ENDOGENOUS SPATIAL PRODUCTION NETWORKS Quantitative Implications for Trade and Productivity

PIYUSH PANIGRAHI Yale University

December 31, 2021

Introduction

Heterogeneous Firms, Production Networks, and Trade

Production is organized in large-scale firm-to-firm networks

- firms are vastly heterogeneous in size, input sourcing and importance in network
- firms' outcomes are shaped by those of connected firms suppliers and customers
- \blacksquare supply chain networks span across space \rightarrow trade costs affect network formation
- production networks reorganize endogenously in response to shocks

Objective

- Design data generating process for large spatial supply chain networks
 - feasibly estimable weighted directed random graph model
- Evaluate GE impact of micro- and macro- shocks to spatial network economy
 e.g. firm-level distortions; market integration; technology improvements

Introduction

Heterogeneous Firms, Production Networks, and Trade

Production is organized in large-scale firm-to-firm networks

- firms are vastly heterogeneous in size, input sourcing and importance in network
- firms' outcomes are shaped by those of connected firms suppliers and customers
- \blacksquare supply chain networks span across space \rightarrow trade costs affect network formation
- production networks reorganize endogenously in response to shocks
- Objective
 - Design data generating process for large spatial supply chain networks
 - feasibly estimable weighted directed random graph model
 - Evaluate GE impact of micro- and macro- shocks to spatial network economy
 - e.g. firm-level distortions; market integration; technology improvements

Introduction This paper

- Document importance of endogenous networks in firm size heterogeneity
 Indian firm network micro-data → choice of suppliers & intensity of use explain 80%
- Propose scalable framework for estimation + counterfactual analysis
 maximum likelihood estimation + no simulation for counterfactuals
- **4** Evaluate impact of reducing inter-state border frictions by 10%
 - sizable district-level welfare gains [1%,8%]
 - \blacksquare > 1/2 changes in firms' input sales from endogenous network changes

- Document importance of endogenous networks in firm size heterogeneity
 Indian firm network micro-data → choice of suppliers & intensity of use explain 80%
- Propose scalable framework for estimation + counterfactual analysis
 maximum likelihood estimation + no simulation for counterfactuals
- **4** Evaluate impact of reducing inter-state border frictions by 10%
 - sizable district-level welfare gains [1%,8%]
 - \blacksquare > 1/2 changes in firms' input sales from endogenous network changes

- Document importance of endogenous networks in firm size heterogeneity
 Indian firm network micro-data → choice of suppliers & intensity of use explain 80%
- Propose scalable framework for estimation + counterfactual analysis
 maximum likelihood estimation + no simulation for counterfactuals
- **4** Evaluate impact of reducing inter-state border frictions by 10%
 - sizable district-level welfare gains [1%,8%]
 - \blacksquare > 1/2 changes in firms' input sales from endogenous network changes

- Document importance of endogenous networks in firm size heterogeneity
 Indian firm network micro-data → choice of suppliers & intensity of use explain 80%
- Propose scalable framework for estimation + counterfactual analysis
 maximum likelihood estimation + no simulation for counterfactuals
- **4** Evaluate impact of reducing inter-state border frictions by 10%
 - sizable district-level welfare gains [1%,8%]
 - \blacksquare > 1/2 changes in firms' input sales from endogenous network changes

Related Literature

This paper: Firm-to-Firm Trade in Endogenous Production Networks

Theory		Discrete Choice	Love of Variety (+ Fixed Costs)		
	Aggregate	Dornbusch, Fischer & Samuelson (1977) Eaton & Kortum (2002)	Krugman (1980)		
Trade	Firm-Level	Bernard, Eaton, Jensen & Kortum (2003)	Melitz (2003), Chaney (2008) Eaton, Kortum & Kramarz (2011)		
	Firm-to-Firm	Eaton, Kortum & Kramarz (2016) This paper: firm-to-firm predictions	Huneeus (2019) Tintelnot, Kikkawa, Mogstad & Dhyne (2019)		
Endogenous Macro Production Networks		Oberfield (2018) Boehm & Oberfield (2020) Acemoglu & Azar (2020)	Lim (2017) Taschereau-Dumouchel (2017) Bernard et al. (2020)		
Estimation & Counterfactuals		Eaton, Kortum & Sotelo (2013) Dingel & Tintelnot (2020) This paper : maximum likelihood Menzel (2015)	simulation-based		

Notation

- Locations indexed by $o, d \in \mathcal{J} \equiv \{1, \dots, J\}$ [*o* for *origin*, *d* for *destination*]
- Firms indexed by $s, b \in \mathcal{M} \equiv \{1, \dots, M\}$ [s for seller, b for buyer]

- Universe of intra-state firm-to-firm transactions [assembled from commercial tax authorities in 5 Indian states]
 - 141 districts:
 - Gujarat (25), Maharashtra (35), Tamil Nadu (32), Odisha (30) and West Bengal (19)
 - 5 years: FY 2011-12 to 2015-16
 - 2.6 million firms and 103 million firm-to-firm connections
- Universe of inter-state firm-to-firm transactions [from Ministry of Finance, Govt. of India]
 - **5** years: FY 2011-12 to 2015-16

- Universe of intra-state firm-to-firm transactions [assembled from commercial tax authorities in 5 Indian states]
 - 141 districts:
 - Gujarat (25), Maharashtra (35), Tamil Nadu (32), Odisha (30) and West Bengal (19)
 - 5 years: FY 2011-12 to 2015-16
 - 2.6 million firms and 103 million firm-to-firm connections
- Universe of inter-state firm-to-firm transactions [from Ministry of Finance, Govt. of India]
 - 5 years: FY 2011-12 to 2015-16

Data Firm-to-Firm Input-Output Matrix

Data [value of goods sold by *s* to *b*]

 $sales_{od}(s,b)$

■ **Cost Shares** [*b*'s intensity of use of *s*]

$$\pi_{od}(s,b) = \frac{\text{sales}_{od}(s,b)}{\text{input costs}_d(b)}$$

input costs_d(b) = $\sum_s \text{sales}_{od}(s,b)$

Intensity of Use

intensity of use_o(s) =
$$\sum_{b} \pi_{od}(s, b)$$

Empirical Regularities Margins of Firms' Sales

$$\begin{split} \text{input sales}_{o}(s) &= N_{o}(s) \\ &\times \frac{\sum_{b} \pi_{od}(s, b)}{N_{o}(s)} \\ &\times \frac{\sum_{b} \pi_{od}(s, b) \times \text{input costs}_{d}(b)}{\sum_{b} \pi_{od}(s, b)} \end{split}$$

[# Customers]

[Intensity per Customer]

[Average Customer Size]

- Larger Indian firms (higher input sales)
 - tend to have more customers [35%]
 - tend to be used more intensively by customers [46%]
 - tend to have larger customers [19%]

Empirical Regularities

Upstream & Downstream Margins of Firms' Sales

■ **Downstream Margin** ⇒ role of exogenous network linkages

- choice of quantity to sell ≡ downstream decision
- \blacksquare downstream decision affects upstream firms \rightarrow demand shocks propagate upstream

■ **Upstream Margin** [Intensity of Use] ⇒ role of endogenous network formation

- choice of suppliers and intensity of use \equiv upstream decision
- \blacksquare upstream decision affects downstream firms \rightarrow cost savings propagate downstream

Empirical Regularities

Upstream & Downstream Margins of Firms' Sales

Downstream Margin \implies role of exogenous network linkages

- choice of quantity to sell ≡ downstream decision
- $\blacksquare \ downstream \ decision \ affects \ upstream \ firms \rightarrow demand \ shocks \ propagate \ upstream$
- **Upstream Margin** [Intensity of Use] ⇒ role of endogenous network formation
 - choice of suppliers and intensity of use ≡ upstream decision
 - $\hfill upstream$ decision affects downstream firms \rightarrow cost savings propagate downstream

Develop GE model of network formation between spatially distant firms

- firms have multiple input requirements
- randomly encounter potential input suppliers
- select most cost-effective supplier for each requirement
- Low production cost firms end up larger because
 - find more customers
 - used more intensively by their customers
 - customers use cheaper inputs intensively \rightarrow lower production costs
 - lower production costs \rightarrow customers become larger themselves

Develop GE model of network formation between spatially distant firms

- firms have multiple input requirements
- randomly encounter potential input suppliers
- select most cost-effective supplier for each requirement
- Low production cost firms end up larger because
 - find more customers
 - used more intensively by their customers
 - customers use cheaper inputs intensively \rightarrow lower production costs
 - lower production costs \rightarrow customers become larger themselves

Model Technology

Production Function

- α_d , materials share at *d*
- $K_d(b)$, # tasks of b
- $S_d(b)$, set of potential suppliers for b

Model Technology

Marginal Cost

buyer MC

$$\widetilde{c_d(b)} = \frac{w_d^{1-\alpha_d}}{z_d(b)} \times \prod_{k=1}^{K_d(b)} \left(\underbrace{p_d(b,k)}_{\text{effective price of task } k \text{ for } b} \right)^{\text{cost share of task}} \underbrace{\widetilde{K_d(b)}}_{K_d(b)}$$

Effective Price

$$p_{d}(b,k) = \min_{s \in \mathcal{S}_{d}(b)} \left\{ \underbrace{\frac{\overline{m}_{od}(s,b,k)}_{a_{od}(s,b,k)}}_{\text{match productivity}} \underbrace{\tau_{od}}_{\text{seller MC}} \times \underbrace{c_{o}(s)}_{c_{o}(s)} \right\}$$

k

Model Functional Form Assumptions

$$\mathbb{P}(s \text{ meets } b) = \frac{\lambda}{M}$$
Bernoulli Encounters

$$\mathbb{P}(a_{od}(s,b,k) \le a) = \left(1 - (a/a_0)^{-\zeta}\right) \mathbf{1}\{a > a_0\}$$
Pareto Match Productivities
 $\bar{m}_{od}(s,b,k) \sim \text{Limit Pricing}$ Bertrand Competition

$$\mathbb{P}(z_d(b) \le z) = \exp\left(-T_d z^{-\theta}\right) \mathbf{1}\{z > 0\} \quad \theta > \zeta$$
Fréchet Productivities

Taking Model to Data Network Formation → Quasi-Dynamic Programming

Recursive Problem

$$\underbrace{c_d(b)}_{\text{value function}} = \frac{w_d^{1-\alpha_d}}{z_d(b)} \times \prod_{k=1}^{K_d(b)} \min_{s \in \mathcal{S}_d(b)} \left\{ \frac{\bar{m}_{od}(s,b,k)\tau_{od}}{a_{od}(s,b,k)} \times \underbrace{c_o(s)}_{\text{upstream value function}} \right\}^{\frac{discount factor}{K_d(b)}}$$

Estimands [exogenous: τ_{od} | endogenous: $c_d(b)$]

- very high-dimensional → full solution methods infeasible
- interdependence in link formation \rightarrow simulation burdensome

[Rust (1987), Anderson & van Wincoop (2003), Antràs & de Gortari (2020)]

$\begin{array}{l} Taking \ Model \ to \ Data \\ {\it Quasi-Dynamic \ Programming \rightarrow Conditional \ Choice \ Probabilities} \end{array}$

Conditional Choice Probabilities

[conditional on $c_o(s)$, probability that *s* gets chosen for any task of any firm at *d*]

$$\pi_{od}^{0}(s,-) = \frac{c_o(s)^{-\zeta} \tau_{od}^{-\zeta}}{\sum_{s' \in \mathcal{M}} c_{o'}(s')^{-\zeta} \tau_{o'd}^{-\zeta}}$$

■ CCPs which depend on endogenous state → sample analogs [Hotz & Miller (1993) → Menzel (2015)]

$\begin{array}{l} Taking \ Model \ to \ Data \\ {\it Quasi-Dynamic \ Programming \rightarrow Conditional \ Choice \ Probabilities} \end{array}$

Conditional Choice Probabilities

[conditional on $c_o(s)$, probability that *s* gets chosen for any task of any firm at *d*]

$$\pi_{od}^{0}(s,-) = \frac{c_o(s)^{-\zeta} \tau_{od}^{-\zeta}}{\sum_{s' \in \mathcal{M}} c_{o'}(s')^{-\zeta} \tau_{o'd}^{-\zeta}}$$

■ CCPs which depend on endogenous state → sample analogs [Hotz & Miller (1993) → Menzel (2015)]

Taking Model to Data Conditional Choice Probabilities \rightarrow Balls-and-Bins Model

$Estimation \\ {\rm Balls-and-Bins \ Model} \rightarrow {\rm Multinomial \ Logit} \\$

Estimation Equation

$$\mathbb{E}\left[\pi_{od}(s,b)\right] = \pi_{od}^{0}(s,b)$$
$$= \frac{c_{o}(s)^{-\zeta}\tau_{od}^{-\zeta}}{\sum_{s'\in\mathcal{M}}c_{o'}(s')^{-\zeta}\tau_{o'd}^{-\zeta}}$$

Estimands

• marginal costs $c_o(s)^{-\zeta} \equiv$ firm fixed effects

• trade frictions $\tau_{od}^{-\zeta} \equiv \exp(X'_{od}\beta)$ [$X_{od} \equiv$ distance, borders etc.]

natural choice since probability of sourcing adds to unity
 [Gourieroux, Monfort & Trognon (1984) → Eaton, Kortum & Sotelo (2013)]

Multinomial Logit: Computational Issues

• generalized linear model + millions of fixed effects \implies

- \blacksquare high-dimensional non-linear optimization \rightarrow infeasible by Newton methods
- incidental parameters bias in β

not a problem!

- multinomial likelihood score equations coincide with Poisson likelihood [Baker (1994) → Taddy (2015)]
- Poisson likelihood automatically satisfies adding up constraints [Fally (2015)]
- Poisson likelihood ⇒ no bias + fixed effects in closed-form [Hausman, Hall & Griliches (1984)]

Multinomial Logit: Computational Issues

- generalized linear model + millions of fixed effects \implies
 - high-dimensional non-linear optimization \rightarrow infeasible by Newton methods
 - incidental parameters bias in β
- not a problem!
 - multinomial likelihood score equations coincide with Poisson likelihood [Baker (1994) → Taddy (2015)]
 - Poisson likelihood automatically satisfies adding up constraints [Fally (2015)]
 - Poisson likelihood ⇒ no bias + fixed effects in closed-form [Hausman, Hall & Griliches (1984)]

Multinomial Logit: Fixed Effects' Estimators in Closed-Form

■ **Firm Fixed Effects** [low marginal costs ↔ high intensity of use]

$$(c_o(s)^{-\zeta})^* = \overbrace{\sum_{b \in \mathcal{M}} \pi_{od}(s,b)}^{\text{intensity of use}}$$

Multinomial Logit: Fixed Effects' Estimators in Closed-Form

 $\blacksquare \ Origin-Destination \ Fixed \ Effects \rightarrow Structural \ Gravity \ Specification$

$$\left(\frac{\exp\left(\ln\left(c_{o}^{-\zeta}\right)+X_{od}^{\prime}\boldsymbol{\beta}\right)}{\sum_{o^{\prime}}\exp\left(\ln\left(c_{o^{\prime}}^{-\zeta}\right)+X_{o^{\prime}d}^{\prime}\boldsymbol{\beta}\right)}\right)^{*}=\frac{1}{M_{d}}\sum_{b\in\mathcal{M}_{d}}\left(\sum_{\substack{s\in\mathcal{M}_{o}\\\text{total cost share of }b\text{ from }o}}\pi_{od}\left(s,b\right)\right)$$

Counterfactual Analysis

Large Network Approximation

Aggregate Trade Models + Exact Hat Algebra

model degeneracy \implies model prediction = observed data

Models with Large Networks and Granularity

model non-degeneracy \implies model prediction(s) \neq observed data

observed data → estimated model → E [model predictions | initial state]
 counterfactual evaluation:

 $\mathbb{E}\left[\text{model predictions} \mid \text{counterfactual state}\right] = \frac{\mathbb{E}\left[\text{model predictions} \mid \text{counterfactual state}\right]}{\mathbb{E}\left[\text{model predictions} \mid \text{initial state}\right]}$

[Head & Mayer (2019), Dingel & Tintelnot (2020)]

Counterfactual Analysis

Large Network Approximation

Aggregate Trade Models + Exact Hat Algebra

model degeneracy \implies model prediction = observed data

Models with Large Networks and Granularity

model non-degeneracy \implies model prediction(s) \neq observed data

observed data → estimated model → E [model predictions | initial state]
 counterfactual evaluation:

 $\mathbb{E}\left[\widehat{\text{model predictions }}\right] = \frac{\mathbb{E}\left[\text{model predictions } \mid \text{ counterfactual state}\right]}{\mathbb{E}\left[\text{model predictions } \mid \text{ initial state}\right]}$

[Head & Mayer (2019), Dingel & Tintelnot (2020)]

Counterfactual Experiment

- Trade across state borders subject to frictions
 - significant border effects in gravity regressions
 - sales taxes, border inspections, logistical delays etc.
 - 141 × 141 symmetric matrix of inter-district Head-Ries indices,
 - $\sqrt{rac{ extsf{sales}_{od} extsf{sales}_{do}}{ extsf{sales}_{oo} extsf{sales}_{dd}}}$ ==
- 10% decline in trade costs between inter-state district pairs

Counterfactual Experiment

- Trade across state borders subject to frictions
 - significant border effects in gravity regressions
 - sales taxes, border inspections, logistical delays etc.
 - 141 × 141 symmetric matrix of inter-district Head-Ries indices,
 - $\sqrt{rac{ ext{sales}_{od} ext{sales}_{do}}{ ext{sales}_{oo} ext{sales}_{dd}}} =$
- 10% decline in trade costs between inter-state district pairs

Macro Outcomes: Aggregate Welfare Changes

Micro Outcomes: Changes in Margins of Firms' Sales, Shapley Decomposition

State	Maharashtra	Tamil Nadu	Gujarat	West Bengal	Odisha	All
	(1)	(2)	(3)	(4)	(5)	(6)
$\Delta\%$ upstream margin $\Delta\%$ downstream margin second order term	40.76%	40.81%	36.49%	39.44%	38.06%	55.69%
	29.37%	34.14%	45.74%	31.44%	43.02%	33.45%
	29.86%	25.04%	17.76%	29.14%	18.91%	10.85%

Documented importance of endogenous networks towards firm heterogeneity

- Developed tractable model of endogenous spatial production networks
- Proposed scalable framework for structural estimation + counterfactual analysis
- Reducing border frictions
 - improves welfare across Indian districts in the range [1%,8%]
 - ightarrow > 1/2 firm-level changes from endogenous network changes
- Extensions:

Supply Chain Dynamics, Search Frictions, Innovation Spillovers, Factor Market Frictions, Industry Dynamics

- Documented importance of endogenous networks towards firm heterogeneity
- Developed tractable model of endogenous spatial production networks
- Proposed scalable framework for structural estimation + counterfactual analysis
- Reducing border frictions
 - improves welfare across Indian districts in the range [1%,8%]
 - ightarrow > 1/2 firm-level changes from endogenous network changes
- Extensions:
 - Supply Chain Dynamics, Search Frictions, Innovation Spillovers, Factor Market Frictions, Industry Dynamics

- Documented importance of endogenous networks towards firm heterogeneity
- Developed tractable model of endogenous spatial production networks
- Proposed scalable framework for structural estimation + counterfactual analysis
- Reducing border frictions
 - improves welfare across Indian districts in the range [1%,8%]
 - > 1/2 firm-level changes from endogenous network changes
- Extensions:
 - Supply Chain Dynamics, Search Frictions, Innovation Spillovers, Factor Market Frictions, Industry Dynamics

- Documented importance of endogenous networks towards firm heterogeneity
- Developed tractable model of endogenous spatial production networks
- Proposed scalable framework for structural estimation + counterfactual analysis
- Reducing border frictions
 - improves welfare across Indian districts in the range [1%,8%]
 - \bullet > 1/2 firm-level changes from endogenous network changes
- Extensions:

Supply Chain Dynamics, Search Frictions, Innovation Spillovers, Factor Market Frictions, Industry Dynamics

- Documented importance of endogenous networks towards firm heterogeneity
- Developed tractable model of endogenous spatial production networks
- Proposed scalable framework for structural estimation + counterfactual analysis
- Reducing border frictions
 - improves welfare across Indian districts in the range [1%,8%]
 - \bullet > 1/2 firm-level changes from endogenous network changes
- Extensions:

Supply Chain Dynamics, Search Frictions, Innovation Spillovers, Factor Market Frictions, Industry Dynamics