Time of Day and High Stakes Cognitive Assessments

Alessio Gaggero[†] and Denni Tommasi[‡]

[†]University of Granada [‡]University of Bologna and IZA

September, 2021

- High-stake **cognitive assessment** to measure **ability** (e.g., SAT/GRE test, job interview, job performance evaluation, etc)
 - Initial conditions can have lasting consequences (e.g., Wachter, 2020)

- High-stake **cognitive assessment** to measure **ability** (e.g., SAT/GRE test, job interview, job performance evaluation, etc)
 - Initial conditions can have lasting consequences (e.g., Wachter, 2020)
- Time-of-day: When can ability be measured at best?
 - Cognitive functioning varies during the day: circadian rhythm

- High-stake **cognitive assessment** to measure **ability** (e.g., SAT/GRE test, job interview, job performance evaluation, etc)
 - Initial conditions can have lasting consequences (e.g., Wachter, 2020)
- Time-of-day: When can ability be measured at best?
 - Cognitive functioning varies during the day: circadian rhythm
 - \rightarrow Key idea: it does not imply that time-of-day matters for performance
 - \rightarrow Behavioral responses (adaptation) to non-optimal time of day

- High-stake **cognitive assessment** to measure **ability** (e.g., SAT/GRE test, job interview, job performance evaluation, etc)
 - Initial conditions can have lasting consequences (e.g., Wachter, 2020)
- Time-of-day: When can ability be measured at best?
 - Cognitive functioning varies during the day: circadian rhythm
 - \rightarrow Key idea: it does not imply that time-of-day matters for performance
 - \rightarrow Behavioral responses (adaptation) to non-optimal time of day
 - Whether time-of-day matters remains a testable hypothesis

- High-stake **cognitive assessment** to measure **ability** (e.g., SAT/GRE test, job interview, job performance evaluation, etc)
 - Initial conditions can have lasting consequences (e.g., Wachter, 2020)
- Time-of-day: When can ability be measured at best?
 - Cognitive functioning varies during the day: circadian rhythm
 - \rightarrow Key idea: it does not imply that time-of-day matters for performance
 - \rightarrow Behavioral responses (adaptation) to non-optimal time of day
 - Whether time-of-day matters remains a testable hypothesis
- Challenge: often we can choose our schedules

- High-stake **cognitive assessment** to measure **ability** (e.g., SAT/GRE test, job interview, job performance evaluation, etc)
 - Initial conditions can have lasting consequences (e.g., Wachter, 2020)
- Time-of-day: When can ability be measured at best?
 - Cognitive functioning varies during the day: circadian rhythm
 - \rightarrow Key idea: it does not imply that time-of-day matters for performance
 - \rightarrow Behavioral responses (adaptation) to non-optimal time of day
 - Whether time-of-day matters remains a testable hypothesis
- Challenge: often we can choose our schedules
- University: students take multiple exams (~ cognitive assessments) and their performance is incredibly relevant:

- High-stake **cognitive assessment** to measure **ability** (e.g., SAT/GRE test, job interview, job performance evaluation, etc)
 - Initial conditions can have lasting consequences (e.g., Wachter, 2020)
- Time-of-day: When can ability be measured at best?
 - Cognitive functioning varies during the day: circadian rhythm
 - \rightarrow Key idea: it does not imply that time-of-day matters for performance
 - \rightarrow Behavioral responses (adaptation) to non-optimal time of day
 - Whether time-of-day matters remains a testable hypothesis
- Challenge: often we can choose our schedules
- University: students take multiple exams (~ cognitive assessments) and their performance is incredibly relevant:
 - We study the impact of time-of-day on cognitive performance

- High-stake **cognitive assessment** to measure **ability** (e.g., SAT/GRE test, job interview, job performance evaluation, etc)
 - Initial conditions can have lasting consequences (e.g., Wachter, 2020)
- Time-of-day: When can ability be measured at best?
 - Cognitive functioning varies during the day: circadian rhythm
 - \rightarrow Key idea: it does not imply that time-of-day matters for performance
 - \rightarrow Behavioral responses (adaptation) to non-optimal time of day
 - Whether time-of-day matters remains a testable hypothesis
- Challenge: often we can choose our schedules
- University: students take multiple exams (\sim cognitive assessments) and their performance is incredibly relevant:
 - We study the impact of time-of-day on cognitive performance
 - → Can efficiency gains be obtained by simple re-arrangements?

In a nutshell

- Administrative student-level panel data from a large UK University:
 - Complete information on half million observations of University students
 - Exams performed at 9am, 1.30pm, 4.30pm

In a nutshell

- Administrative student-level panel data from a large UK University:
 - Complete information on half million observations of University students
 - Exams performed at 9am, 1.30pm, 4.30pm
- Identification:
 - Quasi-random assignment of the day and time of exams
 - Intuition: students take different exams at different time, hence we randomize within students

In a nutshell

- Administrative student-level panel data from a large UK University:
 - Complete information on half million observations of University students
 - Exams performed at 9am, 1.30pm, 4.30pm

Identification:

- Quasi-random assignment of the day and time of exams
- Intuition: students take different exams at different time, hence we randomize within students

• Theory:

• Trade-off between effort and rewards

In a nutshell

- Administrative student-level panel data from a large UK University:
 - Complete information on half million observations of University students
 - Exams performed at 9am, 1.30pm, 4.30pm

Identification:

- Quasi-random assignment of the day and time of exams
- Intuition: students take different exams at different time, hence we randomize within students

• Theory:

- Trade-off between effort and rewards
- $\rightarrow\,$ As the stakes of a cognitive assessment increase, the association between time and performance is less likely driven by low effort
- → **Implication:** The biological component may affect individual performances even in a high stakes environment

Alessio Gaggero[†] and Denni Tommasi[‡] Time of Day and High Stakes Cognitive Assessments

Empirics Main specification

• We estimate:

$$Y_{i,e,t} = \alpha(i) + T_{e,t}^{'} \beta + X_{i,e,t}^{'} \gamma + v_{i,e,t}$$

where:

- $Y_{i,e,t}$ is the standardized mark achieved by student i, in exam e, in year t
- $\alpha(i)$: student fixed effects (FE)
- $T_{e,t}$: time of day variables
- X_{i,e,t}: students' and exams' characteristics
- $v_{i,e,t}$: unobservable shocks to students' exam mark

Alessio Gaggero[†] and Denni Tommasi[‡] Time of Day and High Stakes Cognitive Assessments

Results

Effects of Time of Day on Students' Performance: Primary Results

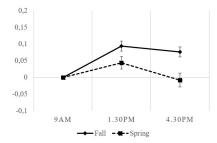
	Primary Results			Robustness Checks				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1(1.30pm = 1)	0.046***	0.050***	0.068***	0.061***	0.052***	0.032**	0.070***	0.068***
1(4.30pm = 1)	(0.017) 0.050*** (0.018)	(0.016) 0.042** (0.017)	(0.015) 0.036** (0.015)	(0.017) 0.026 (0.017)	(0.014) 0.017 (0.016)	(0.012) 0.019 (0.014)	(0.014) 0.034** (0.015)	(0.015) 0.034** (0.015)
Test of equality of Ear	ly and Late Af	ternoon exams	; in linear regre	essions above:				
Pr > F	0.815	0.623	0.036	0.032	0.032	0.313	0.021	0.033
Conditions: Student FE: Covariates: Duration FE:		V	\$ \$ \$	\$ \$ \$	\$ \$ \$	\$ \$ \$	\$ \$ \$	\$ \$ \$
Exam FE: Day FE: Room FE:				V		\checkmark	\checkmark	V
Clusters: Observations:	7665 503359	7665 503359	7626 500959	6475 432185	7373 312103	7578 500906	7626 500959	7613 500920
Adjusted R^2 :	0.000	0.022	0.462	0.471	0.452	0.531	0.466	0.473

<u>Notes</u>: *p < 0.10, **p < 0.05, ***p < 0.01. Observations are at the student-exam-year level. Standard errors are clustered by exam-year.

\rightarrow Students perform better early in the afternoon

- \rightarrow Results are robust to several robustness checks (even more in the paper)
- \rightarrow **Inverse-U** shape relationship between time of day and performance

Based on the circadian rhythm literature


• **Continuum of chronotypes** in population, from very early to very late, which can be assessed with questionnaires (Roenneberg et al, 2003)

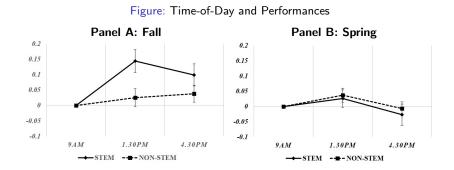
Based on the circadian rhythm literature

- **Continuum of chronotypes** in population, from very early to very late, which can be assessed with questionnaires (Roenneberg et al, 2003)
- The clock is affected by day length / sunlight exposure (season) (Kantermann et al, 2007)

Time of day and Performance: By Sunlight *Graphical illustration*

Figure: Time-of-Day and Performances

Based on the circadian rhythm literature


- **Continuum of chronotypes** in population, from very early to very late, which can be assessed with questionnaires (Roenneberg et al, 2003)
- The clock is affected by day length / sunlight exposure (season) (Kantermann et al, 2007)

Based on the circadian rhythm literature

- **Continuum of chronotypes** in population, from very early to very late, which can be assessed with questionnaires (Roenneberg et al, 2003)
- The clock is affected by day length / sunlight exposure (season) (Kantermann et al, 2007)
- The problem with chronotypes and performance is not only sleep deprivation, but also being **tested** (or performing a task) at a **non-optimal time-of-day** (Zerbini et al, 2017)

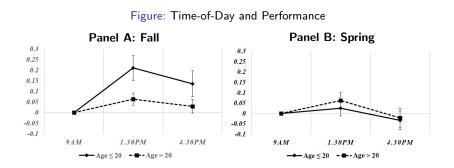
Time of day and Performance: By Task

Graphical illustration

Alessio Gaggero[†] and Denni Tommasi[‡] Time of Day and High Stakes Cognitive Assessments

Based on the circadian rhythm literature

- **Continuum of chronotypes** in population, from very early to very late, which can be assessed with questionnaires (Roenneberg et al, 2003)
- The clock is affected by day length / sunlight exposure (season) (Kantermann et al, 2007)
- The problem with chronotypes and performance is not only sleep deprivation, but also being **tested** (or performing a task) at a **non-optimal time-of-day** (Zerbini et al, 2017)


Based on the circadian rhythm literature

- **Continuum of chronotypes** in population, from very early to very late, which can be assessed with questionnaires (Roenneberg et al, 2003)
- The clock is affected by day length / sunlight exposure (season) (Kantermann et al, 2007)
- The problem with chronotypes and performance is not only sleep deprivation, but also being **tested** (or performing a task) at a **non-optimal time-of-day** (Zerbini et al, 2017)

• The clock is not "fixed" but it can vary, among other things, with age: chronotype of young adults is late (Zerbini and Merrow, 2017)

Time of day and Performance: By Age

Graphical illustration

Alessio Gaggero[†] and Denni Tommasi[‡] Time of Day and High Stakes Cognitive Assessments

Based on the circadian rhythm literature

- **Continuum of chronotypes** in population, from very early to very late, which can be assessed with questionnaires (Roenneberg et al, 2003)
- The clock is affected by day length / sunlight exposure (season) (Kantermann et al, 2007)
- The problem with chronotypes and performance is not only sleep deprivation, but also being **tested** (or performing a task) at a **non-optimal time-of-day** (Zerbini et al, 2017)
- The clock is not "fixed" but it can vary, among other things, with age: chronotype of young adults is late (Zerbini and Merrow, 2017)

Based on the circadian rhythm literature

- **Continuum of chronotypes** in population, from very early to very late, which can be assessed with questionnaires (Roenneberg et al, 2003)
- The clock is affected by day length / sunlight exposure (season) (Kantermann et al, 2007)
- The problem with chronotypes and performance is not only sleep deprivation, but also being **tested** (or performing a task) at a **non-optimal time-of-day** (Zerbini et al, 2017)
- The clock is not "fixed" but it can vary, among other things, with age: chronotype of young adults is late (Zerbini and Merrow, 2017)

\rightarrow All these (correlation) studies are **consistent** with our causal evidence

Intro Conclusion

Conclusion

Alessio Gaggero[†] and Denni Tommasi[‡] Time of Day and High Stakes Cognitive Assessments

Conclusion

- Time of day matters for your performance!
- **②** Time of day matters differentially (season, task, age)
- **9** Policy implications: **Efficiency gains** in education and **elsewhere**

Thank you!

Email: denni.tommasi@unibo.it Twitter: @DenniTommasi