Moral Hazard Under Contagion

Boli Xu

Northwestern University

December 31, 2021

Motivation

• In some partnerships,

- partners can exit at any time
- partners who have exited still enjoy some free-riding benefits as long as remaining partners keep contributing to the partnership
- free-riding makes it harder for remaining partners to run the partnership

• Trade-off:

- $\circ~$ free-riding is discouraged by the contagion of defections it may trigger
- Examples:
 - European Super League
 - public protests
 - group lending programs
 - o ...

Example: European Super League

- A soccer competition proposed by 12 top European clubs (vs. UEFA Champions League)
- Contagion of defections:
 - fan opposition caused Manchester City to exit
 - $\circ~$ 5 other English clubs exited within one day, and more followed suit
 - only 3 clubs remain until today
- Free-riding problem:
 - clubs that have exited continue to benefit from ESL's ongoing operation
 - $-\,$ in particular, from the checks it places on UEFA
 - UEFA made compromises that favor the top clubs
 - $-\,$ e.g., raised prize money allocated to knock-out stage of Champions League

In a Nutshell

Dynamic free-riding + Irreversible defections

- A stopping game where players run a joint project
 - project's flow output evolves stochastically
 - $\circ~$ players can irreversibly exit at any time
 - players who have exited continue to enjoy some free-riding benefits, which depend on the number of remaining players
 - $\circ~$ players' exits exert negative externalities on remaining players
- Preview of some findings
 - curse of productivity: a better project may harm all the players
 - $\circ~$ a partnership's ability to cooperate is non-monotonic in its size
 - $-\,$ vs. traditional wisdom that large size exacerbates free-riding (Olson, 1965)

Application to ESL

o ...

Irreversibility

Related Work

- Moral hazard in teams: McMillan (1979), Holmstrom (1982), etc.
- Dynamic contribution games: Fershtman & Nitzan (1991), Admati & Perry (1991), Marx & Matthews (2000), Compte & Jehiel (2004), Harstad (2012), Battaglini, Nunnari, & Palfrey (2014), Georgiadis (2015), Ramos & Sadzik (2019), Cetemen, Hwang, & Kaya (2020), etc.
- Stochastic stopping games: Rosenberg, Solan, & Vieille (2007), Moscarini & Squintani (2010), Murto & Valimaki (2011), Rosenberg, Salomon, & Vieille (2013), Guo & Roesler (2018), Margaria (2020), Kirpalani & Madsen (2021), Awaya & Krishna (2021), Cetemen, Urgun, & Yariv (2021), etc.
- Voluntary partnerships: Angeletos, Hellwig, & Pavan (2007), Fujiwara-Greve & Okuno-Fujiwara (2009), Chassang (2010), McAdams (2011), Fujiwara-Greve & Yasuda (2021), etc.
- Real options games: Dutta & Rustichini (1993), Grenadier (1996), Weeds (2002), Steg (2015), etc.
- Farsightedness in cooperative games: Harsanyi (1974), Chwe (1994), Ray & Vohra (2015), etc.

Outline

1 Baseline Model

- 2 Effect of Group Size
- **3** Extension: The Role of Leaders
- 4 Extension: Reversibility

Outline

- 2 Effect of Group Size
- 3 Extension: The Role of Leaders
- Extension: Reversibility

- Time is continuous $t \in [0, \infty)$
- 2 players (i = 1, 2) run a joint project
 Ω_i = ∫₀[∞] e^{-rt}π_{it}dt where π_{it} is the flow payoff
- Flow payoff at time t

	Contribute	Defect
Contribute	$X_t - c , \ X_t - c$	$X_t - \beta c , \ \alpha X_t$
Defect	$\alpha X_t , X_t - \beta c$	$0 \;,\; 0$

- $X_t > 0$: the project's productivity/output, follows $\frac{dX_t}{X_t} = \mu dt + \sigma dZ_t$
- $\beta > 1$: the reliance parameter
- $\alpha \in (0,1)$: the free-riding parameter

- Time is continuous $t \in [0, \infty)$
- 2 players (i = 1, 2) run a joint project
 Ω_i = ∫₀[∞] e^{-rt}π_{it}dt where π_{it} is the flow payoff
- Flow payoff at time t

	Contribute	Defect
Contribute	$X_t - c , \ X_t - c$	$X_t - \beta c , \ \alpha X_t$
Defect	$\alpha X_t , X_t - \beta c$	$0 \;,\; 0$

- $X_t > 0$: the project's productivity/output, follows $\frac{dX_t}{X_t} = \mu dt + \sigma dZ_t$
- $\beta > 1$: the reliance parameter
- $\alpha \in (0,1)$: the free-riding parameter

- Time is continuous $t \in [0, \infty)$
- 2 players (i = 1, 2) run a joint project
 Ω_i = ∫₀[∞] e^{-rt}π_{it}dt where π_{it} is the flow payoff
- Flow payoff at time t

	Contribute	Defect
Contribute	$X_t - c , \ X_t - c$	$X_t - eta c \ , \ lpha X_t$
Defect	$lpha X_t \;,\; X_t - eta c$	$0 \;,\; 0$

- $X_t > 0$: the project's productivity/output, follows $\frac{dX_t}{X_t} = \mu dt + \sigma dZ_t$
- $\circ~\beta>1:$ the reliance~parameter
- $\alpha \in (0,1)$: the free-riding parameter

- Time is continuous $t \in [0, \infty)$
- 2 players (i = 1, 2) run a joint project
 Ω_i = ∫₀[∞] e^{-rt}π_{it}dt where π_{it} is the flow payoff
- Flow payoff at time t

	Contribute	Defect
Contribute	$X_t - c , \ X_t - c$	$X_t - \beta c \ , \ \alpha X_t$
Defect	$\alpha X_t , X_t - \beta c$	$0 \;,\; 0$

- $X_t > 0$: the project's productivity/output, follows $\frac{dX_t}{X_t} = \mu dt + \sigma dZ_t$
- $\beta > 1$: the reliance parameter
- $\alpha \in (0,1)$: the free-riding parameter

Timeline

- In the baseline model
 - Defections are irreversible
 - Players' past actions are public
- Timeline (à la Murto & Valimaki, 2013)
 - Stage 1: given that no one exited yet, i chooses exit region $\mathcal{X}^i \subseteq \mathcal{X}$
 - if both intend to exit at the same time: flip a coin so that only one of them exits successfully (each w.p. $\frac{1}{2}$)
 - $-\,$ one player exits at Stage 1 and becomes the first mover
 - Stage 2: the second mover chooses exit region $\mathcal{X}^s \subseteq \mathcal{X}$
 - $-\,$ possible for second mover to immediately exit: a de facto joint exit
- Main result: unique Pareto-undominated MPE at Stage 1
 - After reducing Stage 2, Stage 1 is a canonical stopping game
- Properties of the equilibrium:
 - Curse of productivity: A better project can harm both players
 - Blessing of reliance: Heavy reliance ensures cooperation

Irreversibility

Backward Induction: Stage 2

• Second mover's optimal stopping problem

- flow payoff $= X_t \beta c$
- \circ lump-sum exiting payoff = 0

• Second mover's optimal decision: $\mathcal{X}^s = (0, x^*)$

•
$$x^* = \frac{r-\mu}{r} \frac{\gamma}{\gamma-1} \beta c$$
, where $\gamma = \frac{\sigma^2 - 2\mu - \sqrt{(\sigma^2 - 2\mu)^2 + 8r\sigma^2}}{2\sigma^2}$

• Second mover's value function

Derivation

$$S(X_t) = \begin{cases} 0 & , \text{ when } X_t < x^* \\ \underbrace{X_t}_{r-\mu} - \frac{\beta c}{r} & + \underbrace{k_1 X_t^{\gamma}}_{\text{option value}} & , \text{ when } X_t \ge x^*. \end{cases}$$

Backward Induction: First Mover's Exit Payoff

- After exit, first mover gets αX_t until second mover terminates the project.
- First mover's value function at the moment of exit

• Lemma 1: First-mover advantage in (x^*, \tilde{x})

The Stopping Game

- Stage 1 is a canonical stopping game:
 - before any player exits: the flow payoff is $X_t c$
 - the one who exits gets $F(X_t)$, the remaining player gets $S(X_t)$

Case 1: $\beta \geq \beta^*$

- Notice that $F(X_t)$ point-wise decreases in β .
- When $\beta \ge \beta^* := \left[\frac{1-(1-\alpha)^{\gamma}}{\alpha\gamma}\right]^{\frac{1}{1-\gamma}}$: cooperative equilibrium

Case 1: $\beta \ge \beta^*$

- Notice that $F(X_t)$ point-wise decreases in β .
- When $\beta \ge \beta^* := \left[\frac{1-(1-\alpha)^{\gamma}}{\alpha\gamma}\right]^{\frac{1}{1-\gamma}}$: cooperative equilibrium

۲

• Pre-emption: players exit in entire interval w/ first-mover advantage

۲

• Pre-emption: players exit in entire interval w/ first-mover advantage

- Pre-emption: players exit in entire interval w/ first-mover advantage
- Case 2(a): when $x^* > c(\Leftrightarrow \beta > \beta^{**} = \frac{r}{r-\mu} \frac{\gamma-1}{\gamma})$

• Curse of Productivity: A large X_t generates more revenue, but also stimulates free-riding.

- Pre-emption: players exit in entire interval w/ first-mover advantage
- Case 2(b): when $x^* \leq c \iff \beta \leq \beta^{**} = \frac{r}{r-\mu} \frac{\gamma-1}{\gamma}$

Main Result

Theorem (1)

٠

Pareto-undominated MPE is (almost) unique. Suppose $\beta^{**} < \beta^*$. If $\beta^{**} \ge \beta^*$

• (1) When $\beta \geq \beta^*$: cooperative equilibrium

 $\begin{array}{c|c} Joint \ Exit & Contribute \\ 0 & x^{**} \end{array} \longrightarrow X_t$

• (2a) when $\beta^{**} < \beta < \beta^*$: pre-emptive equilibrium (non-monotonic)

	Joint Exit	Contribu	te	Partial Exit	Contribute	$\rightarrow V$
Ć) x^0	\dot{c}	x^*	ĩ		$\rightarrow \Lambda_t$
(2b)	when $1 < \beta \leq \beta^*$	*: pre-em	ptive	equilibrium (m	onotonic)	
	Joint Exit		Part	tial Exit	Contribute	
Ċ)	x^* c		ĩ		$\rightarrow \Lambda t$

• Blessing of Reliance: cooperative equilibrium exists when players rely heavily on each other (large β)

Outline

2 Effect of Group Size

3 Extension: The Role of Leaders

Extension: Reversibility

Effect of Group Size

• Setup

- $\circ~$ Generalize to $N\geq 2$ players
- Denote n_t as the number of players still contributing at time t
- Flow payoff if $Contribute = X_t \beta_{n_t} c$
 - assumption: $\beta_1 \ge \beta_2 \ge \dots \ge \beta_{N-1} \ge \beta_N$
- Flow payoff if $Defect = \alpha_{n_t} X_t$

- for ease of exposition: $\alpha_0 = 0$ and $\alpha_{n_t} = \alpha$ if $n_t \ge 1$

- Key intuition: Domino effect
- Main finding: a group's ability to cooperate is non-monotonic in its size

Example

• Suppose $\frac{\beta_1}{\beta_2} < \beta^*$ but $\frac{\beta_1}{\beta_3} \ge \beta^*$

• N = 2: $V_2(X_t)$ vs. $F_1(X_t) \Rightarrow$ cooperation outcome is NOT sustainable

• N = 3: $V_3(X_t)$ vs. $F_1(X_t) \Rightarrow$ cooperation outcome is sustainable

Example

• Suppose $\frac{\beta_1}{\beta_2} < \beta^*$ but $\frac{\beta_1}{\beta_3} \ge \beta^*$

• N = 2: $V_2(X_t)$ vs. $F_1(X_t) \Rightarrow$ cooperation outcome is NOT sustainable

- N = 3: $V_3(X_t)$ vs. $F_1(X_t) \Rightarrow$ cooperation outcome is sustainable
- N = 4: $V_4(X_t)$ vs. $F_3(X_t) \Rightarrow$ depend on whether $\frac{\beta_3}{\beta_4} \ge \beta^*$

o ...

Group Sizes Sustaining Cooperation

Theorem (2)

- Denote n⁽⁰⁾ = 1 and n^(k) = min{n : β_{n^(k-1)/β_n} ≥ β*}. The set of cooperation-sustaining group size is {n⁽¹⁾, n⁽²⁾, ...}
- Numerical example:
 - suppose $\beta_n = \frac{N}{n}$, and $\beta^* = 2.2$
 - C-sustaining: N = 3 (i.e., $\lceil \beta^* \rceil$), 7 (i.e., $\lceil 3 * \beta^* \rceil$), 16 (i.e., $\lceil 7 * \beta^* \rceil$), ...
 - $\circ~$ not C-sustaining: N=2,4,5,6,8,...,15,17,...
- Takeaway message:
 - A group size sustains cooperation not because it is sufficiently large/small, but because it properly deters players from free-riding

Renegotiation

Exit waves

Outline

- 2 Effect of Group Size
- 3 Extension: The Role of Leaders
 - 4 Extension: Reversibility

Last-Exit Commitment by Leaders

• Motivation:

- some partnerships have leaders, e.g., Real Madrid in ESL
- leaders implicitly commit not to exit before others
- Setup:
 - \circ designated first mover = the follower
 - \circ designated second mover = the leader
- Timeline: a Stackelberg setting
 - Stage 1: follower chooses exit region $\mathcal{X}^f \subseteq \mathcal{X}$
 -
o Stage 2: afterward, leader chooses exit region $\mathcal{X}^l \subseteq \mathcal{X}$

Main Result Preview

Proposition (1)

• When β is large, follower adopts a cooperation strategy

$$\begin{array}{c} \underline{Exit} & Contribute \\ 0 & x^{**} \end{array} \longrightarrow X_t$$

• When β is small, follower's exit decision is non-monotonic

_	Exit	Contribute	Exit		Contribute	
0		x^1 Teeth-gritting x^2	Free-riding	x^3	Well-rewarded	$\neg \Lambda t$

- Main finding: Last-exit commitment can be a Pareto improvement
 - $\circ~$ naturally, follower is better off compared with baseline
 - surprisingly, leader can be better off as well
 - intuition: cost (abandon option to exit first) < benefit (avoid pre-emption)

• Follower is facing an optimal stopping problem

- flow payoff $= X_t c$
- lump-sum exiting payoff = $F(X_t)$
- When β is large $(\beta \ge \beta^*)$

• Follower is facing an optimal stopping problem

- flow payoff $= X_t c$
- lump-sum exiting payoff = $F(X_t)$
- When β is large $(\beta \ge \beta^*)$

• When β is small ($\beta < \beta^*$):

• Pin down thresholds: for j = 1, 2, 3

- value matching: $U_f(X^j) = F(X^j)$
- smooth pasting: $U'_f(X^j) = F'(X^j)$

Main Results

Proposition (1)

• When $\beta \ge \beta^*$: cooperation outcome is implemented

J	oint Exit	Contril	bute		V
0	x^{**}				$\rightarrow \Lambda_t$
• When	$\beta < \beta^*$: free	e-riding occurs			
L	Joint Exit	Contribute	Partial Exit	Contribute	V
0		x^1 Teeth-gritting x^2	Free-riding	x^3 Well-rewarded	$\rightarrow \Lambda_t$

Proposition (2)

If $\beta < \beta^*$, last-exit commitment is a Pareto improvement when $X_t \geq \tilde{x}$.

Outline

- D Baseline Model
- 2 Effect of Group Size
- 3 Extension: The Role of Leaders
- 4 Extension: Reversibility

Reversibility

- Motivation: some partnerships admit reversible defections
- Now, players can freely switch between *Contribute* or *Defect*

	Contribute	Defect
Contribute	$X_t - c , \ X_t - c$	$X_t - \beta c , \ \alpha X_t$
Defect	$\alpha X_t , X_t - \beta c$	0, 0

Proposition (3)

Under reversibility, FB outcome is implementable via a grim trigger strategy.

• Takeaway:

- Classic repeated games: free-riding problem can be eliminated in a dynamic setting (McMillan, 1979)
- Our baseline: irreversibility of defections explains observed free-riding in dynamic partnerships

When $\beta > \frac{1}{1-\alpha}$

ContributeDefectContribute $X_t - c$, $X_t - c$ $X_t - \beta c$, αX_t Defect αX_t , $X_t - \beta c$ 0 , 0

• FB outcome:

• Stage-game NE:

$$(D, D) \qquad (C, C) \text{ or } (D, D) \qquad (C, C)$$

$$0 \qquad c \qquad \beta c \qquad \frac{1}{1-\alpha}c \qquad X_t$$

• FB outcome is implementable with the following grim trigger strategy

- upon deviation, switch to Nash revision profile: both defect iff $X_t < \frac{1}{1-\alpha}c$
- reasons:
 - no one-period deviation benefit in CT
 - FB outcome Pareto improves stage-game NE for $\forall X_t$

Outline

D Baseline Model

- 2 Effect of Group Size
- 3 Extension: The Role of Leaders
- Extension: Reversibility

Summary

- We analyze:
 - $\circ~$ contagion of defections in a partnership
 - $\circ~$ its implications on free-riding problem in teams
- Main results:
 - $\circ~$ Curse of productivity & Blessing of reliance
 - A group's ability to cooperate is not monotonic in its size.
- Other results:
 - Last-exit commitment by leaders: potentially a Pareto improvement
 - Reversibility gives first-best outcome

Main Results Applied to ESL

• Curse of productivity:

- initial withdrawal of English clubs occurred soon after a Madrid commercial court's ruling that prohibited UEFA from sanctioning ESL's founding clubs
- Non-monotonicity in size:
 - a size of 3 sustains cooperation
 - a size much larger than 12 is also expected to push UEFA to compromise
 - a size of 12 did not work

Back

Thank You!

Irreversibility

- Returning to some partnerships is either impossible or very costly
- ESL: returning to ESL is snobbish and damages reputation among fans
- Public protest: demonstrative power lost upon withdrawal
- Group lending: upon default, future borrowing opportunities lost
- Brexit, Paris Agreement: reversible at a cost

Interpretations of $\alpha < 1$

	Contribute	Defect
Contribute	$X_t - c , \ X_t - c$	$X_t - \beta c \ , \ \alpha X_t$
Defect	$\alpha X_t , X_t - \beta c$	0, 0

- ESL: less "membership benefits"
- Public protest: loss of social influence
- Group lending: social sanctions

• ...

Coin-Flipping Assumption

• ESL:

- $\circ~$ AC Milan & Juventus expressed intention to exit at the same time
- AC Milan successfully exited
- Juventus became one of the three remaining
- Standard in stochastic stopping games: Dutta & Rustichini (1993), Grenadier (1996), Weeds (2002), etc.
- Commons justifications:
 - $\circ~$ exit decisions need to go through an authority who can approve only one application at a time
 - $\circ~$ a random delay between a player's exit decision and the actual exercise of that decision

Second Mover's Optimal Decision

• HJB equation

$$0 = max\{-S(X), -rS(X) + X - \beta c + S'(X)\mu X + \frac{\sigma^2}{2}S''(X)x^2\}$$

• General solution for homogeneous part (plus TVC condition)

$$S(X) = \underbrace{\frac{X}{r-\mu} - \frac{\beta c}{r}}_{\text{value if never exit}} + \underbrace{k_1 X^{\gamma}}_{\text{option value}}, \text{ when } X \ge x^*.$$

- Pin down the solution
 - value matching: $S(x^*) = 0$
 - smooth pasting: $S'(x^*) = 0$
- Property:
 - $x^* < c$: option value of waiting

First Mover's Value Function at Stage 2

- First mover does not make a decision at Stage 2
- Feynman-Kac equation

$$0 = -rF(X) + \alpha X + F'(X)\mu X + \frac{\sigma^2}{2}F''(X)x^2,$$

• General solution (plus TVC condition)

• Pin down the solution with exogenous exit $F(x^*) = 0$

Concavity of $F(X_t)$

S(X_t): "option value" increases super-linearly as X_t decreases towards x*
F(X_t): "termination loss" exhibits the same feature

Intersection of $F(X_t)$ and $S(X_t)$

- Asymptotic lines of $F(X_t)$ and $S(X_t)$ have slopes $\frac{\alpha}{r-\mu}$ and $\frac{1}{r-\mu}$ respectively
- $F(X_t)$ and $S(X_t)$ have a unique intersection $\tilde{x} \in (x^*, \infty)$

Cooperation Outcome

- An outcome where players decide when to jointly exit • ex-post Pareto-optimal outcome
- Derivation: single-agent optimal stopping problem
 - flow payoff $= X_t c$
 - \circ lump-sum exiting payoff = 0
- Solution: exit iff $X_t \leq x^{**} = \frac{r-\mu}{r} \frac{\gamma}{\gamma-1} c$

If $\beta^{**} \geq \beta^*$

Theorem (1')

• When $\beta \geq \beta^*$, cooperative equilibrium

• The medium scenario vanishes.

Absence of Renegotiation

- Theorem 2 presumes that n-player cooperative equilibrium (if existing) will be played by n remaining players.
- This presumption is backed up by allowing renegotiation among players
 the equilibrium is unique Pareto-undominated (Safronov & Strulovici 2018)
- If we disallow renegotiation:
 - $\circ~$ we can use Pareto-dominated equilibrium to punish one who free rides
 - a group size sustains cooperation iff $N \ge n^{(1)}$
- Takeaway message:
 - renegotiation can backfire
 - without renegotiation, a large group is better

Exit Waves

• Example: initially N = 3, and $\alpha_2 > \alpha_1$

Exit Waves

• Example: initially N = 3, and $\alpha_2 > \alpha_1$

• Exit waves:

- one player exits when $X^{(1)}$ is reached
- a second player exits when $X^{(2)}$ is reached
- a third player exits when $X^{(3)}$ is reached
- An algorithm is available to determine the exit waves

