Could Intra-Firm Misalignment Explain Price-Setting Patterns?

Victor Monteiro and Diogo Guillén

Presented by Victor Monteiro

ASSA Meeting 2021

Victor Monteiro and Diogo Guillén

ASSA Meeting 2021

Motivation

- The literature on price-setting is based, mainly, on two frictions:
 - Physical Cost Friction Menu Cost
 - Information Friction Rational Inattention and Sticky Information
- However, both strands overlook managerial decisions and firms' structure even though papers had already cited its relevance as:
 - Zbaracki et al (2004):

"The evidence suggests that the internal structure of the organization plays an important role in shaping the outcomes of pricing interventions."

- Thus, we try to fill this gap looking to:
 - Firms' incentives and their within communication
- Then, a question comes up, what happens when we look to information, structure and incentives within the firm in a macro model?

Theoretical Contribution

- We derive a newly multi-sector NK DSGE model, under incomplete information, due misalignment intra-firm.
- Show that within-firm misalignment in the communication generates price stickiness and non-neutrality of money.
- Elucidate how it also matters to find price-setting behavior, optimal policy and welfare of the economy.
- Derive a new Phillips curve where the misalignment of incentives and the number of divisions of a given firm drive their slope.

Contribution

- Combining our intra-firm communication mechanism with a proprietary scraped price database we fit the price behavior and its stylized facts, as:
 - Small changes in prices;
 - Heterogeneity on price-setting;
 - Reference/Sales price behavior;
 - Gathering information-misalignment;
- On the macro side, our New Keynesian model highlights the relevance of within firm incentives on optimal monetary policy and welfare:
 - Generating non-neutrality of money;
 - Reducing power of monetary policy according to the number of sectors;
 - Creates a negative relationship between intra-firm misalignment and welfare.

Intuition of Partial Equilibrium Model

• This intuition can be illustrated by the following representation:

Boss $(M_{a_{\star}}^{i}, M_{b_{\star}}^{t})$

Department A: $(M_{a_i}^i | \mu_{a_i}^i)$ Department B: $(M_{b_i}^t | \mu_{b_i}^t)$

Where:

 $M_{a_t}^i$ = Message sent by micro department to the boss $M_{h_{\mu}}^{t}$ = Message sent by macro department to the boss $\mu_{a_t}^i$ = Private Belief of micro department $\mu_{h_{\star}}^{t}$ = Private Belief of macro department

• Then, the profit problem of the boss incorporates the message received by each department:

$$Max[\sum_{t=0}^{\infty} \beta^{t} \pi(P_{it}, P_t, Y_t, Z_{it} | M_i, M_j)]$$

• It is important to highlight that one way to understand the misalignment is the private information, μ_j, μ_i , be different than the message sent, M_i and M_j .

• Then, optimal price set by the firm under symmetric equilibrium is given by:

$$p_{it} = p_t + \frac{\pi_{13}}{|\pi_{11}|} (1+t_i)(1+h)^{t_i} + \frac{\pi_{14}}{|\pi_{11}|} (1+t)(1+k)^t$$
 (1)

• Following Ball and Romer (1990) higher the misalignment of each margin greater should be the importance of the respective margin to explain variation in prices.

Partial Equilibrium Model

• Using the previous setup we engage the players in a sender-receiver game, where their payoffs are given by:

$$L^{boss} = \left[p_{it} - \left(p_t + \frac{\pi_{13}}{|\pi_{11}|} y_t + \frac{\pi_{14}}{|\pi_{11}|} z_{it} \right) \right]^2$$

$$L^{micro} = \left[p_{it} - \left(p_t + \frac{\pi_{13}}{|\pi_{11}|} y_t + \frac{\pi_{14}^{micro}}{|\pi_{11}|} z_{it} \right) \right]^2$$

$$L^{macro} = \left[p_{it} - \left(p_t + \frac{\pi_{13}^{macro}}{|\pi_{11}|} y_t + \frac{\pi_{14}}{|\pi_{11}|} z_{it} \right) \right]^2$$

• Then, this environment guarantees that such information revelation game is partitioned.

ASSA Meeting 2021

Lemma

If the optimal actions chosen from the micro research department and the boss are different, for every realization of z_{it} , then $\exists \varepsilon : \forall u, v , |u - v| \ge \varepsilon$, where u and v are actions induced in equilibrium. Further, the set of actions induced in equilibrium is finite.

The Dynamic Phillips Curve

• Our sectoral Phillips curve is given by:

$$\pi_{kt}^* = \alpha_j \pi_t - (1 - \alpha_j) E_t \pi_{t+1} + \gamma_j \Delta E_t y_{t+1} + \chi_j \pi_{kt} + E_t (\pi_{k,t+1}^* - \pi_{t+1})$$
(2)
Where: $\alpha = \frac{\Pi_{12}}{|\Pi_{11}|}, \ \gamma = \frac{\Pi_{13}}{|\Pi_{11}|}, \ \chi = \frac{\Pi_{15}}{|\Pi_{11}|}.$

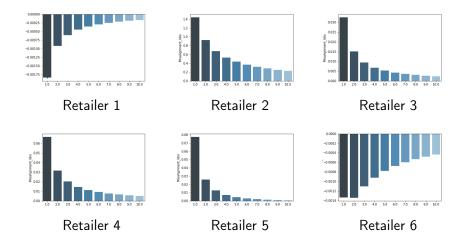
• To get the aggregate Phillips curve we consider the following aggregation:

$$\pi_t^* = \sum_{i=1}^K \mu_i \pi_{kt}^*$$
 (3)

- Then, our Phillips curve elucidates two new results:
 - Misalignment of incentives and the number of divisions of a given firm drive the slope of the Phillips curve.
 - Communication within the firm affects directly the sectoral inflation and the persistence of monetary policy.

Victor Monteiro and Diogo Guillén

ASSA Meeting 2021


Insper

10/13

- Daily price data collected from online and offline retailers (mainly supermarkets) to Brazil;
- From July first of 2018 until August first of 2021, with more than 6 millions of observations per supermarket;
- Classified in four levels:
 - Supermarket
 - Sector
 - Category
 - Individual

A (1) < A (1) < A (1) </p>

Misalignment × Partitions

Figure: Misalignment x Partition

Victor Monteiro and Diogo Guillén

ASSA Meeting 2021

Insper

4 円

3 🕨 🤅 3

12/13

Do Retailers Match our Optimal Prices?

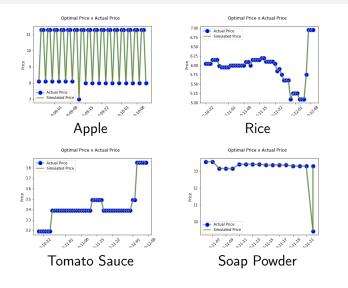


Figure: Examples of Optimal Price Simulation () ()

Victor Monteiro and Diogo Guillén

ASSA Meeting 2021

Insper

13/13