Rise of Superstar Firms and Fall of the Price Mechanism

Dan Su

Minnesota Carlson

2021 Colorado Finance Summit

Rise of the Superstar Economy

- increasing corporate market power
- increasing corporate internal financing

Research Questions

- Macro-finance implications of the new Superstar Economy
 - 1. what is its origin?
 - 2. why do firms hold excessive cash?
 - 3. how does the rise of Superstar Economy affect capital misallocation?

Main Story

- Primitive shocks: economic fundamental changes from both demand and supply sides
 - demand side: customers care more about product quality than quantity
 - supply side: digitization allows firms to increase operating scale
- Consequences: income and risk redistribution towards right-tail firms
 - earnings/markup as a convex function of product quality figure
- · Changes in corporate risk management policy: rely more on internal financing
 - external financing costs + precautionary saving incentive
- Aggregate impacts: increasing capital allocation inefficiency
 - unequalized marginal cost of capital within internal financing region of figure
 - Coase (1937): market is being replaced by firms for allocating resources

This Paper

- Punchline: increasing inefficiency of capital allocation in Superstar Economy
- Underlying mechanism: fundamental changes ⇒ earnings level and risk ⇒ risk management policy ⇒ capital allocation efficiency
- Roadmap
 - 1. Motivating Facts
 - 2. Theory
 - 3. Reduced-form Evidence
 - 4. Quantitative Results

Related Literature

- Superstar firms: Autor et al. (2020); De Ridder (2019); Korinek and Ng (2017); ...
- **Misallocation**: Hsieh and Klenow (2009); Gopinath et al. (2017); Asker, Collard-Wexler and De Loecker (2014); ...
- **Corporate liquidity management**: Bolton, Chen and Wang (2011); Wang, Wang and Yang (2012); Bates, Kahle and Stulz (2009); ...
- Declining number of public firms: Decker et al. (2016); Doidge et al. (2018); ...
- Distributional macro: Moll (2014); Kaplan, Moll and Violante (2018); ...
- Firm-market boundary: Coase (1937); Williamson (1975); ...
 - production side v.s. financing side
 - institutional quality v.s. economic fundamental changes

contributions

Three Facts

• Fact I: increasing dispersion of firm-level marginal revenue return to capital

Three Facts

• Fact II: negative correlation between firm-level TFP and net finance dependence

Three Facts

• Fact III: increasing gap between MPK and r

Facts and Interpretation

Three Facts

- · increasing dispersion of firm-level marginal revenue return to capital
- negative correlation between firm-level TFP and net finance dependence
- increasing gap between MPK and r
- Interpretation: capital allocation efficiency has been declining in the U.S.
- · Conjecture: related to this new Superstar Economy and its origin
- Next: a theoretical model to explain why

Model Setup - Agents

- An infinite-horizon continuous-time economy with [0, 1] entrepreneurs
- Stochastic differential utility with standard normalized aggregator f(c, J)
- (Two-layer) optimization problem
 - 1. optimal consumption *c* and savings
 - 2. optimal savings portfolio: capital ζ , cash ω , debt b
- State of the economy: $\Lambda_t(\zeta, \omega, b)$

Model Setup – Earnings

- Each entrepreneur can sell a product with quality ζ
 - demand: $p(\zeta) = \zeta^{\phi}$
 - ϕ : taste for quality
 - supply: $\Theta(y) = f_0 + \xi_0 y^{\frac{1}{\eta}}$
 - 1/η: curvature of the supply curve, i.e., how costly for firms to expand operating scale
 fixed cost assumption: De Ridder (2019)
 - earnings (and also markup) as a function of underlying capital quality

$$\pi(\zeta) = (1-\eta) \left(\frac{\eta}{\zeta_0}\right)^{\frac{\eta}{1-\eta}} \zeta^{\frac{\phi}{1-\eta}} - f_0 \tag{1}$$

Stochastic capital quality process

$$d\zeta_t = \left(\bar{\mu} + \iota_t^{\zeta} - \delta\zeta_t\right)dt + \sigma\sqrt{\zeta_t}d\mathcal{Z}_t \tag{2}$$

Theory

Model Setup - Risk Management

- External financing: credit risk-free debt
 - · timeline adjustment and earnings-based borrowing constraint
 - transaction costs of using the external financial market

 $\mathbb{1}_{b\neq 0}\left(\chi_0+\chi_1|b|\right)$

- Internal financing: completely risk-free cash
 - predetermined cash carry cost: λ
 - non-negativity condition: $\omega_{i,t} \ge 0$; $\forall i, t$
 - cash is not a publicly traded asset: no specific cash market clearance condition
 - · classical cash inventory approach

Economic Fundamental Shocks \Rightarrow **Risky Superstar Economy**

Quality-based non-homogeneous earnings process

$$d\pi_{t} = \underbrace{\left[\pi'\left(\zeta_{t}\right) \left(\bar{\mu} + \iota_{t}^{\zeta} - \delta\zeta_{t}\right) + \frac{\sigma^{2}\zeta_{t}}{2}\pi''\left(\zeta_{t}\right) \right]}_{\text{drift component}} dt + \underbrace{\pi'\left(\zeta_{t}\right) \sigma\sqrt{\zeta_{t}}}_{\text{volatility component}} d\mathcal{Z}_{t}$$
(3)

- shifts in supply and demand curves: $\uparrow \phi$ and $\uparrow \eta \Rightarrow \pi$ convex in $\zeta \Rightarrow \pi'$ increasing in ζ
- π' : rise of superstars
- π' : superstars are inherently riskier

Risky Superstar Economy with Income and Risk Redistribution

• Generality: convexity + Ito's lemma

→ intro

Dynamic Risk Management ⇒ Firm-Market Boundary

- Optimal cash holdings policy: $\left[\underline{\Omega}^{\zeta}, \overline{\Omega}^{\zeta}\right]$
 - upper boundary $\overline{\Omega}^{\zeta}$: cash carry cost
 - lower boundary $\underline{\Omega}^{\zeta}$: external financing cost
 - depend on capital quality ζ
- Unintended outcome: three sub-economies
 - **1. external lending region**: $\omega = \overline{\Omega}^{\zeta}$ and b < 0
 - **2.** external borrowing region: $\omega = \underline{\Omega}^{\zeta}$ and b > 0
 - 3. internal financing region: $\underline{\Omega}^{\zeta} < \omega < \overline{\Omega}^{\zeta}$ and b = 0

Endogenous Firm-Market Boundary

- self-financing (through safe assets) increases misallocation
- firm-market boundary is exactly the Neumann boundary conditions of certain PDEs
- these PDEs come from optimal decisions made by individual entrepreneurs

A Tale of Two Allocation Systems

- Firm-market boundary: a set of downward and upward control boundaries $\{\overline{\Omega}^i, \underline{\Omega}^i\}_{i \in [0, 1]}$.
 - 1. area governed by the price mechanism

$$\Psi_t = \iiint \left(1 - \mathbb{1}_{\overline{\Omega^{\zeta}} < \omega < \underline{\Omega^{\zeta}}}\right) \Lambda_t(\zeta, \omega, b) \, d\zeta d\omega db$$

2. area governed by entrepreneurs

$$\Psi_t^E = 1 - \Psi_t$$

- Why do we need this?
 - invisible hand is invisible by nature, so is its boundary
 - formally establish Coase (1937)'s idea in GE with a well-defined firm-market boundary

Reduced-Form Evidence I: Risky Superstars

- discussion on Herskovic et al. (2016)
 - different definitions
 - size premium & profitability premium
 - "realized" outcomes

Reduced-Form Evidence II: Markup and Misallocation

- left-tail firms: borrowing constraint story
- right-tail firms: risk management story

Reduced-Form Evidence III: Markup and Cash holdings

• a **positive** and **significant** association

Parameterization

- Two subsamples (Farhi and Gourio, 2018):
 - traditional economy (1980-1999)
 - superstar economy (2000-2015)
- Standard calibration + estimation (SMM-MCMC) calibration estimation
- Changes in parameters
 - an increase in taste for quality ϕ : 0.43 \rightarrow 0.56
 - an increase in fixed production costs $f_0: 0.11 \rightarrow 0.32$
 - an increase in operating scale η : 0.48 \rightarrow 0.64
 - a reduction in marginal cost ζ_0 : 0.94 \rightarrow 0.26

Quantitative Results

	Trends		
MACRO-FINANCE INDICATORS	Data	Model	
degree of "misallocation"	+0.22	+0.31	
correlation between TFP and net finance	-0.164	-0.131	
MPK - <i>r</i>	+5.00%	+5.15%	
area disciplined by the price mechanism	-	-10.88%	

- Ψ : wealth-weighted share of firms using external financial market
- Market system effectiveness: 11% decline
- Bils, Klenow and Ruane (2021): 15% decline in capital allocation efficiency
 - specific government policies
 - capital/labor market frictions

Decomposition

	Data	Fix ϕ	Fix η	Fix f_0	Fix ξ_0	Fix $\eta, f_0, \& \xi_0$	Fix ϕ , η , f_0 , & ξ_0	Fix β
degree of "misallocation"	+0.22	+0.18	+0.25	+0.26	+0.14	+0.10	+0.08	+0.28
(% of the full model)	-	(58.06%)	(80.65%)	(83.87%)	(45.16%)	(32.26%)	(25.81%)	(90.32%)
correlation between TED and not finance	0 164	0.071	0.116	0 112	0.087	0.040	0.022	0.120
(% of the full model)	-0.164	(= 4.42%)	-0.110	-0.113	-0.087	(20.84%)	+0.023	-0.129
(% of the full model)	-	(54.43%)	(88.55%)	(86.26%)	(66.26%)	(30.84%)	(-17.56%)	(98.47%)
МРК - <i>r</i>	+5.00%	+3.33%	+3.91%	+3.85%	+2.80%	+1.60%	+1.04%	+4.72%
(% of the full model)	-	(64.66%)	(75.92%)	(74.76%)	(54.37%)	(31.07%)	(20.19%)	(91.65%)
area disciplined by the price mechanism	N/A	-7.28%	-9.34%	-9.26%	-5.50%	-3.25%	-3.17%	-10.68%
(% of the full model)	-	(66.91%)	(85.85%)	(85.11%)	(50.55%)	(29.87%)	(29.14%)	(98.17%)

- demand side story: 35%
- supply side story: 50%
- borrowing constraint story: 10%

Conclusion

- Fundamental changes lead to rising superstars but falling price mechanism.
- **Policy implication**: increasing inefficiency
 - not on the production side: more productive producers serve more customers
 - on the financing side: increasing internal financing \Rightarrow inefficient use of resources

Appendix

Model Contributions (Back

1. Superstar Firms literature

- Autor et al. (2020), De Ridder (2019): earnings/markup level redistribution channel
- this paper: earnings/markup risk redistribution channel ⇒ corporate risk management policy
 ⇒ allocation efficiency
- 2. Finance & Misallocation literature
 - Buera, Kaboski and Shin (2011), Midrigan and Xu (2014), Moll (2014) ...
 - firms are **exogenously** assumed to be borrowers and face borrowing constraints
 - self-financing can reduce misallocation due to (wealth-based) borrowing constraint
 - this paper
 - · firms endogenously choose between internal financing and external financing
 - self-financing can **increase** misallocation due to the unequalized cash value

Calibration (Back

Parameter	Description	Traditional Economy 1980-1999	Superstar Economy 2000-2015	Source/Reference
ρ	rate of time preference	0.04	46	
Y	risk aversion	4.0)	Wang, Wang and Yang (2012)
θ	EIS reciprocal	2.0)	
λ	cash carry cost	1%	70	Bolton, Chen and Wang (2011)
δ	capital depreciation rate	0.053	0.056	BEA-FAT
η	operating scale	0.48	0.64	
fo	fixed production cost	0.11	0.32	
$\overline{\mu}$	capital quality: long-run mean	1.4	8	Compustat
σ	capital quality: volatility	0.7	6	

- two subsamples (Farhi and Gourio, 2018): traditional economy (1980-1999) and superstar economy (2000-2015)
- capital quality: (normalized) mean and s.d. of sales in Compustat
- production technology: De Ridder (2019)

Estimation: SMM-MCMC approach (Back

Parameter	Description	Traditional Economy 1980-1999	Superstar Economy 2000-2015	Difference
$\overline{\phi}$	taste for quality	0.43	0.56	+ 0.13
ξ0	variable production cost	0.94	0.26	-0.68
κ_0	investment adjustment cost	1.20	1.30	+0.10
Xo	fixed external financing cost	0.37	0.55	+0.18
X1	variable external financing cost	0.053	0.088	+0.035
β	tightness of borrowing constraint	0.22	0.29	+0.07

Coase (1937) Revisited **Dintro**

"The price mechanism might be superseded if the relationship which replaced it was desired for its own sake."

- Coase (1937), "The Nature of the Firm"

- Intuition: Market v.s. Firms
 - · market system eliminates misallocation through the price mechanism
 - · but using market system incurs transaction costs
- This paper:
 - trend of this competition in the new Superstar Economy
 - key conclusion: increasing inefficiency of capital allocation in Superstar Economy

• Underlying mechanism:

- transaction costs: external financing costs
- main driver: increasing earnings risk arising from some economic fundamental shocks

References I

- Asker, John, Allan Collard-Wexler, and Jan De Loecker. 2014. "Dynamic Inputs and Resource (Mis)Allocation." *Journal of Political Economy*, 122(5): 1013–1063.
- Autor, David, David Dorn, Lawrence F. Katz, Christina Patterson, and John Van Reenen. 2020. "The Fall of the Labor Share and the Rise of Superstar Firms." *Quarterly Journal of Economics*, 135(2): 645–709.
- Bates, Thomas W., Kathleen M. Kahle, and Rene M. Stulz. 2009. "Why Do U.S. Firms Hold So Much More Cash than They Used To?" *Journal of Finance*, 64(5): 1985–2021.
- Bils, Mark, Peter J. Klenow, and Cian Ruane. 2021. "Misallocation or Mismeasurement?"
- Bolton, Patrick, Hui Chen, and Neng Wang. 2011. "A Unified Theory of Tobin's q, Corporate Investment, Financing, and Risk Management." *Journal of Finance*, 66(5): 1545–1578.
- Buera, Francisco J., Joseph P. Kaboski, and Yongseok Shin. 2011. "Finance and Development: A Tale of Two Sectors." *American Economic Review*, 101(5): 1964–2002.
- Coase, Ronald. 1937. "The Nature of the Firm." Economica, 4(16): 386-405.
- **Decker, Ryan A., John Haltiwanger, Ron S. Jarmin, and Javier Miranda.** 2016. "Declining Business Dynamism: What We Know and the Way Forward." *American Economic Review*, 106(5): 203–207.
- De Ridder, Maarten. 2019. "Market Power and Innovation in the Intangible Economy."

References II

- **Doidge, Craig, Kathleen M. Kahle, G. Andrew Karolyi, and Rene M. Stulz.** 2018. "Eclipse of the Public Corporation or Eclipse of the Public Markets?" *Journal of Applied Corporate Finance*, 30(1): 8–16.
- Farhi, Emmanuel, and Francois Gourio. 2018. "Accounting for Macro-Finance Trends: Market Power, Intangibles, and Risk Premia." *Brookings Papers on Economic Activity*, Fall.
- **Gopinath, Gita, Sebnem Kalemli-Özcan, Loukas Karabarbounis, and Carolina Villegas-Sanchez.** 2017. "Capital Allocation and Productivity in South Europe." *Quarterly Journal of Economics*, 132(4): 1915–1967.
- Herskovic, Bernard, Bryan Kelly, Hanno Lustig, and Stijn Van Nieuwerburgh. 2016. "The common factor in idiosyncratic volatility: Quantitative asset pricing implications." *Journal of Financial Economics*, 119(2): 249–283.
- Hsieh, Chang-Tai, and Peter J. Klenow. 2009. "Misallocation and Manufacturing TFP in China and India." *Quarterly Journal of Economics*, 124(4): 1403 – 1448.
- Kaplan, Greg, Benjamin Moll, and Giovanni L. Violante. 2018. "Monetary Policy According to HANK." American Economic Review, 108(3): 697-743.
- Korinek, Anton, and Ding Xuan Ng. 2017. "The Macroeconomics of Superstars."
- Midrigan, Virgiliu, and Daniel Yi Xu. 2014. "Finance and Misallocation: Evidence from Plant-Level Data." *American Economic Review*, 104(2): 422–458.
- Moll, Benjamin. 2014. "Productivity Losses from Financial Frictions: Can Self-Financing Undo Capital Misallocation?" *American Economic Review*, 104(10): 3186–3221.

References III

Wang, Chong, Neng Wang, and Jinqiang Yang. 2012. "A Unified Model of Entreprenuership Dynamics." *Journal of Financial Economics*, 106: 1–23.

Williamson, Oliver. 1975. Markets and Hierarchies: Analysis and Antitrust Implications. The Free Press.