# Following the crowd: Anomalies and crowding by Institutional Investors

Ludwig Chincarini $^1$   $\,$  Renato Lazo-Paz  $^2$   $\,$  Fabio Moneta  $^2$ 

<sup>1</sup> School of Management - University of San Francisco

<sup>2</sup>Telfer School of Management - University of Ottawa

December 29, 2021

(日) (周) (王) (王)

# Motivation

#### 13F Thomson/Refinitv Institutional holdings



- The number of institutional investors grew more than ten times (blue line) from around 400 in 1980 to more than 4,000 in the first quarter of 2020.
- The number of publicly listed companies steadily decreased (red line) after reaching its peak of 5,756 in the late 1990s to a total of 2,386 in 2020.

Chincarini, Lazo-Paz, Moneta

< 17 b

# Motivation

13F Thomson/Refinitv Institutional holdings



• The decline in the median number of stocks held in a typical institutional investor's portfolio (red line) contrasted to the increase in the amount of money, in millions of USD, allocated in average security (blue line)

< 17 b

# Crowding

**Crowded holdings** = those in which many investors hold the same stocks possibly exhausting their liquidity provision.

#### Mechanisms

- Trading spaces may become crowded if investors follow *similar trading models*, either by coincidence or intentionally.
- Even if they have different models for generating their expected returns, investors' use of *similar techniques for portfolio construction* can cause their portfolios to converge.

(D) (A) (A) (A) (A)

## Hypothesis development

 $H_1$ : Crowding and the return dynamics in institutional investors' holdings:

 $\uparrow$  crowding leads to  $\uparrow$  excess return

 $H_2$ : Crowding in anomaly stocks:

Anomaly stocks should exhibit ↑ crowding specially those selected from non-fundamentally anchored trading strategies (e.g. momentum).

 $H_3$ : The determinants of crowding, liquidity, and crash risk: $\uparrow$  crowding related to  $\uparrow$  liquidity and  $\uparrow$  crash risk and stronger<br/>among short-term investors.

# Main Results/Contributions

- Based on a portfolio sorting approach, we find that the most crowded stocks outperform the least crowded ones in our database of institutional investors' holdings.
- Across 12 well-known stock anomalies, abnormal returns are significantly higher among most(least) crowded.
- We also find that crowding is **positively and significantly re**lated to liquidity and crash risk.

We contribute to the literature on the **limits to arbitrage** by showing that **crowded holdings pose additional liquidity/crash risk concerns** to arbitrage trading.

#### Measuring crowding at the stock level

We extend Brown et al.(2021) **Days-ADV**  $(ADV_{i,j,t})$  measure and estimate it for our sample of institutional investors (13F)

$$Days - ADV_{i,j,t} = \frac{\text{InstHold}_{i,j,t}}{\text{ADV}_{i,t}}$$
(1)

where:

- $InstHold_{i,j,t}$  is the total value invested in a security *i* by institutional investor *j* at quarter *t*;
- $ADV_{i,t}$  is the average daily turnover of security *i* during quarter *t*.

This measure provides an estimate of how long (in days) it would take the institutional investors universe to collectively divest itself of a position in an individual security.

## Anomalies

| Anomaly |                           | Label Paper         |                               | SSRN |
|---------|---------------------------|---------------------|-------------------------------|------|
|         |                           | Haber               | 1 upor                        | year |
| 1       | Composite equity issuance | CEI                 | Daniel and Titman $(2006)$    | 2001 |
| 2       | Net stock issuance        | NSI                 | Loughran and Ritter $(1995)$  |      |
| 3       | Total accruals            | ACC                 | Sloan (1996)                  |      |
| 4       | Net operating assets      | NOA                 | Hirshleifer et al. (2004)     | 2003 |
| 5       | Gross profitability       | $\operatorname{GP}$ | Novy-Marx (2013)              | 2010 |
| 6       | Asset growth              | AG                  | Cooper et al. (2004)          | 2005 |
| 7       | Capital investments       | CI                  | Titman et al. (2004)          | 2001 |
| 8       | Investment-to-assets      | IVA                 | Xing (2008)                   | 2008 |
| 9       | Momentum                  | MOM                 | Jegadeesh and Titman $(1993)$ | 2001 |
| 10      | Ohlson O-score            | OSC                 | Dichev $(1998)$               | 2001 |
| 11      | Return to assets          | ROA                 | Fama and French (2006)        | 2001 |
| 12      | Book-to-market            | BM                  | Fama and French $(1992)$      |      |
|         |                           |                     |                               |      |

#### Data

- $\blacksquare$  Stock data from  ${\bf CRSP}$  and  ${\bf Compustat}$ 
  - ▶ All common stocks (10,11) trading on the NYSE, AMEX, and NASDAQ.
  - ▶ Filters: we exclude utilities, financial firms, and stocks priced under \$5 (microcaps).
  - Sample period: 1980Q1 until 2020Q1
- Thomson/Refinity 13F Institutional holdings s34
  - ▶ All investment managers with discretion over securities worth \$100 Million or more to report all equity positions greater than 10,000 shares or \$200,000.
  - ▶ Following convention we correct errors on missing holdings and cap IO (Institutional Ownership) to 100%.

#### Univariate Portfolio sorts

|                     | Excess return and Alpha |         |         |         |         |         |
|---------------------|-------------------------|---------|---------|---------|---------|---------|
|                     | Exc Ret                 | FF3     | FF4     | FF5     | FF3+liq | MISP    |
| Quintile 5 -High    | 1.18                    | 0.62    | 0.55    | 0.49    | 0.65    | 0.34    |
|                     | (6.31)                  | (8.86)  | (8.63)  | (7.91)  | (9.73)  | (4.81)  |
| Quintile 4          | 0.70                    | 0.12    | 0.03    | -0.02   | 0.09    | -0.10   |
|                     | (3.82)                  | (2.13)  | (0.83)  | (-0.51) | (2.17)  | (-1.76) |
| Quintile 3          | 0.55                    | -0.08   | -0.11   | -0.15   | -0.10   | -0.15   |
|                     | (2.77)                  | (-1.77) | (-2.61) | (-3.61) | (-2.57) | (2.74)  |
| Quintile 2          | 0.37                    | -0.31   | -0.29   | -0.14   | -0.38   | -0.07   |
|                     | (1.55)                  | (-4.07) | (-4.30) | (-2.41) | (-5.41) | (-0.07) |
| Quintile 1 -Low     | -0.14                   | -0.96   | -0.76   | -0.61   | -0.94   | -0.37   |
|                     | (-0.46)                 | (-8.06) | (-7.62) | (-6.34) | (-8.99) | (-2.91) |
| High-minus-Low(HML) | 1.32                    | 1.58    | 1.31    | 1.09    | 1.59    | 0.71    |
|                     | (6.24)                  | (9.52)  | (9.38)  | (8.25)  | (9.63)  | (4.19)  |

Table 1: Quintile portfolios(value-weighted) formed on days-ADV

MISP = is the model proposed by Stambaugh et al (2007) that combines two mispricing factors with the market and size factors The reported alphas are in percent per month. The t-values are in parentheses.

10 / 15

### Anomaly stocks and Crowding: Double-sorted Portfolios

| r and fir solved on adjoins v and enon on anomaly variables |           |           |         |  |  |
|-------------------------------------------------------------|-----------|-----------|---------|--|--|
|                                                             | High/Long | Low/Short | Diff    |  |  |
| Full Sample                                                 | 0.64      | -1.23     | 1.87    |  |  |
|                                                             | (9.81)    | (-10.84)  | (12.19) |  |  |
| Pre-publication                                             | 0.50      | -0.75     | 1.25    |  |  |
|                                                             | (5.97)    | (6.20)    | (10.69) |  |  |
| Post-publication                                            | 0.36      | -0.54     | 0.90    |  |  |
|                                                             | (4.31)    | (-4.88)   | (8.78)  |  |  |

Table 2: Anomaly stocks and crowding

#### Panel A: Sorted on days-ADV and then on anomaly variables

#### Panel B: Sorted on anomaly variables and then based on days-ADV

|                  | High/Long | $\mathrm{Low}/\mathrm{Short}$ | Diff    |
|------------------|-----------|-------------------------------|---------|
| Full Sample      | 0.40      | -1.24                         | 1.64    |
|                  | (6.54)    | (-9.58)                       | (10.30) |
| Pre-publication  | 0.37      | -0.78                         | 1.16    |
|                  | (3.92)    | (-6.29)                       | (9.84)  |
| Post-publication | 0.25      | -0.53                         | 0.77    |
|                  | (2.89)    | (-4.54)                       | (7.54)  |

The aggregate anomaly portfolio is estimated by taking the equally-weighted average each quarter across all available anomaly returns.

We run our estimations for three sample periods (i) the complete period spanning 1980Q1 to 2020Q1 – the first row, (ii) the period after 1980Q1 until just the publication year (pre-pub) – the second row, and (iii) after the publication (post-pub) to the first quarter of 2020.

The reported alphas are in percent per month. The t-values are in parentheses.

#### Fama-Macbeth regressions

Crowding and future returns

|                                                    | 0             | 1                   |                     |                     |  |  |
|----------------------------------------------------|---------------|---------------------|---------------------|---------------------|--|--|
| <b>Panel A:</b> Return in the next quarter $(t+3)$ |               |                     |                     |                     |  |  |
|                                                    | CumH          | $CumRet_{t,t+3}$    |                     | $ExcessRet_{t,t+3}$ |  |  |
|                                                    | 1980-1996     | 1980-1996 1997-2020 |                     | 1997-2020           |  |  |
| $log(ADV_{t-1})$                                   | 0.0056        | 0.0060 0.0016 0     |                     | 0.0018              |  |  |
|                                                    | (3.373)       | (4.164)             | (2.925)             | (3.626)             |  |  |
| Obs.                                               | 24.198        | 28,624              | 24,206              | 28,624              |  |  |
| R-squared                                          | 0.099         | 0.111               | 0.101               | 0.114               |  |  |
| Controls                                           | Yes           | Yes                 | Yes Yes             |                     |  |  |
| Panel B: Ret                                       | urn in the ne | ext year $(t +$     | 12)                 |                     |  |  |
|                                                    | CumH          | $Ret_{t,t+3}$       | $ExcessRet_{t,t+3}$ |                     |  |  |
|                                                    | 1980-1996     | 1997-2020           | 1980-1996           | 1997-2020           |  |  |
| $log(ADV_{t-1})$                                   | 0.0312        | 0.0303              | 0.0016              | 0.0019              |  |  |
|                                                    | (5.565)       | (6.293)             | (4.751)             | (6.067)             |  |  |
| Obs.                                               | 21.977        | 27.336              | 21.975              | 27.336              |  |  |
| R-squared                                          | 0.099         | 0.111               | 0.101               | 0.114               |  |  |
| Controls                                           | Yes           | Yes                 | Yes                 | Yes                 |  |  |

Table 3: Crowding and next quarter returns

Chincarini, Lazo-Paz, Moneta

イロト イヨト イヨト イヨト

臣

#### Crash risk and crowding

|                  | $NCSkew_{t,t+3}$ |           | $Duvol_{t,t+3}$ |           | $CrashCount_{t,t+3}$ |           |
|------------------|------------------|-----------|-----------------|-----------|----------------------|-----------|
|                  | 1980-1996        | 1997-2020 | 1980-1996       | 1997-2020 | 1980-1996            | 1997-2020 |
| $log(ADV_{t-1})$ | 0.0482           | 0.0508    | 0.0199          | 0.0158    | 0.0624               | 0.0662    |
|                  | (2.387)          | (2.581)   | (2.901)         | (2.980)   | (2.190)              | (3.491)   |
| Obs.             | 36,015           | 56,882    | 36,015          | 56,882    | 36,015               | 56,882    |
| R-squared        | 0.316            | 0.209     | 0.345           | 0.246     | 0.269                | 0.197     |
| Controls         | Yes              | Yes       | Yes             | Yes       | Yes                  | Yes       |
| Year FE          | Yes              | Yes       | Yes             | Yes       | Yes                  | Yes       |
| Firm FE          | Yes              | Yes       | Yes             | Yes       | Yes                  | Yes       |

Table 4: Crash risk and crowding

NCSKEW = Negative coefficient of firm-specific daily returns. It is the negative of the third moment divided by the cubed standard deviation;

DUVOL = "Down-to-Up volatility" we separate all days with firm-specific daily returns above(below) the mean of the period and call them up(down) sample;

CrahCount = based on the number of firm-specific daily returns exceeding 3.09 std above and below the mean firm-specific daily return over the year (3.09 to generate frequencies of 0.1% of the normal distribution)

イロト イポト イヨト イヨト

## Liquidity, Liquidity risk, and crowding

|                                      | $\beta_{liq,t+1}$                              | $Illiquid_{t+1}$                                 |
|--------------------------------------|------------------------------------------------|--------------------------------------------------|
| $log(ADV_{t-1})$                     | $0.0021 \\ (2.23)$                             | $0.0969 \\ (6.35)$                               |
| Anomaly $\operatorname{dummy}_{t-1}$ | -0.0004 (-0.23)                                | $0.0333 \\ (2.81)$                               |
| $Size_{t-1}$                         | -0.006<br>(-3.75)                              | -0.179<br>(-11.82)                               |
| $BM_{t-1}$                           | $\begin{array}{c} 0.013 \\ (4.48) \end{array}$ | $ \begin{array}{c} 0.056 \\ (2.45) \end{array} $ |
| $Volatility_{t-1}$                   | $\begin{array}{c} 0.011 \\ (0.59) \end{array}$ | -0.965<br>(-3.95)                                |
| $Ret_{t-1}$                          | $0.015 \\ (5.20)$                              | -0.512<br>(-4.43)                                |
| NASDAQ $\operatorname{dummy}_{t-1}$  | $\begin{array}{c} 0.201 \\ (4.04) \end{array}$ | $\begin{array}{c} 0.261 \\ (4.66) \end{array}$   |
| Obs.                                 | 178,837                                        | 258,444                                          |
| R-squared                            | 0.378                                          | 0.111                                            |

Table 5: Liquidity, Liquidity risk, and crowding

 $\beta_{liq,t+1} =$  is the parameter loading on the Pastor (2003) traded liquidity factor added to the Fama and French (1993) three-factor model. Illiquid\_{t+1} = is the Amihud (2002) illiquidity measure calculated using

daily data, aggregated at the month level, and estimated as the average over the past 3 months sample;

December 29, 2021

イロト イヨト イヨト イヨト

14/15

## Conclusion

- We investigate the effects of the *concentration of stock ownership* (*i.e. crowding*) by institutional investors on the cross-section of stock returns.
- Our analysis is focused on a set of 12 well-known asset pricing anomalies.
- We find that anomaly risk-adjusted returns appear to be concentrated among the most (least) crowded stocks for the long-leg (short-leg) portfolio.
- Moreover, crowding shows significantly positive relationship with crash and liquidity risk after controlling for a broad set of variables.

Our results are consistent with crowded holdings being an **additional** consideration to the limits of arbitrage.