US Wealth Shares, the Dollar and Global Risk Premia

Sun Yong Kim Northwestern University December 29, 2021

Motivation	Framework	Stylised Facts	Mechanism	Theory	Empirical Appendix	Model Appendix
00000	00000	0000000	0000000	00000000000	000000000000000000000000000000000000000	00000000000
Outlin	е					

1 Motivation

- 2 Framework
- **3** Stylised Facts
- 4 Mechanism
- **5** Theory
- 6 Empirical Appendix
- **7** Model Appendix

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Motivation	Framework	Stylised Facts	Mechanism	Theory	Empirical Appendix	Model Appendix
00000	00000	0000000	0000000	000000000000	000000000000000000000000000000000000000	00000000000
Motiva	ntion					

EP: Theory explains the link between the US wealth share, the dollar and global risk premia through a *risk sharing mechanism* (Maggiori, 2017)

Overview: Due to greater risk bearing capacity, the US holds a wealth portfolio that longs global risky assets and shorts dollar safe assets. Thus:

- **US Wealth Share**: Since US insures ROW during global recessions, US wealth share should be **procyclical** w.r.t global economy
- **2** Global Risk Premia: Since ROW is more risk averse, global risk premia should be countercyclical w.r.t global economy
- **3 Dollar**: Due to wealth effects associated with falling US wealth share, *dollar strength should be* **procyclical** *w.r.t global economy*

Bottom Line: Central to these joint dynamics is the prediction of a *procyclical US wealth share*

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Countercyclical US Wealth Share

Stylised Facts

Fact: US wealth share is **countercyclical** w.r.t the global economy: Global recessions are associated with **rises**, not falls, in US relative wealth.

Mechanism

Theory

Mechanism: What drives the countercyclical US wealth share? I establish two crucial components to the underlying mechanism:

- **1** Valuation Channel: Valuation forces, not flow forces are key
- **2** Equities: Valuation channel driven by *risky asset markets*: *relative US equity outperformance during global recessions drives the countercyclical US wealth share.*

Bottom Line: These facts challenge EP theory: countercyclical US wealth share challenges view that US insures ROW (Maggiori, 2017)

Sun Yong Kim

Motivation

00000

Framework

US Wealth Shares, the Dollar and Global Risk Premia

Empirical Appendix

Model Appendix

Motivation Framework Stylised Facts Mechanism Theory Empirical Appendix Model Appendix Control Control

Question: How to rationalise the countercyclical US wealth share alongside traditional countercyclical dynamics for dollar and global risk premia?

Resolution: **Risk premia**, not risk sharing, is the key economic force driving these international asset pricing dynamics.

- Global Risk Premia: If US loads less on the global factor structure in equity prices, US risk premia rises relatively less during global recessions.
- **2** Wealth Share: Since US risk premia rises less during global recessions, $r_t^{US} r_t^{ROW} \uparrow$, mapping directly into **rising** US wealth share
- **3 Dollar**: Wealth effects associated with $\uparrow \omega_t^{US}$ generates a powerful dollar *appreciation* force during global recessions.

Model: I make this case using a two country, two-good model with recursive preferences, frictionless markets, and het global shock exposures.

Sun Yong Kim

Overview: My paper makes contact with two literatures in int macro-finance:

- **1** Exorbitant Privilege (EP): Risk sharing view of international dynamics
 - **Theory**: Gourinchas and Rey (2007a); Gourinchas et al (2010); Gourinchas et al (2017); Maggiori (2017)
 - New Facts: Chen (2020); Atkeson, Heathcote and Perri (2021);
- **2 EZ**: Explain int dynamics using recursive framework:
 - **Old Facts**: Colacito and Croce (2011, 2013); Colacito et al (2018a); Bansal and Shaliastovich (2013)
 - New Facts: Dou and Verdelhan (2015); Colacito et al (2021); Sauzet (2021)

US Wealth Shares, the Dollar and Global Risk Premia

Sun Yong Kim

Motivation	Framework	Stylised Facts	Mechanism	Theory	Empirical Appendix	Model Appendix
00000	00000	0000000	0000000	<u> </u>	000000000000000000000000000000000000000	00000000000
Outlin	е					

1 Motivation

- **3** Stylised Facts
- 4 Mechanism
- **5** Theory
- 6 Empirical Appendix
- **7** Model Appendix

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Empirical Framework

Stylised Facts

Framework

00000

Overview: To construct my measure of the US wealth share, I map my empirical analysis to a bilateral framework with two countries: US and ROW.

Theory

Mechanism

ROW: I collapse non-US world into a single investor country (ROW). This includes 27 Developed countries.

Wealth Portfolios: Each country's wealth portfolio is invested across four assets: US equities, ROW equities, US bonds and ROW bonds:

$$\mathcal{W}_{t}^{i} = \underbrace{\mathcal{Q}_{US,t}^{E,i} + \mathcal{Q}_{ROW,t}^{E,i}}_{Equities} + \underbrace{\mathcal{Q}_{US,t}^{D,i} + \mathcal{Q}_{ROW,t}^{D,i}}_{Bonds}, i \in \{US, ROW\}$$
(1)
$$\underbrace{\mathcal{Q}_{US,t}^{E,i}: \text{ Country i's holdings of US equities}}_{\substack{Q_{ROW,t}^{E,i}: \text{ Country i's holdings of ROW equities}}}_{\substack{Q_{US,t}^{E,i}: \text{ Country i's holdings of US bonds}}}$$

Sun Yong Kim

Motivation

US Wealth Shares, the Dollar and Global Risk Premia

Empirical Appendix

Model Appendix

Motivation Framework Stylised Facts Mechanism Theory Empirical Appendix Model Appendix US Wealth Share Measures Measures Model Appendix Model Appendix<

Wealth Share: **US** wealth share ω_t^{US} is defined as:

$$\omega_t^{US} = \frac{\mathcal{W}_t^{US}}{\mathcal{W}_t^{US} + \mathcal{W}_t^{ROW}} \tag{2}$$

Relative Wealth: **US** relative wealth \tilde{W}_t is defined as:

$$\tilde{\mathcal{W}}_t = \mathcal{W}_t^{US} - \mathcal{W}_t^{ROW}$$
(3)

Empirics: Due to persistence, I work with growth rates: $\Delta \omega_t^{US}$, $\Delta \tilde{\mathcal{W}}_t$

US Wealth Shares, the Dollar and Global Risk Premia

Sun Yong Kim

External Holdings Data

Framework

Source: External holdings are publicly observable via **US Treasury**. Two sets of official data:

Theory

Empirical Appendix

Mechanism

1 Treasury International Capital (TIC) Survey

Stylised Facts

2 Treasury SLT Form

Time Series: Jan 1994 - Dec 2018.

- $\textbf{US: Monthly stock dataset of US holdings of ROW Equity + Debt } (\mathcal{Q}_{ROW,t}^{E,US}, \mathcal{Q}_{ROW,t}^{D,US})$
- **2 ROW**: Monthly *stock* dataset of ROW holdings of US Equity + Debt $(\mathcal{Q}_{US,t}^{E,ROW}, \mathcal{Q}_{US,t}^{D,ROW})$

Asset Coverage: Portfolio equity and publicly issued bonds (Treasury, Agency, Corporate)

Sun Yong Kim

Motivation

US Wealth Shares, the Dollar and Global Risk Premia

Model Appendix

Internal Holdings Data

Stylised Facts

Framework

Estimation: Internal holdings $\mathcal{Q}_{i,t}^{E,i}$, $\mathcal{Q}_{i,t}^{D,i}$ backed out from market values:

Mechanism

Theory

Empirical Appendix

$$\begin{aligned} \mathcal{Q}_{US,t}^{E,US} &= \mathcal{Q}_{US,t}^{E} - \mathcal{Q}_{US,t}^{E,ROW} \\ \mathcal{Q}_{ROW,t}^{E,ROW} &= \mathcal{Q}_{ROW,t}^{E} - \mathcal{Q}_{ROW,t}^{E,US} \\ \mathcal{Q}_{US,t}^{D,US} &= \mathcal{Q}_{US,t}^{D} - \mathcal{Q}_{US,t}^{D,ROW} \\ \mathcal{Q}_{ROW,t}^{D,ROW} &= \mathcal{Q}_{ROW,t}^{D} - \mathcal{Q}_{ROW,t}^{D,US} \end{aligned}$$

 $Q_{i,t}^{E}$: Dollar market cap of country i's stock market $Q_{i,t}^{D}$: Dollar market value of country i's debt outstanding

Data: I obtain market cap data from the following sources:

- **1** Equities: *Datastream* (MSCI Global ex US)
- **2** Bonds: *BIS* (International Debt Statistics)

Sun Yong Kim

Model Appendix

(4)

Motivation	Framework	Stylised Facts	Mechanism	Theory	Empirical Appendix	Model Appendix
00000	00000	000000	0000000	00000000000	000000000000000000000000000000000000000	00000000000
Outlin	е					

1 Motivation

2 Framework

3 Stylised Facts

4 Mechanism

5 Theory

6 Empirical Appendix

7 Model Appendix

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Motivation Framework Stylised Facts Mechanism Theory Empirical Appendix

Date

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Model Appendix

NORTHWESTERN UNIVERSITY

Global IP

Kilian

Fact 1: US Wealth Share is countercyclical

Stylised Facts

000

	Wealt	th Share: Δω	,US	Relative Wealth: $\Delta \tilde{W}_t$			
	Full	Pre-2007	Post-2007	Full	Pre-2007	Post-2007	
Δc_t^G	-0.166***	-0.187**	-0.212**	-0.245**	-0.148**	-0.285***	
	(0.053)	(0.090)	(0.089)	(0.092)	(0.071)	(0.090)	
Dollar _t	-0.373***	-0.246*	-0.513***	-0.047***	-0.080***	-0.0149*	
	(0.081)	(0.126)	(0.106)	(0.009)	(0.002)	(0.008)	
Constant	0.008**	0.009	0.009**	0.008**	0.007	0.012**	
	(0.003)	(0.007)	(0.004)	(0.004)	(0.004)	(0.005)	
Observations	103	53	50	103	53	50	
Adjusted R ²	0.220	0.121	0.322	0.240	0.103	0.385	
Note:	*p<0.	1; **p<0.05	; ***p<0.01				

Table: US Wealth Share and Global Economy

Mechanism

Theory

Description: Δc_t^G is a *GDP weighted average* of consumption growths. *Dollart* is the dollar carry trade return. Sample is from 1994Q1 - 2018Q4.

Interpretation: 1% decrease in Δc_t^G is associated with:

US Wealth Share: 16.6 basis pt *increase* in US wealth share growth

2 US Relative Wealth: 24.4 basis pt *increase* in US relative wealth growth

Sun Yong Kim

Empirical Appendix

Model Appendix

Framework

Motivation

Motivation Framework Stylised Facts Mechanism Theory Empirical Appendix Model Appendix

Example: $\Delta c_t^G \downarrow 15\%$ during 2007-2008. Thus coefficients imply:

- **1** US Wealth Share: US wealth share growth $\Delta \omega_t^{US}$ increased by approximately 2.5% during this period
- **2 US Relative Wealth**: US relative wealth growth $\Delta \tilde{W}_t$ increased by approximately 3.74% during this period.

Interpretation: These magnitudes are modest but economically meaningful

Bottom Line: US gains relative wealth vis-á-vie the ROW during global recessions.

▶ Robustness Checks

Sun Yong Kim

Motivation Framework Stylised Facts Mechanism Theory Empirical Appendix

Description: This figure plots $\Delta \omega_t^{US}$, $\Delta \tilde{W}_t$ (blue) against the dollar carry trade return (red).

Bottom Line: *Rises* in US wealth share coincide with dollar *appreciations* against ROW.

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Model Appendix

Fact 1C: US Wealth Share and Global Risk Premia

Stylised Facts Mechanism

00000

Overview: I regress log changes in various proxies for global uncertainty and global risk premia against US relative wealth growth $\Delta \tilde{W}_t$.

Theory

	Panel A: Global Uncertainty Proxies					
	ΔIV_t^G	$\Delta Uncertainty_t$	ΔVIX_t	ΔRV_t^G		
$\Delta \tilde{\mathcal{W}}_t$	0.028*** (0.009) (0.02)	0.018** (0.007) (0.017)	0.023** (0.010) (0.024)	0.055** (0.025) (0.059)		
Observations Adjusted R ²	93 0.106	103 0.051	103 0.040	103 0.038		
	Panel B: Globa	l Risk Premia Pr	oxies			
	ΔDEF_t	ΔGZ_t	ΔGFC_t	ΔRA_t		
$\Delta \tilde{W}_t$	0.033*** (0.006)	0.025*** (0.007)	-0.091*** (0.029)	0.018** (0.007)		
Observations Adjusted R ²	103 0.194	103 0.117	103 0.080	103 0.051		

Note: *p<0.1; **p<0.05; ***p<0.01

Bottom Line: **Rises** in US wealth share coincide with **rises** in global uncertainty and global risk premia. Proxy Variable Descriptions

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Empirical Appendix

Model Appendix

NORTHWESTERN UNIVERSITY

Framework

Motivation

Fact 1a: Countercyclical US Wealth Share

The US wealth share is **countercyclical** w.r.t. the global economy: the US gains relative wealth vis-á-vie the rest of the world (ROW) during global recessions.

Fact 1b: Joint Dynamics with Dollar and Global Risk Premia

rises in the US wealth share coincide with i) **rises** in global risk premia, ii) systematic dollar **appreciations** against the ROW.

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Motivation	Framework	Stylised Facts	Mechanism	Theory	Empirical Appendix	Model Appendix
00000	00000	0000000	000000	<u> </u>	000000000000000000000000000000000000000	00000000000
Outline	е					

1 Motivation

- 2 Framework
- **3** Stylised Facts

4 Mechanism

5 Theory

- 6 Empirical Appendix
- **7** Model Appendix

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Motivation	Framework	Stylised Facts	Mechanism	Theory 0000000000	Empirical Appendix	Model Appendix
Mecha	nism					

Comment: Stylised facts challenge EP theory: countercyclical US wealth share challenges view that US insures ROW (Maggiori, 2017)

Question: Digging deeper, what drives the countercyclical US wealth share?

Mechanism: I establish two crucial ingredients to the underlying mechanism:

- Valuation Channel: Valuation forces, not flow forces drive US relative wealth changes (Fact 2A)
- **2** US equities: Valuation forces in *risky asset markets* are key (Fact 2B)

Bottom Line: US equity outperformance vis-á-vie the ROW during global recessions drives the countercyclical US wealth share.

Sun Yong Kim

Fact 2a: US Wealth Share and the Valuation Channel

Theory

Mechanism

Decomposition: To establish the dominance of valuation forces, I decompose aggregate wealth W_t^i into valuation and flow components: V_t^i , D_t^i :

$$\mathcal{W}_{t}^{i} = \underbrace{\mathcal{W}_{t-1}^{i}(\pi_{t-1}^{i}'r_{t})}_{\mathcal{V}_{t}^{i}} + \mathcal{D}_{t}^{i}$$
(5)

Empirical Appendix

This implies that **US relative wealth changes** $\Delta \tilde{W}_t$ take the form:

$$\Delta \tilde{\mathcal{W}}_t = \underbrace{\Delta \mathcal{V}_t^{US} - \Delta \mathcal{V}_t^{ROW}}_{\Delta \tilde{\mathcal{V}}_t} + \underbrace{\Delta \mathcal{D}_t^{US} - \Delta \mathcal{D}_t^{ROW}}_{\Delta \tilde{\mathcal{D}}_t}$$
(6)

Variance Decomposition: This gives rise to the following variance decomposition:

$$var(\Delta \tilde{\mathcal{W}}_t) = var(\Delta \tilde{\mathcal{V}}_t) + var(\Delta \tilde{\mathcal{D}}_t) + 2cov(\Delta \tilde{\mathcal{V}}_t, \Delta \tilde{\mathcal{D}}_t)$$
(7)

US Wealth Shares, the Dollar and Global Risk Premia

Model Appendix

Sun Yong Kim

Motivation

Framework

Stylised Facts

Table: Variance Decomposition of $\Delta \tilde{\mathcal{W}}_t$

Sample	$rac{ extsf{var}(\Delta ilde{\mathcal{V}}_t) }{ extsf{var}(\Delta ilde{\mathcal{W}}_t) }$	$rac{ extsf{var}(\Delta ilde{\mathcal{D}}_t)}{ extsf{var}(\Delta ilde{\mathcal{W}}_t)}$	$rac{2 \textit{cov}(\Delta ilde{\mathcal{V}}_t, \Delta ilde{\mathcal{D}}_t)}{\textit{var}(\Delta ilde{\mathcal{W}}_t)}$
Full Sample	0.741	0.309	-0.050
Pre 2007	0.817	0.128	0.055
Post 2007	0.727	0.343	-0.070

Takeaway: Valuation component $\Delta \tilde{\mathcal{V}}_t$ drive US relative wealth dynamics

• Valuation Channel and Global Economy

Sun Yong Kim

Motivation Framework Stylised Facts Mechanism Theory Empirical Appendix Model Appendix Fact 2b: Countercyclical US Equity Outperformance

Description: Pink bands corresponds to four global recessions: 1974Q1-1975Q1, 1981Q4-1982Q4, 1990Q4-1991Q1, and 2008Q3-2009Q1.

• US Equity Outperformance Regressions

Interpretation: US stock market outperforms ROW during global recessions.

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Stylised Facts Fact 2b: US Equity Outperformance

Framework

Motivation

Table: US Equity Outperformance and Valuation Channel

Theory

Mechanism

000000

		Dependent variable: $\Delta \tilde{\mathcal{V}}_t$						
	Full	Full	Pre-2007	Pre-2007	Post-2007	Post-2007		
$r_t^{US} - r_t^{ROW}$	0.257***	0.286***	0.114***	0.144***	0.441***	0.479***		
	(0.045)	(0.039)	(0.026)	(0.030)	(0.087)	(0.074)		
Dollar _t		-0.230***		-0.112		-0.217		
		(0.087)		(0.069)		(0.152)		
Constant	-0.003***	-0.007***	-0.004***	-0.006***	-0.031***	-0.011***		
	(0.002)	(0.002)	(0.002)	(0.002)	(0.003)	(0.003)		
Observations	103	103	53	53	50	50		
Adjusted R ²	0.376	0.434	0.285	0.346	0.543	0.577		

*p<0.1: **p<0.05: ***p<0.01 Note:

Interpretation: US equity outperformance drives the valuation component, and consequently the countercyclical US wealth share

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Empirical Appendix

Model Appendix

Motivation Framework Stylised Facts Mechanism Theory Empirical Appendix Model Appendix

Fact 2a: Countercyclical US Wealth Share and Valuation Channel *Valuation forces*, not flow forces, drive the countercyclical US Wealth Share.

Fact 2b: US Equities and Valuation Channel

Valuation channel driven by the relative outperformance of the US stock market vis-á-vie the ROW during global bad times.

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Motivation	Framework	Stylised Facts	Mechanism	Theory	Empirical Appendix	Model Appendix
00000	00000	0000000	0000000	00000000000	000000000000000000000000000000000000000	00000000000
Outline	е					

1 Motivation

- 2 Framework
- **3** Stylised Facts
- 4 Mechanism

5 Theory

- 6 Empirical Appendix
- **7** Model Appendix

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Recap: I document a novel stylised fact: US wealth share is *countercyclical*: US gains relative wealth during global recessions:

- **1** Mechanism: These dynamics are driven by *countercyclical US equity outperformance vis-á-vie the ROW*
- **2 US Wealth Share and Dollar**: These countercyclical US wealth share dynamics are accompanied by traditional countercyclical dollar dynamics

Comment: Resolution must explain why US stock market outperforms ROW during global bad times.

Resolution: I argue that *risk premia*, not risk sharing, is the key economic force driving these international dynamics.

Sun Yong Kim

Motivation	Framework	Stylised Facts	Mechanism	Theory	Empirical Appendix	Model Appendix
00000	00000	0000000	0000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000
Mecha	nism					

Environment: Two country, two-good model with EZ preferences, frictionless markets and het global shock exposures:

- Global Shock Exposure: US endowment loads *less* on global supply shocks
- **2** Implication: US risk premia rises less during global recessions

Mechanism: This *risk premium channel* can reproduce countercyclical US wealth share and countercyclical dollar dynamics:

- **1** Wealth Share: Since US risk premia rises less during global recessions, $r_t^{US} r_t^{ROW} \uparrow$, mapping directly into **rising** US wealth share
- 2 Dollar: ↑ ω_t^{US} generates a dollar *appreciation* force that overpowers the dollar *depreciation* force caused by the bad global supply shock.

Sun Yong Kim

Stylised Facts Mechanism Risk Premium Channel and Pareto Weights

Mechanism: Risk premium channel driven by home pareto weight S_t :

Theory

$$S_t = S_{t-1}(\mathcal{E}_t)^{-\phi} Y_t \tag{8}$$

Empirical Appendix

 \mathcal{E}_t : ROW consumption per US consumption Y_t : Relative Consumption Ratio $(Y_t = \frac{C_t^F}{C^H})$ ϕ : Elasticity of Substitution across Goods

Existence: To guarantee existence of equilibrium, I allow for *cointegration* between US, ROW endowment processes (Colacito and Croce, 2013; Colacito et al, 2021)

Solution: Approximate model to *third order* around symmetric steady state where $S_t = \overline{S} = 1$ (Colacito and Croce, 2013). Model Details

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Model Appendix

Framework

Motivation

Calibration: Baseline calibration is presented below:

	Panel A: Preference Parameters	
Parameter	Description	Value
γ	Relative Risk Aversion	7.5
ψ	Intertemporal Elasticity of Substitution	2
α	Home Bias Parameter	0.98
δ	Discount Factor	0.99
ϕ	Elasticity of Substitution across Goods	0.2
	Panel B: Endowment Parameters	
Parameter	Description	Value
$ au_{H}$	Home Endowment Exposure to Global Shock	0.5
τ_F	Foreign Endowment Exposure to Global Shock	1.5
μ	Mean Endowment Growth Rate	0.005
β	Cointegration Parameter	0.01

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Table: Simulated Model Regressions

Description: The table reports the results from estimating the baseline wealth share regression and the US equity outperformance regressions using simulated data from the model. I report the simulated regression results for the baseline EZ model and the corresponding CRRA model.

	Depend	lent variable	$\simeq \Delta \omega_t^{US}$	Dependent variable: $r_t^{US} - r_t^{ROW}$			
	Data	EZ	CRRA	Data	EZ	CRRA	
Δc_t^G	-0.166***	-0.365***	-7.901***	-0.400***	-0.780***	-7.201***	
	(0.063)	(0.087)	(0.798)	(0.137)	(0.173)	(0.874)	
• ·				* • •	**		

Note:

*p<0.1; **p<0.05; ***p<0.01

US Wealth Shares, the Dollar and Global Risk Premia

Sun Yong Kim

Model vs Empirical IRFs

Framework

Description: Model and Empirical IRFs to a 1 SD bad global shock:

Stylised Facts

Mechanism

Theory

00000000000

Empirical Appendix

Sun Yong Kim

Motivation

US Wealth Shares, the Dollar and Global Risk Premia

Model Appendix

Motivation Framework Stylised Facts Mechanism Theory Empirical Appendix Model Appendix Global Long Run Risks and Dollar Dynamics October Doctober <t

Big Picture: Model can reproduce wealth share dynamics well but falls prey to the infamous *reserve currency paradox* (Maggiori, 2017)

Resolution: I add a **global** long run shock $\xi_{x,t}^G$ to the endowment process for each country that is *positively* correlated with contemporaneous global shock \rightarrow Details

Bottom Line: With EZ preferences, $\xi_{x,t}^G$ generates an additional dollar appreciation force that allows model to reconcile both dollar and wealth share dynamics.

Description: Augmented Model IRFs to a 1 SD bad global shock:

Sun Yong Kim

Motivation	Framework	Stylised Facts	Mechanism	Theory	Empirical Appendix	Model Appendix
00000	00000	0000000	0000000	0000000000	000000000000000000000000000000000000000	00000000000
Conclu	sion					

Contribution: Paper explores the link between the US wealth share, the dollar and global economy:

- Empirical: Uncover novel stylised facts regarding joint dynamics between US wealth share, the dollar and the global economy
- Pheory: Rationalise these facts using a two country, two-good model with Epstein and Zin preferences, frictionless markets, and het global shock exposures.

Big Picture: Observed joint dynamics are consistent with a recursive view of int asset pricing

Sun Yong Kim

Motivation	Framework	Stylised Facts	Mechanism	Theory	Empirical Appendix	Model Appendix
00000	00000	0000000	0000000	0000000000	000000000000000000000000000000000000000	00000000000
Outlin	е					

1 Motivation

- 2 Framework
- **3** Stylised Facts
- 4 Mechanism
- **5** Theory
- 6 Empirical Appendix
- **7** Model Appendix

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Regressions: I make sure that countercyclical US wealth share result is robust w.r.t:

Dollar: Dollar Robustness
 Policy Shocks: US Policy Robustness

SVAR: I use an SVAR framework to evaluate response of US wealth share, dollar and global risk premia to bad global shocks:

Sun Yong Kim

Description: η_t^{ω} and $\eta_t^{\mathcal{W}}$ are the orthogonalised component of $\Delta \omega_t^{US}$, $\Delta \tilde{\mathcal{W}}_t$ w.r.t the dollar respectively. The full sample is from 1994Q1 - 2018Q4.

		η_t^{ω}		$\eta_t^{\mathcal{W}}$		
	Full	Pre-2007	Post-2007	Full	Pre-2007	Post-2007
Δc_t^G	-0.165*** (0.053)	-0.175** (0.089)	-0.189** (0.088)	-0.181*** (0.058)	-0.138^{*} (0.079)	-0.245** (0.092)
Constant	0.009** (0.003)	0.010 (0.007)	0.009** (0.004)	0.008** (0.004)	0.007 (0.005)	0.001** (0.005)
Observations Adjusted R ²	103 0.078	53 0.051	50 0.069	103 0.079	53 0.066	50 0.120
Note:	*p<0.	1; **p<0.05	; ***p<0.01			

Bottom Line: Countercyclical US wealth share is not driven by the dollar

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Proxies: Consider the following proxies for global uncertainty:

$$z_t^i = \begin{bmatrix} \Delta I V_t^G, \quad \Delta Uncertainty_t, \quad \Delta V I X_t, \quad \Delta R V_t^G \end{bmatrix}^T$$
(9)

 IV_t^G : micro-level uncertainty from Dew Becker and Giglio (2021) *Uncertainty*_t: Uncertainty index from Bekaert and Xu (2020) VIX_t : VIX in log levels RV_t^G : global stock market volatility (Lustig and Verdelhan (2011))

Sun Yong Kim

Proxies: Consider the following proxies for global uncertainty:

$$z_t^i = \begin{bmatrix} \Delta DEF_t, & \Delta GZ_t, & \Delta GFC_t, & \Delta RA_t \end{bmatrix}^T$$
(10)

 DEF_t : US Corporate Default Spread GZ_t : GZ spread GFC_t : Global return factor from Miranda-Aggropino and Rey (2020) RA_t : global risk aversion index from Bekaert and Xu (2019)

Sun Yong Kim

Policy Shocks Robustness

Stylised Facts

Framework

Motivation

Description: MP_t are monetary policy news shocks identified by Nakamura and Steinsson (2018) from January 1994 - December 2014. Shocks are aggregated to the quarterly frequency. FP_t are realized quarterly changes in US surplus-debt ratio as in Jiang (2021)

Mechanism

Theory

	Dependent variable:						
	Δω	,US	$\Delta \tilde{W}_t$				
	(1)	(2)	(3)	(4)			
MP _t	-0.009		-0.833				
	(0.038)		(3.888)				
FP _t		0.744*		29.618			
		(0.436)		(49.887)			
Constant	-0.003	-0.002	-0.531**	-0.432*			
	(0.002)	(0.002)	(0.245)	(0.240)			
Observations	83	102	83	102			
Adjusted R^2	-0.012	0.019	-0.012	-0.006			
Note:		*p<0.1;	**p<0.05;	***p<0.01			

Bottom Line: US wealth share is orthogonal w.r.t US policy shocks.

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Empirical Appendix

000000000000000000

Model Appendix

Stylised Facts Mechanism SVAR Analysis (US Wealth Share, Dollar)

SVAR: To evaluate dynamic response of US wealth share to global shocks, I investigate the following first order SVAR:

Theory

$$z_t = \Psi z_{t-1} + \Sigma^{\frac{1}{2}} \epsilon_t \tag{11}$$

Empirical Appendix

State System: z_t is four dimensional:

Framework

Motivation

$$z_t^i = \begin{bmatrix} -\Delta c_t^G, \quad \text{Dollar}_t, \quad \omega_t^{US}, \quad \Delta \omega_t^{US} \end{bmatrix}^T$$
(12)

 Δc_{t}^{G} : Global Consumption Growth *Dollar_t*: Dollar Carry Trade Return (Lustig and Verdelhan, 2011) ω_t^{US} : US Wealth Share Level $\Delta \omega_t^{US}$: US Wealth Share Growth Rate

Ordering: Recursive ordering follows (12). Shocks are identified via *Cholesky* decomposition

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Model Appendix

Motivation Framework Stylised Facts Mechanism Theory Empirical Appendix Model Appendix SVAR Analysis (US Wealth Share, Dollar) Dollar) Model Appendix Model Appendix

Sun Yong Kim

SVAR: I augment baseline SVAR with global risk premia proxy:

$$z_t^i = \begin{bmatrix} -\Delta c_t^G, & \text{Dollar}_t, GZ_t, & \omega_t^{US}, & \Delta \omega_t^{US} \end{bmatrix}^T$$
(13)

 $\begin{array}{l} \Delta c_t^G : \mbox{Global Consumption Growth} \\ Dollar_t : \mbox{Dollar Carry Trade Return (Lustig and Verdelhan, 2011)} \\ GZ_t : \mbox{GZ spread} \\ \omega_t^{US} : \mbox{US Wealth Share Level} \\ \Delta \omega_t^{US} : \mbox{US Wealth Share Growth Rate} \end{array}$

Ordering: Recursive ordering follows (13). Shocks are identified via *Cholesky decomposition*

Sun Yong Kim

Return

Sun Yong Kim

NORTHWESTERN UNIVERSITY

Motivation Framework Stylised Facts Mechanism Theory Empirical Appendix Model Appendix Fact 2a: US Wealth Share and the Valuation Channel

	Full Sample		Pre-20	007	Post-2007	
	ΔV_t	$\Delta \tilde{D}_t$	ΔV_t	$\Delta \tilde{D}_t$	ΔV_t	$\Delta \tilde{D}_t$
Δc_t^G	-0.200***	0.001	-0.154***	-0.001	-0.490***	0.006
	(0.063)	(0.002)	(0.055)	(0.002)	(0.141)	(0.004)
Dollar _t	-0.043***	-0.003	-0.139*	-0.002	-0.81***	-0.009
	(0.097)	(0.032)	(0.077)	(0.032)	(0.167)	(0.005)
Constant	0.007*	0.000	0.005	0.009	0.015**	-0.002
	(0.004)	(0.001)	(0.004)	(0.002)	(0.006)	(0.002)
Observations	103	103	53	53	50	50
Adjusted R ²	0.215	-0.009	0.173	-0.019	0.363	-0.002
Note:				*p<0.1	; **p<0.05; **	**p<0.01

Table: Valuation Channel and Global Economy

Description: Coefficients are in units of USD trillions. Δc_t^G is a *GDP* weighted average of consumption growths. *Dollar*_t is the dollar carry trade return. Sample is from 1994Q1 - 2018Q4.

Interpretation: Valuation component $\Delta \mathcal{V}_t$ drives countercyclical US wealth share \bullet Return

Sun Yong Kim

Motivation Framework Stylised Facts Mechanism Theory Empirical Appendix Model Appendix Fact 2b: Countercyclical US Equity Outperformance

Table: US Equity Outperformance and Global Economy

	Dependent variable: $r_t^{US} - r_t^{ROW}$						
	Full	Full	Pre-2007	Pre-2007	Post-2007	Post-2007	
Δc_t^G	-0.587***	-0.400***	-0.521**	-0.378**	-0.846***	-0.572***	
	(0.137)	(0.187)	(0.207)	(0.137)	(0.187)	(0.207)	
Dollar _t		-0.662***		-0.532*		-1.033***	
		(0.200)		(0.259)		(0.246)	
Constant	0.014***	0.039*	0.047***	0.027***	0.025*	0.037***	
	(0.008)	(0.019)	(0.009)	(0.008)	(0.019)	(0.009)	
Observations	144	144	97	97	47	47	
Adjusted R ²	0.107	0.125	0.067	0.080	0.252	0.295	
Note:	*p<0.1	: **p<0.05:	***p<0.01				

Description: $r_t^{US} - r_t^{ROW}$ is computed using MSCI total return indices. Δc_t^G is a *GDP weighted average* of consumption growths. *Dollar_t* is the dollar carry trade return. The full sample is 1983Q4 - 2018Q4. **Return**

Sun Yong Kim

Comment: Do bond valuation forces matter for the valuation channel?

CY: Jiang et al (2019a) argue that a *convenience yields mechanism* can drive countercyclical US relative wealth dynamics

Measure: Premium_t is the average CIP deviation for the G9 currencies vis-á-vie the dollar (Du, Im and Schreger, 2017)

Horserace: Does $Premium_t$ drive out $r_t^{US} - r_t^{ROW}$ in the wealth share regression?

Sun Yong Kim

Table: US Equity Outperformance vs Convenience Yields

	Dependent variable: ΔV _t					
	Full	Full	Pre	Pre	Post	Post
premium _t	1.702**	0.793	-1.394	-1.186	2.419**	0.386
	(0.724)	(0.582)	(0.911)	(0.749)	(1.044)	(0.774)
$r_t^{US} - r_t^{ROW}$	<u> </u>	30.912***	. ,	15.014***	<u> </u>	51.638***
		(3.907)		(2.957)		(7.068)
Constant	-0.873***	-0.993***	-0.273	-0.398	-0.875*	-1.289***
	(0.301)	(0.238)	(0.291)	(0.240)	(0.520)	(0.364)
Observations	103	103	53	53	50	50
Adjusted R ²	0.042	0.405	0.025	0.344	0.082	0.561
Note:				*p<0	1: **p<0.05	: ***p<0.01

Interpretation: In the univariate regressions, higher convenience yields are associated with higher US wealth share, consistent with Jiang et al (2019a)

Sun Yong Kim

Table: US Equity Outperformance vs Convenience Yields

		Dependent variable: $\Delta ilde{V}_t$							
	Full	Full	Pre	Pre	Post	Post			
premium _t	1.702**	0.793	-1.394	-1.186	2.419**	0.386			
$r_t^{US} - r_t^{ROW}$	(0.724)	(0.562) 30.912*** (3.907)	(0.911)	(0.749) 15.014*** (2.957)	(1.044)	(0.774) 51.638*** (7.068)			
Constant	-0.873*** (0.301)	-0.993*** (0.238)	-0.273 (0.291)	-0.398 (0.240)	-0.875* (0.520)	-1.289*** (0.364)			
Observations Adjusted R ²	103 0.042	103 0.405	53 0.025	53 0.344	50 0.082	50 0.561			
Note:				*p<0.1	; **p<0.05;	***p<0.01			

Interpretation: Convenience yields are driven out of the regression by equity return differentials $r_t^{US} - r_t^{ROW}$

Return

Sun Yong Kim

Table: Global Shock Exposures Across the World

Description: This table reports the global consumption growth betas β_G^i extracted from the following regression:

$$\Delta c_t^G = \alpha + \beta_G^i \Delta c_t^i + \epsilon_t^i \tag{14}$$

		Global Consumption Growth Exposures								
	Japan	Sweden	US	Switzerland	Australia	Germany	Norway	Canada	UK	
β_G^i	0.067*** (0.006)	0.071*** (0.004)	0.089*** (0.003)	0.092*** (0.004)	0.100*** (0.004)	0.101*** (0.004)	0.103*** (0.005)	0.128*** (0.003)	0.191*** (0.004)	
Adjusted R ²	0.551 0.763 0.907 0.861 0.851 0.832 0.792 0.950 0.946									

Note:

*p<0.1; **p<0.05; ***p<0.01

US Wealth Shares, the Dollar and Global Risk Premia

NORTHWESTERN UNIVERSITY

Sun Yong Kim

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Motivation	Framework	Stylised Facts	Mechanism	Theory	Empirical Appendix	Model Appendix
00000	00000	0000000	0000000	0000000000	000000000000000000000000000000000000000	0000000000
Outlin	е					

1 Motivation

- 2 Framework
- **3** Stylised Facts
- 4 Mechanism
- **5** Theory
- 6 Empirical Appendix
- Model Appendix

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Environment: Two country recursive model of int risk sharing that is closely related to Colacito and Croce (2013).

- EZ Endowment Economies: Infinitely lived EZ rep investor who solves an intertemporal consumption, saving problem
- 2 Two Countries, Two Goods: Each country is endowed with a unique good that is internationally tradable.
- Global Shock Exposure: US endowment more exposed to global endowment shock

Solution: Approximate model to **third order** around deterministic steady state where pareto weight dist is symmetric (Colacito and Croce, 2013). • Model Details

Sun Yong Kim

Insight: Wealth share channel attenuates dollar response during global recessions in EZ world

Example: Consider a global shock ξ_t^G that reduces $C_{t+1} = \Delta c_{t+1}^{US} - \Delta c_{t+1}^{ROW}$ by 1%. Then dollar elasticity w.r.t ξ_t^G can be approximated as:

$$\varphi = \frac{\partial \Delta \mathcal{E}_{t+1}}{\partial \mathcal{C}_{t+1}} + \frac{\partial \Delta \mathcal{E}_{t+1}}{\partial \mathcal{W}_{t+1}} \frac{\partial \mathcal{W}_{t+1}}{\partial \mathcal{C}_{t+1}} = \underbrace{-\gamma}_{Supply \ Channel} + \underbrace{\kappa_1 (1-\theta)(1-\lambda)}_{Wealth \ Share \ Channel}$$
(15)

Implication: Wealth share channel attenuates dollar response during global recessions in EZ model.

Return

Sun Yong Kim

Two Countries, Two Goods: Two countries: *Home* and *Foreign*. Both are endowed with a unique good that is internationally tradable.

Endowments: Log endowments x_t^i feature *cointegration* and is driven by a country specific shock ξ_{t+1}^i and a global shock ξ_{t+1}^G :

$$\begin{aligned} x_{t+1}^{H} &= \mu + x_{t}^{H} - \beta(x_{t}^{H} - x_{t}^{F}) + \xi_{t+1}^{H} + \tau_{H}\xi_{t+1}^{G} \\ x_{t+1}^{F} &= \mu + x_{t}^{F} + \beta(x_{t}^{H} - x_{t}^{F}) + \xi_{t+1}^{F} + \tau_{F}\xi_{t+1}^{G} \end{aligned}$$
(16)

- *µ*: Mean Endowment Growth Rate
- β : Degree of Cointegration
- τ_i : Global Shock Exposure of country i

Global Exposure: Home *less* exposed to global shock: $\tau_H < \tau_F$

Sun Yong Kim

Consumption Aggregator

Framework

Stylised Facts

CES: Consumption streams for both investors are defined over a general CES aggregator of the two goods:

Mechanism

$$C_{t}^{H} = \left[\alpha^{\frac{1}{\phi}} (C_{H,t}^{H})^{\frac{\phi-1}{\phi}} + (1-\alpha)^{\frac{1}{\phi}} (C_{F,t}^{H})^{\frac{\phi-1}{\phi}}\right]^{\frac{\phi}{\phi-1}}$$
(17)

Theory

Empirical Appendix

$$C_{t}^{F} = \left[(1 - \alpha)^{\frac{1}{\phi}} (C_{H,t}^{F})^{\frac{\phi-1}{\phi}} + (\alpha)^{\frac{1}{\phi}} (C_{F,t}^{F})^{\frac{\phi-1}{\phi}} \right]^{\frac{\phi}{\phi-1}}$$
(18)

Consumption Aggregator

 $C_{H,t}^{H}, C_{F,t}^{H}$: Home consumption of the home and foreign good $C_{H,t}^{F}, C_{F,t}^{E}$: Foreign consumption of the home and foreign good

Preference Parameters

- α : Preference parameter for local good
- *φ*: Elasticity of Substitution across both goods

Numeraire: Home consumption basket is the global numeraire.

Sun Yong Kim

Motivation

US Wealth Shares, the Dollar and Global Risk Premia

Model Appendix

Utility: Each country is populated by a representative agent with Epstein and Zin (1989) and Weil (1989) recursive preferences:

$$U_{t}^{i} = \left[(1-\delta) (C_{t}^{i})^{1-\frac{1}{\psi}} + \delta (E_{t} U_{t+1}^{i}^{1-\gamma})^{\frac{1-\frac{1}{\psi}}{1-\gamma}} \right]^{\frac{1}{1-\frac{1}{\psi}}}, i \in \{H, F\}$$
(19)

- δ : Time Preference
- ψ : Intertemporal Elasticity of Substitution (IES)
- γ : Relative Risk Aversion
- C_t^i : Consumption Basket for country i at time t

Home Agent's Problem

Framework

Overview: Each period the home investor chooses:

Mechanism

Theory

Empirical Appendix

Non-negative consumption: C^H_{H,t}, C^H_{F,t}
 Wealth: W^H_t

Stylised Facts

Problem: Home investor's problem is:

$$\max_{\{C_{H,t}^{H}, C_{F,t}^{H}, W_{t}^{H}\}} U_{t}^{H} = [(1-\delta)(C_{t}^{H})^{1-\frac{1}{\psi}} + \delta(E_{t}U_{t+1}^{H})^{1-\frac{1}{\psi}}]^{\frac{1-\frac{1}{\psi}}{1-\gamma}}]^{\frac{1}{1-\frac{1}{\psi}}}$$
(20)

Subject to the intertemporal budget constraint (IBC):

$$W_{t+1}^{i} = r_{m,t+1}^{i} (W_{t}^{i} - P_{t}^{i} C_{t}^{i})$$
(21)

US Wealth Shares, the Dollar and Global Risk Premia

Model Appendix

Sun Yong Kim

Motivation

Motivation	Framework	Stylised Facts	Mechanism	Theory 0000000000	Empirical Appendix	Model Appendix
Equilib	rium					

Definition: Equilibrium consists of prices $\{p_t^H, p_t^F, Q_{F,t}, Q_{H,t}, Q_{B,t}\}$, consumption allocations $\{C_{H,t}^H, C_{F,t}^H, C_{H,t}^F, C_{F,t}^F\}$ and wealth $\{W_t^H, W_t^F\}$ such that:

- **1** Each rep investor *i* maximises (19) subject to (21)
- ② Goods market clears:

$$X_{t}^{H} = C_{H,t}^{H} + C_{H,t}^{F}$$
$$X_{t}^{F} = C_{F,t}^{F} + C_{F,t}^{H}$$
(22)

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

State Variables: Eq system can be formulated in terms of state vector Z_t :

$$Z_{t} = \begin{bmatrix} \xi_{t}^{H} & , & \xi_{t}^{F} & , & \xi_{t}^{G} \\ \hline Exogenous & Endogenous \end{bmatrix}^{T}$$
(23)

Pareto Weight: Home pareto weight S_t follows recursion:

$$S_t = S_{t-1}(\mathcal{E}_t)^{-\phi} Y_t \tag{24}$$

Solution: Numerically approximate model to *third* order around symmetric steady state where $S_t = \overline{S} = 1$

Note: Symmetric wealth distribution is common approximation point in int macro (Devereux and Sutherland, 2011; Coeurdacier, 2009)

Sun Yong Kim

Calibration: Baseline calibration is presented below:

Panel A: Preference Parameters							
Parameter	Description	Value					
γ	Relative Risk Aversion	7.5					
ψ	Intertemporal Elasticity of Substitution	2					
α	Home Bias Parameter	0.98					
δ	Discount Factor	0.99					
ϕ	Elasticity of Substitution across Goods	0.2					
	Panel B: Endowment Parameters						
Parameter	Description	Value					
$ au_{H}$	Home Endowment Exposure to Global Shock	0.5					
τ_F	Foreign Endowment Exposure to Global Shock	1.5					
μ	Mean Endowment Growth Rate	0.005					
β	Cointegration Parameter	0.01					

Sun Yong Kim

US Wealth Shares, the Dollar and Global Risk Premia

Global Long Run Risks Extension

Stylised Facts

LRRs: To incorporate this extension I add a global long run shock $\xi_{x,t}^{G}$ to the country specific endowment processes:

Mechanism

$$\begin{aligned} x_{t+1}^{H} &= \mu + x_{t}^{H} - \beta (x_{t}^{H} - x_{t}^{F}) + \xi_{t+1}^{H} + \tau_{H} \xi_{t+1}^{G} + \tau_{L,H} z_{t}^{G} \\ x_{t+1}^{F} &= \mu + x_{t+1}^{F} + \beta (x_{t}^{H} - x_{t}^{F}) + \xi_{t}^{F} + \tau_{F} \xi_{t+1}^{G} + \tau_{L,F} z_{t}^{G} \end{aligned}$$
(25)

Theory

 $z_{x,t}^{G}$ follows an AR(1):

Framework

$$z_t^G = \rho_x z_{t-1}^G + \xi_{x,t}^G$$
 (26)

Empirical Appendix

Exposures: $\tau_H < \tau_F$, $\tau_{L,H} > \tau_{L,F}$

Shock Structure: ξ_t^G has a *positive* correlation with the contemporaneous global shock ξ_t^G which is parameterized by $\chi > 0$. All other shock correlations are zero.

▶ Return

Motivation

US Wealth Shares, the Dollar and Global Risk Premia

Model Appendix