Introduction 0000000000	Empirical Motivation	Model 000000000	Quantitative Analysis

Endogenous Abatement Technology

G. Benmir¹ and J. Roman²

2022 ASSA Annual Meeting

December 31, 2021

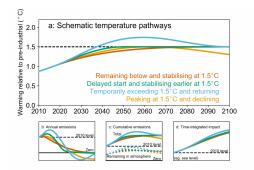
¹London School of Economics and Political Science ²Paris-Dauphine University - PSL Research University

Main question:

What are the business cycle and long-term implications of fiscal and macro-financial policies aimed at achieving the net-zero target?

Introduction
•0000000000

Quantitative Analysis

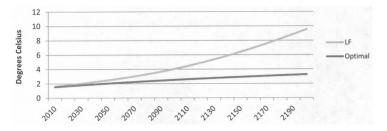

Introduction

Introduction
0000000000

Empirical Motivation

Model 000000000 Quantitative Analysis

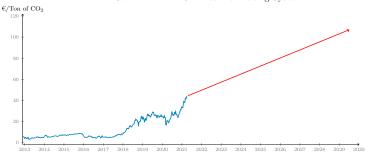
IPCC PATHWAYS


Source: IPCC Special Report - Global Warming of 1.5°C

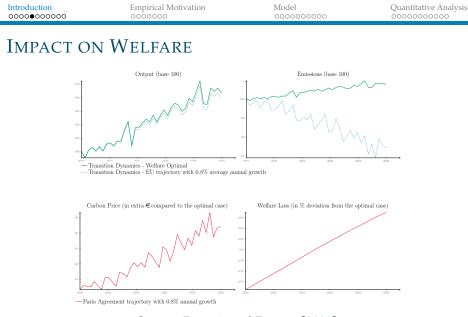
Empirical Motivation

Model 000000000 Quantitative Analysis

TEMPERATURE MITIGATION


Laissez-faire versus optimal environmental policy

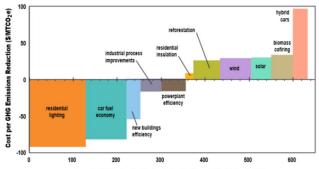
Source: Golosov & al. (2014)


Introduction 0000000000	Empirical Motivation	Model 000000000	Quantitative Analysis 0000000000

CARBON PRICE (ETS)

Price of Carbon in the EU Emissions Trading System

Source: Ember Climate



Source: Benmir and Roman [2020]

Model 000000000 Quantitative Analysis

ABATEMENT TECHNOLOGIES

ESTIMATE OF COST EFFECTIVENESS OF SELECT GHG EMISSIONS REDUCTIONS STRATEGIES IN THE U.S. (McKinsey & Company, 2007)

Annual GHG Reduction During Calendar Year 2030, Million MTCO2e

Model 000000000 Quantitative Analysis

CLIMATE & FINANCE NEXUS

- Growing awareness of risks associated with climate change and the challenges it poses for the conduct of monetary and macroprudential policies
 - Network for Greening the Financial System
 - ECB strategy review
 - Research at the BIS, SF Fed...

Introduction	Empirical Motivation	Model	Quantitative Analysis
00000000000	000000	000000000	0000000000

WHERE WE STAND

Need for alternatives to aggressive fiscal policy to meet climate goals

WHERE WE STAND

Need for alternatives to aggressive fiscal policy to meet climate goals

Steering R&D might be complementary and more efficient solution (welfare)

WHERE WE STAND

Need for alternatives to aggressive fiscal policy to meet climate goals

Steering R&D might be complementary and more efficient solution (welfare)

Willingness of financial authorities to take part in this challenge

Introduction	Empirical Motivation	Model	Quantitative Analysis
00000000000	000000	000000000	0000000000

OBJECTIVES OF THE PAPER

1. **Empirically** investigating the role of fiscal and macro financial policies with respect to emissions reduction and steering green R&D, respectively.

Introduction	Empirical Motivation	Model	Quantitative Analysis
00000000000	000000	000000000	0000000000

OBJECTIVES OF THE PAPER

- 1. **Empirically** investigating the role of fiscal and macro financial policies with respect to emissions reduction and steering green R&D, respectively.
- 2. Providing a framework with **endogenous green abatement** and **financial intermediaries**

Introduction	Empirical Motivation	Model	Quantitative Analysis
00000000000	000000	000000000	0000000000

OBJECTIVES OF THE PAPER

- 1. **Empirically** investigating the role of fiscal and macro financial policies with respect to emissions reduction and steering green R&D, respectively.
- 2. Providing a framework with **endogenous green abatement** and **financial intermediaries**
- 3. Assessing the role of **macro-financial policies** in steering green technological growth (Green R&D)

Introduction 00000000●0	Empirical Motivation	Model 000000000	Quantitative Analysis

Empirical:

1. **ETS Carbon Price Impacts:** Bel (2015), Haites (2018), and, Kanzig (2020) ⇒ We consider a diff-in-diff between the EZ and US over the ETS third phase

Introduction 00000000●0	Empirical Motivation	Model 000000000	Quantitative Analysis

Empirical:

- 1. **ETS Carbon Price Impacts:** Bel (2015), Haites (2018), and, Kanzig (2020) ⇒ We consider a diff-in-diff between the EZ and US over the ETS third phase
- Green Innovation Determinants: Acemoglu (2012), Aghion (2016), and Bai (2019) ⇒ We assess the impact of the ETS and long-term loans on EZ green innovation using a panel sample

Introduction	Empirical Motivation	Model	Quantitative Analysis
0000000000		000000000	0000000000

Empirical:

- 1. **ETS Carbon Price Impacts:** Bel (2015), Haites (2018), and, Kanzig (2020) ⇒ We consider a diff-in-diff between the EZ and US over the ETS third phase
- Green Innovation Determinants: Acemoglu (2012), Aghion (2016), and Bai (2019) ⇒ We assess the impact of the ETS and long-term loans on EZ green innovation using a panel sample

Theoretical:

1. Environmental externality: Heutel (2012) \Rightarrow We consider an endogenous abatement efficiency

Introduction	Empirical Motivation	Model	Quantitative Analysis
0000000000		000000000	0000000000

Empirical:

- 1. **ETS Carbon Price Impacts:** Bel (2015), Haites (2018), and, Kanzig (2020) ⇒ We consider a diff-in-diff between the EZ and US over the ETS third phase
- Green Innovation Determinants: Acemoglu (2012), Aghion (2016), and Bai (2019) ⇒ We assess the impact of the ETS and long-term loans on EZ green innovation using a panel sample

Theoretical:

- 1. Environmental externality: Heutel (2012) \Rightarrow We consider an endogenous abatement efficiency
- 2. Endogenous Growth: Comin and Gertler (2006) \Rightarrow Have two sources of endogeneity: global tech and green tech

Introduction	Empirical Motivation	Model	Quantitative Analysis
0000000000		000000000	0000000000

Empirical:

- 1. **ETS Carbon Price Impacts:** Bel (2015), Haites (2018), and, Kanzig (2020) ⇒ We consider a diff-in-diff between the EZ and US over the ETS third phase
- Green Innovation Determinants: Acemoglu (2012), Aghion (2016), and Bai (2019) ⇒ We assess the impact of the ETS and long-term loans on EZ green innovation using a panel sample

Theoretical:

- 1. Environmental externality: Heutel (2012) \Rightarrow We consider an endogenous abatement efficiency
- 2. Endogenous Growth: Comin and Gertler (2006) \Rightarrow Have two sources of endogeneity: global tech and green tech
- 3. **Financial Intermediaries:** Queralto (2019) ⇒ The green innovation is financed by banks

Introduction	Empirical Motivation	Model	Quantitative Analysis
000000000●	0000000	000000000	00000000000

TAKEAWAYS

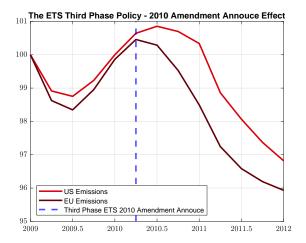
1. Implementing an environmental fiscal policy consistent with the EU climate goals, while contributing to achieving the desired emission reduction goal, it **induces welfare losses**, and it could have **side-effect** on green innovation

Introduction 000000000●	Empirical Motivation 0000000	Model 000000000	Quantitative Analysis 0000000000

TAKEAWAYS

- 1. Implementing an environmental fiscal policy consistent with the EU climate goals, while contributing to achieving the desired emission reduction goal, it **induces welfare losses**, and it could have **side-effect** on green innovation
- 2. Efficient abatement technology would help achieve CO₂ emissions reduction targets. However, the net-zero target requires increasingly higher levels of abatement technologies.

Introduction 000000000●	Empirical Motivation	Model 000000000	Quantitative Analysis 0000000000


TAKEAWAYS

- 1. Implementing an environmental fiscal policy consistent with the EU climate goals, while contributing to achieving the desired emission reduction goal, it **induces welfare losses**, and it could have **side-effect** on green innovation
- 2. Efficient abatement technology would help achieve CO₂ emissions reduction targets. However, the net-zero target requires increasingly higher levels of abatement technologies.
- 3. The three macro-financial policies are shown to be able to steer R&D and reduce the carbon price overtime

Empirical Motivation

000000000000000000000000000000000000000	00000000	000000000 00

Emissions Pathways EU versus US

Introduction 0000000000	Empirical Motivation	Model 000000000	Quantitative Analysis

DIFF-IN-DIFF

Our diff-in-diff data-set is based on a balanced US and EU dataset from 2000 to 2019 (quarterly basis):

 $ln(E_i) = \alpha + \beta_1 Policy_i + \beta_2 Treatment_i + \beta_3 (Treatment_i \times Policy_i)$ $+ \sum_i \beta_i X_i + error_i$

- Emissions (we use spline to transform date from annual to quarterly frequency),
- R&D patents,
- Long-term loans,
- Macro aggregate (GDP, trade-balance, oil price, population, deflator, ...)

Please note: Synthetic diff-in-diff (Under construction)

Introduction	
000000000000	

ETS PRICE IMPACT ON EMISSIONS: DIFF-IN-DIFF

In(Emissions per capita) (quarterly)	(1)	(2)	(3)	(4)	(5)	(6)
Policy (Q2 2010)	-0.0614**	-0.0111	0.0186	0.0649***	0.0496**	-0.0170
,	(0.0309)	(0.0261)	(0.0276)	(0.0166)	(0.0198)	(0.0350)
Treatment (EZ)	-1.369***	-1.230***	-1.269***	-1.300***	-1.160***	-1.727***
	(0.0861)	(0.0986)	(0.0947)	(0.0741)	(0.0673)	(0.253)
Diff-in-diff Estimator	-0.0730***	-0.112***	-0.121***	-0.191***	-0.137***	-0.0932**
	(0.0276)	(0.0225)	(0.0229)	(0.0255)	(0.0266)	(0.0420)
ln(GDP per capita)	-1.032***	-0.534***	-0.581***	-1.150***	-0.895***	
	(0.168)	(0.202)	(0.187)	(0.184)	(0.152)	
ln(R&D Green) 4 lags		-0.178***				
		(0.0366)				
ln(R&D Green) 8 lags			-0.205***		-0.194***	-0.0957***
			(0.0371)		(0.0377)	(0.0336)
Trade Balance (Goods)				-0.105***	-0.120***	-0.0757***
				(0.0165)	(0.0233)	(0.0276)
Trade Balance (Services)				-0.277***	0.0430	0.168
				(0.0468)	(0.0727)	(0.103)
ln(Oil Price)					-0.00104	0.00745
					(0.0114)	(0.0112)
ln(Consumption per capita)						-1.009***
						(0.335)
ln(Gov Spending per capita)						-0.322
						(0.212)
ln(Investment per capita)						0.127
						(0.111)
Constant	9.159***	10.00***	10.03***	8.947***	9.520***	6.908***
	(0.129)	(0.208)	(0.184)	(0.166)	(0.200)	(0.560)
Observations	160	152	144	160	144	144
Newe	y-West stand	dard errors	in parenthe	eses		
*** - <0.01 ** - <0.05 * - <0.1						

**** p<0.01, ** p<0.05, * p<0.1

 Introduction
 Empirical Motivation
 Model
 Quantitative Analysis

 00000000
 00000000
 000000000
 000000000

PANEL OLS

Our panel data-set is based on a balanced EU zone area (19 countries) data from 2008 to 2019 (quarterly basis – 870 obs) and includes:

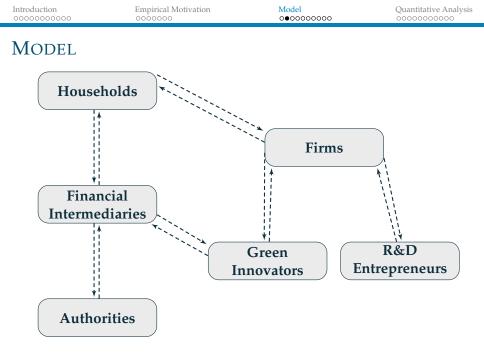
$$GreenPatent_{i,t} = \beta_1 ETS_{i,t} + \beta_2 FI_{i,t} + \sum_i \beta_i X_{i,t} + T_t + State_i + error_{i,t}$$

- Green R&D patents,
- ► ETS carbon price,
- Long-term loans,
- Different controls (time, country, GDP, population, subsidies,).

Introduction 0000000000	Empirical Motivation	Model 000000000	Quantitative Analysis 0000000000

GREEN INNOVATION DRIVERS: PANEL OLS ON EZ

Green R&D	(1)	(2)	(3)			
ETS Price Level (1 year lag)	22.65* (12.92)					
Long-term Loan (1 year lag)	0.0801*** (0.0149)					
ETS Price Level (2 years lag)		7.882* (4.167)				
Long-term Loan (2 years lag)		0.0990*** (0.0140)				
ETS Price Level (3 years lag)		(0.02-00)	7.761** (3.724)			
Long-term Loan (3 years lag)			(0.0121) (0.112^{***}) (0.0140)			
GDP per capita	1.502*** (0.290)	1.474*** (0.350)	(0.0110) 1.442^{***} (0.422)			
Constant	-772.8** (339.0)	· · · ·	-389.4*** (119.9)			
	()	· · · ·	(<i>'</i>			
Observations	772	700	628			
R-squared	0.969	0.970	0.968			
Time fixed effect	Y	Y	Y			
Country fixed effect	Y	Y	Y			
Robust standard	errors in pai	rentheses				
*** p<0.01, ** p<0.05, * p<0.1						


Introduction	000	Empirical Motivation		Model 000000000	00	Quantitative 000000000	
GREE	n Innov	VATION AN	D ETS	: Thr	ESHOI	DS	
EFFEC					201102		
	Green R&D	(1)	(2)	(3)	(4)	(5)	
	ETS Price > 5	9.351 (27.77)					
	ETS Price > 10		13.84				

(20.10)

		(30.19)			
ETS Price > 15			-142.7*		
			(82.42)		
ETS Price > 20				-142.7*	
				(82.42)	
ETS Price > 25					-105.0*
					(58.73)
Long-term Loan (1 year lag)	0.0781***	0.0781***	0.0781***	0.0781***	0.0781***
	(0.0146)	(0.0146)	(0.0146)	(0.0146)	(0.0146)
GDP per capita	1.566***	1.566***	1.566***	1.566***	1.566***
	(0.292)	(0.292)	(0.292)	(0.292)	(0.292)
Constant	-172.2***	-176.7***	-162.8***	-162.8***	-162.8***
	(38.05)	(41.19)	(46.63)	(46.63)	(46.63)
Observations	790	790	790	790	790
R-squared	0.968	0.968	0.968	0.968	0.968
Time fixed effect	Y	Y	Y	Y	Y
Country fixed effect	Y	Y	Y	Y	Y

Robust standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1

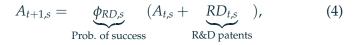
A Green Endogenous Macro-Finance Model

Introduction	Empirical Motivation	Model	Quantitative Analysis
0000000000	000000	000000000	0000000000

Households

The household maximize their lifetime welfare subject to a budget constraint:

$$\max_{\{C_t, I_t, K_{t+1}, L_t, B_{t+1}\}} E_t \sum_{i=0}^{\infty} \beta^i \left[\frac{(C_{t+i} - hC_{t+i-1})^{1-\sigma}}{1-\sigma} - \frac{\chi}{1+\varphi} L_{t+i}^{1+\varphi} \right],$$
(1)


s.t.

$$C_{t} + B_{t+1} + I_{t} + f(K_{t}, I_{t}) = W_{t}L_{t} + \sum_{k} Ws_{t,k}\bar{Ls}^{k} + T_{t} + R_{t}B_{t} + R_{t}^{K}K_{t}$$
(2)
(2)

$$K_{t+1} = (1 - \delta)K_t + I_t$$
 (3)

GLOBAL R&D

Ideas are endogenous in our setup:

Entrepreneurs can produce new potential firm by employing materials and skilled workers as inputs, according to the following production function:

$$RD_{t,s} = \underbrace{N_{t,s}^{\eta_s}}_{\text{R\&D Expenditure Spillovers}} (\underbrace{A_{t,s}}_{\text{Spillovers}} Ls_{t,s})^{1-\eta}, \eta_g \in (0,1), \quad (5)$$

To produce idea, firms pay them the profits made:

$$MC_t = \Pi_t, \tag{6}$$

THE FIRM PRODUCTION

Our production function is subject to productivity climate damages:

$$Y_{t} = \underbrace{A_{t,s}^{\frac{1}{\theta-1}}}_{\text{R\&D}} \underbrace{d(T_{t}^{\theta})}_{\text{Damages}} K_{t-1}^{\alpha} L_{t}^{1-\alpha}$$

THE FIRM PRODUCTION

Our production function is subject to productivity climate damages:

 $Y_t = \underbrace{A_{t,s}^{\frac{1}{\theta-1}}}_{\text{R\&D}} \underbrace{d(T_t^o)}_{\text{Damages}} K_{t-1}^{\alpha} L_t^{1-\alpha}$

 Vivid debate around the specification of the damage function: Nordhaus (2017), Dietz (2015), Weitzman (2012)

$$d(T_t^o) = ae^{-(bT_t^{o^2})}$$

Introduction	Empirical Motivation	Model	Quantitative Analysis
0000000000		00000●0000	0000000000

CLIMATE DYNAMICS

► The temperature law of motion reads:

$$T_t^o = v_1^o(v_2^o X_{t-1} - T_{t-1}^o) + T_{t-1}^o$$

Introduction 0000000000	Empirical Motivation	<u>Model</u> 00000●0000	Quantitative Analysis 0000000000

CLIMATE DYNAMICS

• The temperature law of motion reads:

$$T_t^o = v_1^o(v_2^o X_{t-1} - T_{t-1}^o) + T_{t-1}^o$$

The stock of emissions evolves according to a slow law of motion where *E_t* is the new flow of emissions coming from firms' production

$$X_t = (1 - \gamma_d) X_{t-1} + E_t + E^*$$

Introduction 0000000000	Empirical Motivation	<u>Model</u> 00000●0000	Quantitative Analysis 0000000000

CLIMATE DYNAMICS

• The temperature law of motion reads:

$$T_t^o = v_1^o(v_2^o X_{t-1} - T_{t-1}^o) + T_{t-1}^o$$

The stock of emissions evolves according to a slow law of motion where *E_t* is the new flow of emissions coming from firms' production

$$X_{t} = (1 - \gamma_{d})X_{t-1} + E_{t} + E^{*}$$

The flow of emissions can be reduced by means of an abatement technology specific to each sector

$$E_t = \underbrace{(1-\mu_t)}_{\text{Abatement Intensity}} \underbrace{\varphi}_{t} Y_t$$

Introduction 0000000000	Empirical Motivation	<u>Model</u> 000000●000	Quantitative Analysis

FIRMS – ABATEMENT AND R&D

Thus the profits of our representative intermediate firms reads:

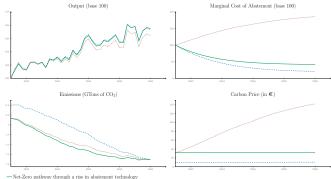
$$\Pi_{t} = \underbrace{P_{t}Y_{t} - W_{t}L_{t} - R_{t}^{K}K_{t}}_{\text{Standard output input cost}} - \underbrace{f(\mu_{t})Y_{t}}_{\text{Abat. Cost}} - \underbrace{\tau_{et}E_{t}}_{\text{Env. Policy}}$$
(7)

We recall the direct abatement effort costs

$$f(\mu_t) = \left(\int_0^{A_{t,g}} f(\mu_{jt})^{\frac{1}{\theta_3}} dj\right)^{\theta_3}$$
(8)

where

$$f(\mu_{jt}) = \theta_1 \mu_{jt}^{\theta_2}, \ \theta_1 > 0, \ \theta_2 > 1$$
(9)


with θ_1 and θ_2 representing the cost efficiency of abatement parameters. θ_3 is the elasticity of abatement to green innovation.

$$f(\mu_t) = \frac{\theta_1 \mu_t^{\theta_2}}{A_{t,g}^{\theta_3}}$$
(10)

Introduction 0000000000	Empirical Motivation 0000000	<u>Model</u> 0000000●00	Quantitative Analysis 0000000000

ABATEMENT EFFICIENCY AND NET-ZERO: THE CASE $A_{t,g} = \Gamma_t^{A_g} \epsilon_t^{A_g}$ is Exogenous

Net-Zero Transition Pathways - 2030

… Net-Zero counterfactual pathway through a rise in abatement technology following an optimal fiscal policy

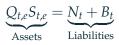
······ Net-Zero pathway through a rise in carbon permits price

GREEN INNOVATORS

When green innovation is endogenous, ideas are created as following:

$$A_{t+1,g} = \underbrace{\phi_{RD,g}}_{\text{Prob. of success}} (A_{t,g} + \underbrace{RD_{t,g}}_{\text{Green patents}}), \quad (11)$$
Where,

$$RD_{t,g} = \underbrace{N_{t,g}^{\eta_g}}_{\text{Green Expenditure Spillovers}} (\underbrace{A_{t,g}}_{\text{Spillovers}} Ls_{t,g})^{1-\eta}, \eta_g \in (0, 1), \quad (12)$$


The entrepreneur has no funds to finance the sunk $\cot MC_t^e$ in each sector. To obtain funds, he or she issues equity to banks $Q_{t,e}$:

$$Q_{t,e} = MC_t^e, \tag{13}$$

Introduction	Empirical Motivation	Model	Quantitative Analysis
0000000000	000000	000000000	0000000000

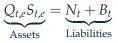
FINANCIAL INTERMEDIARIES

▶ Banks hold financial claims (*S*_{*e.t*}) on green innovators:

Introduction 0000000000	Empirical Motivation	<u>Model</u> 00000000●	Quantitative Analysis

FINANCIAL INTERMEDIARIES

▶ Banks hold financial claims (*S*_{*e*.*t*}) on green innovators:


The banks receive R_{t,e} the gross rate of return on a unit of the bank's claims on green innovators:

 $R_{e,t} = \frac{\phi_{RD_g}(\overbrace{Z_t}^{\text{Abat. Cost}} + \overbrace{Q_{t,e}}^{\text{Price of green claims}})}{Q_{t-1,e}}.$

Introduction 0000000000	Empirical Motivation	<u>Model</u> 00000000●	Quantitative Analysis

FINANCIAL INTERMEDIARIES

▶ Banks hold financial claims (*S*_{*e.t*}) on green innovators:

The banks receive R_{t,e} the gross rate of return on a unit of the bank's claims on green innovators:

 $R_{e,t} = \frac{\phi_{RD_g}(\overbrace{Z_t}^{\text{Abat. Cost}} + \overbrace{Q_{t,e}}^{\text{Price of green claims}})}{Q_{t-1,e}}.$

Regulatory constrain:

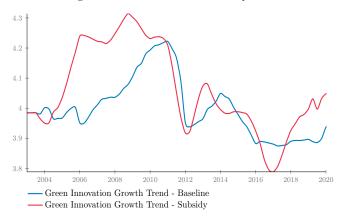
Estimation, business cycle, and long-term transition pathways simulations

ESTIMATION

- We perform a Bayesian estimation relying on the Kalman filter and MCMC techniques (over 20 000 draws)
- We estimate 4 shocks: Output, Emission, Global R&D, and Green Innovation
- We use quarterly data on GDP, Emissions, Global R&D Patents, and Green R&D Patents for the Euro Zone

Model 000000000

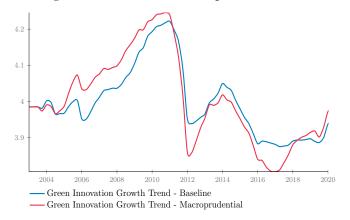
PRIOR AND POSTERIOR DISTRIBUTION


		Prior	distribu	tions	Posterior distributions
		Shape	Mean	Std.	Mean [0.050;0.950]
Shock processes:					
Std. productivity	σ_A	\mathcal{IG}_1	0.001	0.005	0.0061 [0.0050 ; 0.0071]
Std. emission	σ_E	\mathcal{IG}_1	0.001	0.005	0.0082 [0.0070 ; 0.0093]
Std. R&D	σ_{A_s}	\mathcal{IG}_1	0.001	0.005	0.0352 [0.0307 ; 0.0401]
Std. green innovation	$\sigma_{A_{g}}$	\mathcal{IG}_1	0.001	0.005	0.0451 0.0392 ; 0.0512]
AR(1) productivity	ρ_A	\mathcal{B}	0.50	0.20	0.9641 [0.9349 ; 0.9934]
AR(1) emission	ρ_E	B	0.50	0.20	0.9796[0.9636 ; 0.9983]
AR(1) R&D	ρ_{A_s}	B	0.50	0.20	0.5456 [0.3704 ; 0.7129]
AR(1) green innovation	ρ_{A_g}	\mathcal{B}	0.50	0.20	0.9237 [0.8509 ; 0.9832]
Endogenous growth parameters:	0				
Trend slope	$\gamma_{y} - 1$	G	0.005	0.001	0.0043[0.0029 ; 0.0058]
Green innovation trend slope	$\gamma_{A_g} - 1$	G	0.01	0.002	0.0100 [0.0067 ; 0.0132]
R&D investment exogenous trend	$\hat{\gamma}_{V_s}$	\mathcal{N}	1	0.20	1.0020 [1.0011 ; 1.0027]
Green investment exogenous trend	γ_{V_S}	\mathcal{N}	1	0.20	1.0097 [0.9951 ; 1.0276]
R&D investment elasticity	η_g	\mathcal{B}	0.15	0.20	0.0721 [0.0001 ; 0.1501]
Green investment elasticity	η_s	\mathcal{B}	0.125	0.20	0.1088 [0.0001 ; 0.2170]
Log-marginal data density					666.668864

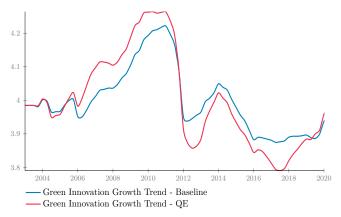
<u>Notes:</u> \mathcal{B} denotes the Beta, \mathcal{IG}_1 the Inverse Gamma (type 1), \mathcal{N} the Normal, and \mathcal{G} the Gamma distribution.

Introduction	Empirical Motivation	Model	Quantitative Analysis
0000000000	000000	000000000	0000000000

BUSINESS CYCLE ANALYSIS: SUBSIDIES

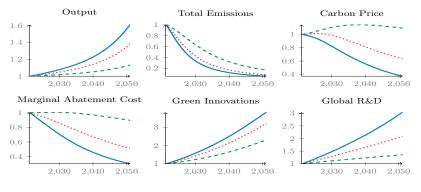

Figure: Counterfactual Subsidy Exercise.

BUSINESS CYCLE ANALYSIS: MACROPRUDENTIAL POLICY (MACROPRU_t = $1 - \lambda(E_t - \bar{E})$ })


Figure: Counterfactual Macroprudential Exercise.

BUSINESS CYCLE ANALYSIS: QE (QE_t = $\phi^{\Psi}(E_t - \bar{E})$)

Figure: Counterfactual QE Exercise.

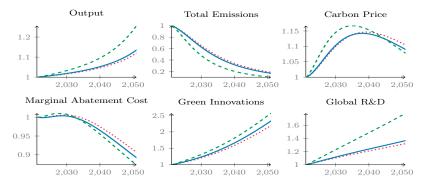

UNDER CONSTRUCTION

- Counterfactuals with smart macropru and QE policies (occasionally binding constraint):
 - Macropru_t = max{1, $(1 \lambda(E_t \bar{E}))$ }
 - $QE_t = min\{0, \phi^{\Psi}(E_t \bar{E})\}$

Introduction 0000000000	Empirical Motivation	Model 000000000	Quantitative Analysis

NET-ZERO TRANSITION PATHWAYS ANALYSIS

Figure: The Net-Zero Transition Pathway Under Different Abatement to Green Technology Elasticities θ_3 .



 $---\theta_3 = 1 \cdots \theta_3 = .7 - - \theta_3 = .3$

Introduction 0000000000	Empirical Motivation	Model 000000000	Quantitative Analysis

NET-ZERO TRANSITION PATHWAYS ANALYSIS

Figure: The Net-Zero Transition Pathway Under The Three Macro-Financial Policies (with $\theta_3 = .3$).

······ Macroprudential Policy — QE - - - Subsidy

Introduction 0000000000	Empirical Motivation	Model 000000000	Quantitative Analysis

TAKEAWAY

- 1. The ETS price contributes to reducing emissions and steering green R&D. However, when the price is too high, the impact is negative.
- 2. Long-term loans appears to have played a significant positive role in steering green R&D.
- Efficient abatement technology (i.e. greener technologies) would help achieve CO2 emissions reduction targets. However, the net-zero target requires increasingly higher levels of abatement technologies.
- 4. Macro-financial policies would help steer green innovation over the business cycle.
- 5. While Financial subsidies are found to be more effective over the long-run.

Introduction 0000000000	Empirical Motivation	Model 000000000	Quantitative Analysis

THANK YOU FOR YOUR ATTENTION

Thank you!