclusion
000	0000000000		●000	000
Impact M	lodel			

- A simple binary logit model for all effects presented to investigate the relationship between scientific information and survey-elicited experience impacted by RT air contamination.
- In each regression, we also add the demographic variables including gender, age, household size, number of family members under seven, number of family members ages seven to 18, family members with respiratory conditions, years lived at current address, years lived at current county, income and education.

Introduction	Scientific Information	Result	Conclusion
		0000	

Impact Model: marginal effects

	RTimpact2	outcancel2	outshort2	outreloc2	yardcancel2	yardshort2	visitcancel2	windows2	pets2
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
chlora_mean	0.0284***	0.0099	0.0307***	0.0108	0.0532***	0.0590***	0.0190***	0.0680***	0.0528***
	(0.0046)	(0.0074)	(0.0074)	(0.0078)	(0.0078)	(0.0078)	(0.0073)	(0.0078)	(0.0072)
resp1_days	0.0028***	0.0029***	0.0046***	0.0014**	0.0052***	0.0054***	0.0031***	0.0080***	0.0050***
	(0.0004)	(0.0006)	(0.0006)	(0.0006)	(0.0006)	(0.0006)	(0.0006)	(0.0006)	(0.0006)
Observations	5940	5460	5520	5484	5628	5568	5376	5628	4632
	accar2	irritation2	doctor2	fishsmell2	moved2	soldboat2	sellhouse2	changejob2	
	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	
chlora_mean	0.0614***	-0.0027	0.0230***	0.0307***	-0.0120*	-0.0043	-0.0124***	-0.0022	
	(0.0075)	(0.0072)	(0.0042)	(0.0078)	(0.0065)	(0.0037)	(0.0029)	(0.0033)	
recent days			and an an an and a dealer of a	0.0055444	0.0000***	0.0000***	0.0000***	0.0005**	
respi_uays	0.0066***	0.0023***	0.0014***	0.0056***	-0.0023***	-0.0008****	-0.0009***	-0.0005	
respi_uays	0.0066*** (0.0006)	0.0023*** (0.0006)	0.0014*** (0.0003)	(0.0006)	-0.0023**** (0.0005)	-0.0008**** (0.0003)	(0.0002)	(0.0003)	

æ

Introduction	Survey	Scientific Information	Result	Conclusion
000	0000000000		00●0	000
Choice M	odel			

	Model 1	Model 2	Model 3	Model 4	Model 5
	(1)	(2)	(3)	(4)	(5)
sq	-0.8017***	-0.4012***	0.2994	-0.8282***	4.3274***
	(0.1041)	(0.1289)	(0.6392)	(0.1443)	(1.5578)
cov12	0.1097	0.1097	0.1117	0.1101	0.1103
	(0.0940)	(0.0945)	(0.0941)	(0.0940)	(0.0942)
acc175	0.2628**	0.2655**	0.2579**	0.2619**	0.2622**
	(0.1294)	(0.1297)	(0.1294)	(0.1295)	(0.1296)
acc1100	0.9346***	0.9364***	0.9305***	0.9339***	0.9348***
	(0.1429)	(0.1432)	(0.1428)	(0.1429)	(0.1431)
acc275	0.2219**	0.2187**	0.2224**	0.2220**	0.2223**
	(0.0954)	(0.0955)	(0.0954)	(0.0954)	(0.0955)
acc2100	-0.0069	-0.0067	-0.0018	-0.0061	-0.0052
	(0.1286)	(0.1289)	(0.1286)	(0.1287)	(0.1288)
bid	-0.0464***	-0.0464***	-0.0465***	-0.0465***	-0.0465***
	(0.0049)	(0.0049)	(0.0049)	(0.0049)	(0.0049)
sq_RTimpact		-0.0789***			
		(0.0160)			
sq_chlora			-0.0545*		-0.2234***
			(0.0313)		(0.0673)
sq_resp1				0.0006	-0.0150***
				(0.0024)	(0.0053)
Observations	4416	4416	4416	4416	4416
Pseudo R-squared	0.0668	0.0747	0.0678	0.0668	0.0702
				Image:	マット・

Zhenyu Yao (AAEC, VT)

Red Tide

Jan 2021

23 / 27

Introduction 000	Survey 0000000000	Scientific Information	Result 000●	Conclusion
WTP est	imates			

forecast scenario		Model 1	Model 2	Model 3	Model 4	Model 5	
coverage	accurancy 1st 12 hrs	accurancy 2nd 12 hrs	mean	mean	mean	mean	mean
6	50	50	17.26167	17.58826	17.40197	17.2687	17.66083
6	50	75	22.03904	22.30427	22.18213	22.04638	22.44036
6	50	100	17.11263	17.44483	17.36225	17.1375	17.54968
6	75	50	22.91978	23.31279	22.94345	22.90662	23.29946
6	75	75	27.69714	28.0288	27.72361	27.6843	28.07899
6	75	100	22.77074	23.16936	22.90373	22.77541	23.18831
6	100	50	37.38477	37.77708	37.39891	37.37033	37.7606
6	100	75	42.16214	42.49308	42.17907	42.14801	42.54013
6	100	100	37.23574	37.63365	37.35919	37.23912	37.64945
12	50	50	19.62437	19.95287	19.80194	19.63794	20.03353
12	50	75	24.40174	24.66888	24.5821	24.41562	24.81306
12	50	100	19.47534	19.80944	19.76222	19.50673	19.92238
12	75	50	25.28248	25.6774	25.34342	25.27586	25.67216
12	75	75	30.05985	30.39341	30.12358	30.05353	30.45169
12	75	100	25.13345	25.53397	25.3037	25.14465	25.56101
12	100	50	39.74747	40.14169	39.79888	39.73957	40.1333
12	100	75	44.52484	44.8577	44.57904	44.51725	44.91283
12	100	100	39.59844	39.99826	39.75916	39.60836	40.02216

▲口▶▲圖▶▲圖▶▲圖▶ ▲国 ● 今久?

Introduction	Surve y	Scientific Information	Result	Conclusion
000	0000000000		0000	•00
Conclusion				

• The probability of activities affected by RT air contamination increases when the Chl-a concentration increases or the number of high RI days increases.

25 / 27

Introduction	Survey	Scientific Information	Result	Conclusion
000	0000000000		0000	●00
Conclusion				

- The probability of activities affected by RT air contamination increases when the Chl-a concentration increases or the number of high RI days increases.
- Respondents are less likely to choose the current status when outdoor activities are more influenced by RT air contamination.

25 / 27

Introduction	Survey	Scientific Information	Result	Conclusion
000	0000000000		0000	●00
Canalation				

- The probability of activities affected by RT air contamination increases when the Chl-a concentration increases or the number of high RI days increases.
- Respondents are less likely to choose the current status when outdoor activities are more influenced by RT air contamination.
- Respondents are more favorable of the new HABs forecast system when the Chl-a concentration increases or the number of high RI days increases.

LONCIUSION

Introduction	Survey	Scientific Information	Result	Conclusion
000	000000000		0000	○●○
Conclusion				

• Using self-reported impacts in the choice model seems not to pose endogeneity problems in this application - attribute coefficients remain stable, and WTP estimates are almost the same between model with self-reported impacts and model with scientific information.

26 / 27

Introduction	Survey	Scientific Information	Result	Conclusion
000	000000000		0000	○●○
Conclusion				

- Using self-reported impacts in the choice model seems not to pose endogeneity problems in this application - attribute coefficients remain stable, and WTP estimates are almost the same between model with self-reported impacts and model with scientific information.
- The outside objective scientific information can be effectively combined with choice experimental data.

Introduction	Survey	Scientific Information	Result	Conclusion
000	000000000		0000	○●○
Conclusion				

- Using self-reported impacts in the choice model seems not to pose endogeneity problems in this application - attribute coefficients remain stable, and WTP estimates are almost the same between model with self-reported impacts and model with scientific information.
- The outside objective scientific information can be effectively combined with choice experimental data.
- We can predict both impacts of survey-elicited experience and WTP estimates directly from scientific data without asking related questions for respondents or even without having to do another survey.

3

<ロト < 四ト < 三ト < 三ト