Incorporating Diagnostic Expectations into the New Keynesian Framework

Jean-Paul L'Huillier Sanjay R. Singh Donghoon Yoo

2022 ASSA Meeting January 7-9, 2022

J.-P. L'Huillier, S. Singh & D. Yoo

0/13

イロト 不得 とくほと くほとう ほ

Introduction

- What are Diagnostic Expectations (DE)?
 - "Representativeness heuristic" (Kahneman & Tversky)
 - Tendency to exaggerate how representative a small sample is
 - Advantages: Microfounded & tractable; realistic & portable
- DE can be productively integrated into the NK framework How do we show this?

First: Start off with technical contribution: solution method

Then:

A) Analytically, address 4 key issues

- 1. Amplification
- 2. Supply shocks
- 3. Fiscal policy
- 4. Overreaction of expectations
- B) Empirically
 - Show DE improve the fit of medium-scale models

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Diagnostic Expectations

Consider the process

$$x_t = \rho_x x_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$

Diagnostic pdf is defined as

$$f_t^{\theta}(x_{t+1}) = \underbrace{f(x_{t+1}|G_t)}_{true \ pdf} \cdot \underbrace{\left[\frac{f(x_{t+1}|G_t)}{f(x_{t+1}|-G_t)}\right]^{\theta}}_{distortion} \cdot C, \quad \theta > 0$$

Information sets:

G_t: current state *t −G_t*: reference state, here *t − 1*. (Follow Bordalo, Gennaioli & Shleifer (2018))

 θ : degree of diagnosticity

J.-P. L'Huillier, S. Singh & D. Yoo

イロン イロン イヨン イヨン 三日

Formula for Univariate Case and Example

Diagnostic expectation is:

 $\mathbb{E}_t^{\theta}[x_{t+1}] = \mathbb{E}_t[x_{t+1}] + \theta(\mathbb{E}_t[x_{t+1}] - \mathbb{E}_{t-1}[x_{t+1}])$

(Bordalo, Gennaioli & Shleifer (2018), henceforth BGS)

We have that:

$$\mathbb{E}_t[x_{t+1}] = \rho_x \check{x}_t$$
 and $\mathbb{E}_{t-1}[x_{t+1}] = \rho_x^2 \check{x}_{t-1}$

So:

$$\mathbb{E}_t^{\theta}[x_{t+1}] = \rho_x \check{x}_t + \theta(\rho_x \check{x}_t - \rho_x^2 \check{x}_{t-1}) = \rho_x \check{x}_t + \theta \rho_x \check{\varepsilon}_t$$

 \implies extrapolation

General Model

Exogenous process

$$\mathbf{x}_t = \mathbf{A}\mathbf{x}_{t-1} + \mathbf{v}_t$$

Recursive model:

 $\mathbb{E}_{t}^{\theta}[\mathsf{F}\mathsf{y}_{t+1} + \mathsf{G}_{1}\mathsf{y}_{t} + \mathsf{M}\mathsf{x}_{t+1} + \mathsf{N}_{1}\mathsf{x}_{t}] + \mathsf{G}_{2}\mathsf{y}_{t} + \mathsf{H}\mathsf{y}_{t-1} + \mathsf{N}_{2}\mathsf{x}_{t} = 0$

• **Question:** How to compute the equilibrium $\mathbb{E}_t^{\theta}[\mathbf{F}\mathbf{y}_{t+1} + \ldots]$?

- 1. Equilibrium \mathbf{y}_t ?
- 2. Combinations of future and contemporaneous vars?

Example: Loglinear Approximation of Euler Equation

Consider

$$\frac{u'(C_t)}{P_t} = \beta(1+i_t)\mathbb{E}_t^{\theta}\left[\frac{u'(C_{t+1})}{P_{t+1}}\right]$$

Notice!

$$\mathbb{E}_t^{\theta}[X_{t+1}Y_t] \neq \mathbb{E}_t^{\theta}[X_{t+1}]Y_t$$

• Hence, use conditioning on t - 1:

$$u'(C_t)\frac{P_{t-1}}{P_t} = \beta(1+i_t)\mathbb{E}_t^{\theta} \left[u'(C_{t+1})\frac{P_{t-1}}{P_t}\frac{P_t}{P_{t+1}} \right]$$

and approximate

Obtaining Log-Linear Approximation

We have:

$$u'(C_t)\frac{P_{t-1}}{P_t} = \beta(1+i_t)\mathbb{E}_t^{\theta} \left[u'(C_{t+1})\frac{P_{t-1}}{P_t}\frac{P_t}{P_{t+1}} \right]$$

Resulting diagnostic Fisher equation:

$$\hat{r}_t = \hat{i}_t - \mathbb{E}_t[\pi_{t+1}] \underbrace{-\theta(\pi_t - \mathbb{E}_{t-1}[\pi_t])}_{P_{t-1}/P_t} \underbrace{-\theta(\mathbb{E}_t[\pi_{t+1}] - \mathbb{E}_{t-1}[\pi_{t+1}])}_{P_t/P_{t+1}}$$

Appendix presents loglinearization steps of full DSGE

イロン 不良 とくほう イロン しゅ

Implications for New Keynesian Model

Model

$$\begin{aligned} \hat{y}_t &= \mathbb{E}_t^{\theta}[\hat{y}_{t+1}] - (\hat{i}_t - \mathbb{E}_t^{\theta}[\pi_{t+1}]) + \theta(\pi_t - \mathbb{E}_{t-1}[\pi_t]) \\ \pi_t &= \beta \mathbb{E}_t^{\theta}[\pi_{t+1}] + \kappa(\hat{y}_t - \hat{a}_t) \\ \hat{i}_t &= \phi_{\pi} \pi_t + \phi_x(\hat{y}_t - \hat{a}_t) \end{aligned}$$

イロン 不得 とうほう イロン しゅ

7/13

Euler equation combines both DE and RE

•
$$\theta = 1$$
 (Bordalo et al. 2020)

Amplification: NK vs. RBC

	New	Keynesian	Model
--	-----	-----------	-------

Variable	RE	DE	Percentage Increase
Output	0.0048	0.0085	77%

Volatility of output **increases**

► (Frictionless) Real Business Cycle Model

Variable	RE	DE	Percentage Increase
Output	0.0064	0.0059	-7%
Consumption	0.0015	0.0030	100%
Investment	0.0533	0.0503	-6%

Volatility of output falls

イロト 不得 トイヨト イヨト 二日

"Covid" Shock: Fall of Output Gap After Negative TFP Shock

Intuition: DE agent expects TFP to fall by a lot (in excess of reality) ⇒ Sharp drop in consumption

J.-P. L'Huillier, S. Singh & D. Yoo

9/13

・ロッ ・ 一 ・ ・ ヨッ・

Fiscal Policy

Proposition

Consider i.i.d. government spending shocks.

- 1. Under DE, the multiplier is greater than 1 iff $\theta > \phi_{\pi}$.
- 2. The multiplier is greater under DE than under RE.
- 3. The multiplier is increasing in θ , and tends to ∞ as $\theta \to \phi_{\pi} + \kappa^{-1}$.
- ► Diagnostic Fisher equation: $\hat{r}_t = \hat{i}_t - \mathbb{E}_t^{\theta}[\pi_{t+1}] - \theta(\pi_t - \mathbb{E}_{t-1}[\pi_t])$
- Role of endogenous extrapolation of inflation
- Dominates effect of monetary policy if $\theta > \phi_{\pi}$

イロト 不得 トイヨト イヨト 二日

Introducing Imperfect Info: Diagnostic Kalman Filter

Investigate in BLANCHARD, L'HUILLIER & LORENZONI (2013).

Short-run underreaction, delayed overreaction, and humps.

Bayesian Estimation

Rich model with host of frictions and shocks

Question: Do DE improve the fit to the data, even in the presence of all these other nominal, real, and informational frictions?

θ post. mode: 0.99, conf. interval: [0.77; 1.21]
Marginal likelihoods:

- RE model: -1590.66
- DE model: improvement to -1584.31

- How to integrate diagnostic expectations into linear models
- Rich insights in the context of NK models
- Better fit to business cycle data