Contagion, Migration and Misallocation in a Pandemic

Ke Tang¹ Danxia Xie¹ Longtian Zhang²

1. Institute of Economics, Tsinghua University

2. School of International Trade and Economics, Central University of Finance and Economics

zhanglongtian@cufe.edu.cn

2022 AEA Poster Session

< □ > < □ > < □ > < □ > < □ > < □ >

Introduction

2 The Model

- 3 Migration Decisions
- 4 Numerical Results

5 Conclusion

э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 47 ▶

1 Introduction

2 The Model

- 3 Migration Decisions
- 4 Numerical Results

5 Conclusion

3

A D N A B N A B N A B N

Introduction Motivating Facts

- By the end of 2021, 280 million infected and 5.4 million deaths from this disease had been confirmed worldwide.
- The academic literature related to this disease has burgeoned after the outbreak, giving rise to different lines of research.
 - Topics on the restrictions on movements between regions, and the agents' decisions as a result of these restrictions have not been sufficiently analyzed.
 - The efficiency in the use and allocation of hospitalization resources across regions has also been under-studied.
- If there is no severe misallocation, the death rate for COVID-19 should be approximately the same across regions and close to the national average.
 - However, this is not the case when we look into the data of China.

< □ > < □ > < □ > < □ > < □ > < □ >

Introduction Motivating Facts

Table: Heterogeneous COVID-19 Death Rates

Countries (Provinces)	Date	Cases	Deaths	Deaths Cases	Deaths per	Normalized SD	Hospital Beds	
(1100111003)		Cro	ss-Count	v Comn	arison	or Death Nate	per in reopie	
United States Aug 26th 5 343 408 145 803 2 73% 45 0 69 2 9								
India	Aug. 20th	3 234 474	50 110	1.84%	45	0.05	0.7	
Rea =: I	Aug. 27th	2 717 166	117 665	2 170/	4.4 E6	0.75	0.7	
Drazii	Aug. 20th	5,717,150	117,005	5.1770	50	0.49	2.2	
Germany	Aug. 21th	230,048	9,260	4.03%	11	0.23	8.3	
South Korea	Aug. 26th	16,620	310	1.87%	0.60	1.11	11.5	
Japan	Aug. 26th	63,973	1,229	1.92%	0.97	1.01	13.4	
Mainland China	Aug. 2th	83,882	4,634	5.52%	0.33	1.23	4.2	
Comparison within Mainland China								
Hubei	Aug. 2th	68,135	4,512	6.62%	7.6	-	6.7	
(Wuhan of Hubei)	Aug. 2th	50,340	3,869	7.69%	35	-	9.2	
Henan	Aug. 2th	1,276	22	1.72%	0.022	-	6.3	
Heilongjiang	Aug. 2th	947	13	1.37%	0.034	-	6.6	
Beijing	Aug. 2th	929	9	0.97%	0.042	-	9.1	
Guangdong	Aug. 2th	1,672	8	0.48%	0.007	-	4.6	
Shandong	Aug. 2th	799	7	0.88%	0.007	-	6.1	
Shanghai	Aug. 2th	741	7	0.94%	0.029	-	9.6	
					()		⇒ > > < < < < < < < < < < < < < < < < <	

Tang, Xie & Zhang (THU & CUFE)

Introduction

Our Works

- Our model emphasizes the endogenous migration decisions of different population groups during a pandemic, which has not been paid sufficient attention in related research.
 - An uninfected agent might want to move to a city with less infected people.
 - An infected patient would intend to migrate to a city with better medical treatment.
- We find closed-form solutions of our model, which can facilitate the understanding of pandemic economics and policy design.

< □ > < 同 > < 三 > < 三 >

Introduction Related Literature

- The classical SIR model first proposed by Kermack et al. (1927).
 - Some other models have extended this framework in order to make it more meaningful (e.g., Chowell et al., 2003; Stehlé et al., 2011).
- The estimation of the economic impact due to COVID-19: Fernàndez-Villaverde and Jones (2020), Hall et al. (2020), and Guerrieri et al. (2020).
- Lockdown policy: Alvarez et al. (2021), Bobashev et al. (2011), Chinazzi et al. (2020).
- Our paper studies the misallocation of hospitalization resources during a pandemic (e.g., Hsieh and Klenow ,2009; Dower and Markevich, 2018; Hsieh et al., 2019; Tombe and Zhu, 2019).

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction

2 The Model

- 3 Migration Decisions
- 4 Numerical Results

5 Conclusion

3

A D N A B N A B N A B N

The Model

Agents

• Agents only care about their health states and consumption.

$$u(c_t;h_t)=c_t+\phi h_t,$$

- If the agent is healthy, $h_t = 1$.
- If the agent becomes infected, $0 < h_t = u_I < 1$.
- When an agent is recovered from the disease, the utility will return to the same level as those susceptible ones.
- If an agent is dead, there will be a high disutility value, i.e., $h_t = u_D \ll 0$.
- Every period, each agent receives w units of endowment.

$$c_t+f_t=w.$$

- c_t is the consumption level.
- f_t is the fees paid when pandemic comes (discussed as follows).

The Model Agents (Cont.)

- Consider *n* cities, with populations N_1 , N_2 ,..., N_n , where *n* is finite and no smaller than 2.
 - There exist natural migration rates $\bar{\eta}_{ij}$ which satisfy the following equations simultaneously.

$$N_i \sum_{j=1, j\neq i}^n \bar{\eta}_{ij} = \sum_{j=1, j\neq i}^n \bar{\eta}_{ji} N_j,$$

- When a pandemic comes, agents pay to make their own migration rates deviate from the corresponding natural level.
- The fee an agent who lives in City i has to pay to achieve these rates is set as

$$f_i = \sum_{j=1, j\neq i}^n k_{ij} (\eta_{ij} - \bar{\eta}_{ij})^2.$$

< □ > < □ > < □ > < □ > < □ > < □ >

The Model Aggregate Moving Equations

- When a pandemic comes, agents in each city are divided into four types: susceptible (S), infected (I), recovered (R) and dead (D).
- We define the actual number of these types of agents after migration at the current period as $U'_1(t)$, $U'_2(t)$,..., $U'_n(t)$, U = S, I, R, which are

$$U_i'(t) = \left(1 - \sum_{j=1, j \neq i}^n \eta_{U, ij}\right) U_i(t) + \sum_{j=1, j \neq i}^n \eta_{U, ji} U_j(t), i = 1, 2, ..., n.$$
(1)

The Model

Aggregate Moving Equations (Cont.)

• Then, the aggregate moving equations of agents in City *i*, *i* = 1, 2, ..., *n*, are:

$$\begin{split} S_{i}(t+1) &= S_{i}(t) - \frac{\beta}{N_{i}(t)} S_{i}'(t) I_{i}'(t) - S_{i}(t) \sum_{j=1, j \neq i}^{n} \eta_{S, ij} + \sum_{j=1, j \neq i}^{n} \eta_{S, ji} S_{j}(t), \\ I_{i}(t+1) &= I_{i}(t) + \frac{\beta}{N_{i}(t)} S_{i}'(t) I_{i}'(t) - [\gamma_{i}(t) + \lambda_{i}(t)] I_{i}'(t) - I_{i}(t) \sum_{j=1, j \neq i}^{n} \eta_{I, ij} + \\ &\sum_{j=1, j \neq i}^{n} \eta_{I, ji} I_{j}(t), \\ R_{i}(t+1) &= R_{i}(t) + \gamma_{i}(t) I_{i}'(t) - R_{i}(t) \sum_{j=1, j \neq i}^{n} \eta_{R, ij} + \sum_{j=1, j \neq i}^{n} \eta_{R, ji} R_{j}(t), \\ D_{i}(t+1) &= D_{i}(t) + \lambda_{i}(t) I_{i}'(t). \end{split}$$

イロト 不得 トイラト イラト 一日

The Model

Aggregate Moving Equations (Cont.)

• In every period, the probability of recovering from sickness in City *i* is

$$\gamma_i(t) = \bar{\gamma} - \kappa_1 \left(\frac{I_i'(t)}{H_i} \right),$$

 Similarly, we set the probability of dying from the disease in every period as

$$\lambda_i(t) = \overline{\lambda} + \kappa_2 \left(rac{I_i'(t)}{H_i}
ight),$$

• Considering migration, these rates can be written as follows.

$$p_{i,t} = \beta \frac{I_i'(t)}{N_i'(t)}, q_{i,t} = \gamma_i(t) = \bar{\gamma} - \kappa_1 \left(\frac{I_i'(t)}{H_i}\right), r_{i,t} = \lambda_i(t) = \bar{\lambda} + \kappa_2 \left(\frac{I_i'(t)}{H_i}\right),$$

where

$$N'_i(t) = S'_i(t) + I'_i(t) + R'_i(t).$$

Tang, Xie & Zhang (THU & CUFE)

The Model Aggregate Moving Equations (Cont.)

Table: Elements in the Transition Matrix

Health states in	Health states in the last period						
current period	S_i	li	Ri	Di			
Si	$\left(1-\sum_{k\neq i}\tilde{\eta}_{S,ik}\right)(1-p_{i,t})$	0	0	0			
l _i	$\left(1-\sum_{k eq i} \widetilde{\eta}_{\mathcal{S},ik} ight) p_{i,t}$	$\left(1-\sum_{k\neq i}\tilde{\eta}_{I,ik}\right)\left(1-q_{i,t}-r_{i,t}\right)$	0	0			
R _i	0	$\left(1-\sum\limits_{k eq i} \widetilde{\eta}_{I,ik} ight) q_{i,t}$	$1 - \sum_{k eq i} ar\eta_{ik}$	0			
Di	0	$\left(1-\sum_{k eq i} \widetilde{\eta}_{I,ik} ight) r_{i,t}$	0	1			
S_j	$ ilde{\eta}_{\mathcal{S},ij}(1-p_{j,t})$	0	0	0			
I_j	$\tilde{\eta}_{S,ij}p_{j,t}$	$ ilde{\eta}_{I,ij}(1-q_{j,t}-r_{j,t})$	0	0			
R_j	0	$\tilde{\eta}_{I,ij}q_{j,t}$	$\bar{\eta}_{ij}$	0			
D_j	0	$\tilde{\eta}_{I,ij}r_{j,t}$	0	0			

Tang, Xie & Zhang (THU & CUFE)

3

A D N A B N A B N A B N

1 Introduction

2 The Model

- 3 Migration Decisions
- 4 Numerical Results

5 Conclusion

э

A B A A B A

< 47 ▶

• The current expected utility of an agent in City *i* now if he/she was a susceptible one in the last period is

$$\begin{split} u(c_t; h_t, h_{t-1} &= \text{susceptible}, i) \\ &= w - f(\tilde{\eta}_{S,ij}; j \neq i) + \phi \left[\left(1 - \sum_{j \neq i} \tilde{\eta}_{S,ij} \right) (1 - p_{i,t}) + u_I \left(1 - \sum_{j \neq i} \tilde{\eta}_{S,ij} \right) p_{i,t} + \right. \\ &\left. \sum_{j \neq i} \left(\tilde{\eta}_{S,ij} (1 - p_{j,t}) + \tilde{\eta}_{S,ij} p_{j,t} u_I \right) \right]. \end{split}$$

• The current expected utility for an agent that was infected in the last period can be derived as

$$u(c_{t}; h_{t}, h_{t-1} = \text{infected}, i)$$

$$= w - f(\tilde{\eta}_{l,ij}; j \neq i) + \phi \left[\left(1 - \sum_{j \neq i} \tilde{\eta}_{l,ij} \right) (1 - q_{i,t} - r_{i,t}) u_{l} + \left(1 - \sum_{j \neq i} \tilde{\eta}_{l,ij} \right) q_{i,t} + \left(1 - \sum_{j \neq i} \tilde{\eta}_{l,ij} \right) r_{i,t} u_{D} + \sum_{j \neq i} (\tilde{\eta}_{l,ij} (1 - q_{j,t} - r_{j,t}) u_{l} + \tilde{\eta}_{l,ij} q_{j,t} + \tilde{\eta}_{l,ij} r_{j,t} u_{D}) \right].$$

• Denote the solutions of the migration rates as

$$\boldsymbol{\eta} = [\eta_{\mathcal{S},12}, \eta_{\mathcal{S},21}, \dots, \eta_{\mathcal{S},(n-1)n}, \eta_{\mathcal{S},n(n-1)}, \eta_{\mathcal{I},12}, \eta_{\mathcal{I},21}, \dots, \eta_{\mathcal{I},(n-1)n}, \eta_{\mathcal{I},n(n-1)}]',$$

which is a $2n(n-1) \times 1$ vector.

• Given the total number of different types of agents I_i , D_i , i = 1, 2, ..., n, in the last period, these migration rates can be obtained from the system of linear equations

$$A\eta = B$$
,

where **A** is a $2n(n-1) \times 2n(n-1)$ matrix, and **B** is a $2n(n-1) \times 1$ vector.

- Solutions in two cases.
 - Laissez-Faire Equilibrium: Each agent make their own decision given the belief of other agents' behavior.
 - Optimal Policy: A social planner decide all the migration rate simultaneously.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Comparison of the Laissez-Faire Equilibrium and the Optimal Policy

Elements in Matrix A							
	Row (U, ij), U = S, I						
Column	Laissez-Faire Equ	ilibrium, $oldsymbol{A}_L$	Optimal Policy, A_O				
	(S, ij)	(I,ij)	(S, ij)	(I,ij)			
(S, ij)	1	0	1	$\frac{C_S S_i}{k_{ij}} \left(\frac{1}{N_i - D_i} + \frac{1}{N_j - D_j} \right)$			
(S, ji)	0	0	0	$-\frac{C_S S_j}{k_{ij}} \left(\frac{1}{N_i - D_i} + \frac{1}{N_j - D_j} \right)$			
(S, ik)	0	0	0	$\frac{1}{k_{ij}}C_S \frac{S_i}{N_i - D_i}$			
(S,ki)	0	0	0	0			
(S, jk)	0	0	0	$-\frac{1}{k_{ij}}C_S\frac{S_j}{N_j-D_j}$			
(S, kj)	0	0	0	0			

Table 2: Elements in the Matrix A and Vector B in Laissez-Faire Equilibrium and in Optimal Policy

A D N A B N A B N A B N

Comparison of the Laissez-Faire Equilibrium and the Optimal Policy (Cont.)

Elements in Vector **B**

	Laissez-Faire Equilibrium, \boldsymbol{B}_L	Optimal Policy, \boldsymbol{B}_O
$B_{(S,ij)}$	$\frac{1}{k_{ij}}C_S\left(\frac{I_i}{N_i-D_i}-\frac{I_j}{N_j-D_j}\right)+\bar{\eta}_{ij}$	$rac{1}{k_{ij}}C_S\left(rac{I_i}{N_i-D_i}-rac{I_j}{N_j-D_j} ight)+ar\eta_{ij}$
$B_{(I,ij)}$	$\frac{1}{k_{ij}}C_I\left(\frac{I_i}{H_i}-\frac{I_j}{H_j}\right)+\bar{\eta}_{ij}$	$\frac{1}{k_{ij}}C_S\left(\frac{S_i}{N_i-D_i}-\frac{S_j}{N_j-D_j}\right)+\frac{2}{k_{ij}}C_I\left(\frac{I_i}{H_i}-\frac{I_j}{H_j}\right)+\bar{\eta}_{ij}$

< □ > < 同 > < 三 > < 三 >

Comparison of the Laissez-Faire Equilibrium and the Optimal Policy (Cont.)

Laissez-Faire Equilibrium

In the laissez-faire equilibrium, the elements of matrix A_L and vector B_L are shown in Table 2. Specifically, matrix A_L can be divided into the following four blocks:

$$\mathbf{A}_{L} = \begin{bmatrix} \mathbf{A}_{L,SS} & \mathbf{A}_{L,SI} \\ \mathbf{A}_{L,IS} & \mathbf{A}_{L,II} \end{bmatrix}$$

These four block matrices are all $n(n-1) \times n(n-1)$ matrices, and they have the following properties:

- $A_{L,SS}$ is an $n(n-1) \times n(n-1)$ identity matrix.
- **2** $A_{L,IS}$ is an $n(n-1) \times n(n-1)$ null matrix.
- **3** $A_{L,SI}$ and $A_{L,II}$ are non-singular matrices.

Since A_L is non-singular and B_L is non-zero, we can uniquely determine the migration decisions of the agents.

3

イロト イポト イヨト イヨト

Comparison of the Laissez-Faire Equilibrium and the Optimal Policy (Cont.)

Optimal Policy

In the optimal policy, the elements of matrix A_O and vector B_O are shown in Table 2. Specifically, matrix A_O can be divided into the following four blocks:

$$\mathbf{A}_{O} = \begin{bmatrix} \mathbf{A}_{O,SS} & \mathbf{A}_{O,SI} \\ \mathbf{A}_{O,IS} & \mathbf{A}_{O,II} \end{bmatrix}$$

These four block matrices are all $n(n-1) \times n(n-1)$ matrices, and they have the following properties:

• $A_{O,SS}$ is an $n(n-1) \times n(n-1)$ identity matrix.

2 $A_{O,SI}$, $A_{O,IS}$ and $A_{O,II}$ are all non-singular matrices.

$$\mathbf{a}_{O,SI} = \mathbf{A}_{L,SI} \text{ but } \mathbf{A}_{O,II} \neq \mathbf{A}_{L,II}.$$

Since A_O is non-singular and B_O is non-zero, we can uniquely determine the migration decisions of the agents.

3

イロト イボト イヨト イヨト

1 Introduction

2 The Model

- 3 Migration Decisions
- 4 Numerical Results

5 Conclusion

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Methodology and Calibration

- We study a three-city model as an example.
- These cities have the same population N, and the same natural migration rates $\bar{\eta}$ as well as their corresponding fee rates k between each other.
- The three cities are different.
 - City 1 has the largest number of infected agents, but has a medium level of hospital resources without satisfying the needs of its infected agents.
 - City 2 has a medium number of infected agents, but has the most abundant hospital resources.
 - Infected agents in City 3 are nearly zero, and has few hospital resources.
- Other parameters (estimated from data): $\beta = 0.4$, $\bar{\gamma} = 0.04$, $\bar{\lambda} = 0.0008$, $\kappa_1 = 0.01$ and $\kappa_2 = 0.0005$, $\bar{\eta} = 0.1$, and we extend them into two-week time span.

Allocations of Hospitalization Resources

Tang, Xie & Zhang (THU & CUFE)

Endogenous Migration

2022 AEA Poster Session 24 / 30

э

Allocations of Hospitalization Resources (Cont.)

Tang, Xie & Zhang (THU & CUFE)

Endogenous Migration

2022 AEA Poster Session 25 / 30

э

Welfare Analysis

Figure: Relationship between Total Welfare and the Hospitalization Resources Allocated in City 1, Two-Week Time Span

Tang, Xie & Zhang (THU & CUFE)

・ロト ・ 同ト ・ ヨト ・ ヨト

Misallocation in a Pandemic

Table: Simulated Results in Different Cases, Two-Week Time Span

-	Initial Number of Different		Deaths Cases	Deaths per	Cases per	Normalized Standard Deviation	
Cases	Types of Agents and	States		10k People	10k People	of Death Rate	
	Hospital Resources					With Contagion	No Contagion
I	1 epidemic focus +	Initial	0.53%	10	1,048	1.3693	1.3693
(n = 5,	1 large city $+$	LF	0.71%	41.17	4,735	0.2202	0.1517
$\eta_{max} = 0.8$)	3 small cities	OP	2.21%	36.47	513	1.7829	0.1377
11	1 epidemic focus +	Initial	0.54%	13	1332	0.8607	0.8607
(n = 10,	5 large city $+$	LF	0.68%	51.22	6,192	0.3383	0.3237
$\eta_{max} = 0.8$)	4 small cities	OP	0.60%	38.43	4,575	0.9202	0.3196
	1 epidemic focus +	Initial	0.52%	7	706	1.5672	1.5672
(n = 20,	5 large cities +	LF	0.66%	30.22	3,971	0.1380	0.1353
$\eta_{max} = 0.8$)	14 small cities	OP	0.48%	20.67	3,104	0.5424	0.1217
IV	1 epidemic focus +	Initial	0.53%	7	817	1.3367	1.3367
(n = 30,	10 large cities +	LF	0.68%	36.09	4,546	0.2103	0.2213
$\eta_{max} = 0.8$)	19 small cities	OP	0.49%	26.22	4,041	0.2283	0.1820
V	1 epidemic focus +	Initial	0.51%	4.60	384	1.9021	1.9021
(n = 50,	10 large cities +	LF	0.59%	20.95	3,049	0.0463	0.0493
$\eta_{max} = 0.8)$	39 small cities	OP	0.45%	17.52	2,901	0.1731	0.1145

Tang, Xie & Zhang (THU & CUFE)

2022 AEA Poster Session 27 / 30

э

(日) (四) (日) (日) (日)

Introduction

2 The Model

- 3 Migration Decisions
- 4 Numerical Results

5 Conclusion

э

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Conclusion

- We develop an endogenous migration model during pandemics based on a multi-city framework with hospitalization resource constraints, integrated with a traditional SIR epidemic model.
 - Several explicit solutions on migration decisions are provided.
 - The relationship between allocation of hospitalization resources and migration decisions.
 - Simulated results are consistent with what we find from the data.
- The framework we develop can be used to understand the behavior of people when facing an unknown epidemic disease like COVID-19, and provide a tool for governments to efficiently allocate hospitalization resources and different types of agents during these uncertain times.

29 / 30

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Thanks for your attention!

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶