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1 Introduction

A rich empirical literature in economics and psychology has documented the ways in

which individuals exhibit systematic biases and make errors in how they interpret in-

formation and form beliefs. A complementary theoretical literature examines how to

model such biased updating. In general, the literature employs two distinct approaches.

The first, which we refer to as the ‘non-Baysian’ approach, consists of parameterizing a

particular bias with an updating rule that describes how each signal realization maps to

a posterior belief.1 The second is the “misspecified model” approach, which describes a

model of the signal generating process that the individual uses to interpret the signal.

The individual forms beliefs from Bayesian updating with respect to this model, but the

model may be wrong.2

In this paper, we seek to connect these two approaches. In particular, we first ask

when it is possible to represent an updating rule as a misspecified model, in the sense

that the model prescribes the same posterior belief as the updating rule following each

signal realization. We then explore what other components besides the updating rule

are needed to pin down a unique representation, and explore the forms of bias contained

in these other components.

We explore these questions in a general informational environment in which an agent

learns about an unknown state from a signal process. An updating rule corresponds to

a mapping from each signal realization to a posterior belief, while a misspecified model

corresponds to a family of distributions over the signal space, one for each state. The

final piece needed for our analysis is a forecast, which is the agent’s belief about the

distribution of her posterior belief.

Our main result shows that a misspecified model can be decomposed into the two

classes of bias that it induces: (i) the prospective bias, which corresponds to how an agent

anticipates she will form beliefs before observing the signal; and (ii) the retrospective

bias, which corresponds to how the agent misinterprets information after she observes

the signal. The latter is captured by the updating rule, while the former is captured

by the forecast. Every misspecified model can be decomposed into these two parts.

Further, any forecast that satisfies a condition we call plausibility—the requirement

that, from the agent’s perspective, the expected future belief is equal to the prior—

and any updating rule together identify an essentially unique misspecified model. This

provides a convenient formulation for the misspecified model in terms of the biases it

induces. Further, it establishes that prospective biases do not place much structure

1For example, Epstein, Noor, and Sandroni (2008) writes down a parametric updating rule to
capture under- and overreaction.

2For example, Bohren (2016) models naive learning as a misspecified model of other agents.
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on retrospective biases and vice versa: a given updating rule can be paired with many

different forecasts, and similarly for a given forecast. Therefore, specifying one piece of

the decomposition does not restrict the other piece. Finally, it establishes that together,

the updating rule and forecast pin down all behavioral implications of the misspecified

model, in that the chosen model imposes no further restrictions on behavior beyond

those implied by the induced forecast and updating rule.

This decomposition provides a natural tool for constructing misspecified models to

represent a desired updating rule. In general, as we show, an updating rule can be

represented by a multiplicity of misspecified models. Therefore, our decomposition sheds

light on the necessary second piece to find a unique representation i.e. the forecast.

Motivated by this insight, we examine reasonable choices of forecast in different economic

decision-problems.

We first consider the accurate forecast, where the agent’s subjective distribution of

her posterior belief is equal to the true ex-ante distribution. If this accurate forecast is

plausible, then it identifies a unique misspecified model. Moreover, the corresponding

misspecified model satisfies a property called introspection-proof. This property en-

sures that even with an infinite amount of data, a misspecified agent would not observe

inconsistencies with her model. While the introspection-proof property provides a nat-

ural constraint in many settings, the accurate forecast is not plausible—and therefore,

not representable—for many common updating rules. This means that many simple

updating rules cannot be represented by an introspection-proof misspecified model.

We then define a forecast that captures a natural analogue to the naivete assumption

commonly used in many behavioral settings. The naive consistent forecast is equal to

the accurate forecast of an agent who uses Bayes rule to update beliefs. A agent with

a naive consistent forecast behaves as-if all updates will be formed correctly but when

she actually updates her beliefs, she does so incorrectly using a biased updating rule.

In other words, the agent believes that she will update without bias in the future, but

interprets her past information with bias. We also identify necessary and sufficient

conditions for a naive consistent forecast to be represented, and show that again this

representation is unique. The condition in this case is quite mild—informally, it requires

the naive consistent forecast to have the same support as the accurate forecast. In

contrast to introspection-proofness, a naive consistent representation exists for many

common updating rules.

The benefits to connecting the updating rules and misspecified model approaches

are fourfold. First, there is a large literature in economics and statistics that seeks to

establish general properties of Bayesian updating with a misspecified model. Connecting

the misspecified model approach to non-Bayesian updating rules provides the analyst
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with a set of off-the-shelf tools that can be used to immediately establish, for instance,

convergence of beliefs when agents are non-Bayesian. Second, this linkage helps clarify

the conceptual connection between the form of the misspecification and the behavioral

bias that the misspecification induces. Third, this approach provides guidance on how

to incorporate a behavioral bias into more complex decision problems, including strate-

gic settings where agents must draw inference about both the underlying state and

the behavior of others, and settings where agents must make ex-ante decisions before

information arrives. Model misspecification allows us to apply the choice frameworks

and game-theoretic tools that were largely developed with respect to an expected util-

ity framework to settings with biased updating in a straightforward way.3 Finally, an

updating rule and forecast are relatively straightforward to measure empirically by elic-

iting beliefs either before or after information is observed, whereas a misspecified model

is more complicated to measure. Therefore, distilling a misspecified model into the two

components that are empirically identifiable provides an indirect way to measure such

misspecified models.

We close with two applications to demonstrate how our results can be used to derive

novel economic insights. The first shows how discrimination can emerge endogenously

due to self-image concerns, which lead to motivated reasoning when interpreting infor-

mation from others with a shared group identity. In this dual-selves model, the first

self selects an updating rule that the second self uses to evaluate herself and others. A

natural constraint to place on the first self’s choice of updating rule is that the bias

will be undetectable by the second self, i.e. the updating rule is consistent with an

introspection-proof misspecified model. We show that this places an endogenous upper

bound on the magnitude of the motivated reasoning bias that emerges. It also leads

to discrimination in the sense that the chosen updating rule inflates signals for others

who share the same group identity, and compensates for this inflation by shading down

signals for members of the other group identity.

In the second application, an overconfident entrepreneur decides whether to purchase

access to a line of credit to fund future investment. After observing a signal of future

returns, the entrepreneur then decides how much to borrow. A credit contract consists

of an origination fee to open the line of credit and an interest rate at which the amount

borrowed will be repaid. We derive how the optimal credit contract varies in terms of the

magnitude of optimism bias and the chosen forecast. In a mixed population where some

3A bit of caution here. There is a true data generating process that misspecified agents may place
zero weight on. So justifications for equilibrium concepts that rely on limiting behavior of repeated play
under a common prior assumption do not translate directly to misspecified models. Esponda and Pouzo
(2016) provide an alternative to Bayes-Nash equilibrium that addresses these concerns in equilibrium
settings.
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agents have optimism bias and others are unbiased, the naive consistent forecast prevents

the lender from engaging in second degree price discrimination on the origination fee,

since bother types of agents make the same decisions ex-ante. We show that the optimal

interest rate is increasing in either the share of biased agents or the magnitude of their

bias. In turn, the optimal origination fee is decreasing in both of these parameters. In

other words, the lender takes advantage of the biased agent’s propensity to over-borrow

by charging a higher interest rate—and charges a lower origination fee to draw these

borrowers into the contract. In contrast, other forms of forecasts—for example, either

over- or underestimating the precision of future beliefs—lead to fundamentally different

optimal contracts.

1.1 Literature Review

Model misspecification has received renewed interest in recent years. Esponda and Pouzo

(2016) developed a solution concept, Berk-Nash equilibrium, for studying model mis-

specification in strategic settings.4 The literature has for the most part focused on

characterizing the asymptotic of misspecified Bayesian learning in a variety of general

settings (Bohren and Hauser 2021; Fudenberg, Lanzani, and Strack 2020; Frick, Iijima,

and Ishii 2020; Heidhues, Koszegi, and Strack 2018; Esponda, Pouzo, and Yamamoto

2019). This paper shows how the updating rules approach can be converted to misspec-

ified models that these results can be applied to.

A number of recent papers on non-Bayesian updating draw parallels between the

structure of non-Bayesian rules and Bayes rule. Chauvin (2020), Epstein et al. (2008),

Cripps (2018), Lehrer and Teper (2017), and Zhao (2022) provide foundations for general

classes of non-Bayesian updating rules and link them to Bayesian updating. In contrast,

we study what updating rule are the immediate result of Bayesian updating over a

misspecified model. He and Xiao (2017) describe a class of updating rules induced by

replacing the likelihood in Bayes rule with an object called the pseudo-likelihood and

distorting the prior probability. They provide necessary and sufficient conditions for an

updating rule in this class to process signals the same whether they arrive sequentially

or at the same time. Fudenberg, Lanzani, and Strack (2022) shows that the long-run

outcomes that can arise with selective memory coincide with outcomes in a learning

problem with perfect memory but a misspecified model and vice-versa. This provides an

alternative foundation for Berk-Nash equilibrium as a consequence of selective memory.

Our main result includes a version of Bayes plausibility (Kamenica and Gentzkow

2011). Recent work by de Clippel and Zhang (2019) studies Bayesian persuasion in

setting where the receiver updates according to a function that maps from the true

4Early papers in this literature include Arrow and Green (1973) and Nyarko (1991).
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posterior to an incorrect posterior. They develop a version of Bayes plausibility and

concavification arguments for these update rules. Their Bayes plausibility condition

characterizes the set of possible distributions over posteriors a correctly specified sender

can induce, while our plausibility condition describes the possible distributions over

posteriors a biased updater could believe their own posterior will be drawn from.5

In addition to Bayes plausibility, a number of papers provide characterizations of

Bayesian updating in terms of the behavior of posteriors. Augenblick and Rabin (2021)

provide tests on the movement of beliefs over time to detect (correctly specified) Bayesian

updating. Shmaya and Yariv (2016) show that if an agent updates using Bayes rule

then the prior belief belong to the interior of the convex hull of posteriors. We provide

a minor extension of this result that can be applied to our class of updating rules and

misspecified models. Molavi (2021) shows that any distribution over posteriors satisfying

very mild assumptions can be induced via Bayes rule with respect to a misspecified

model. This condition is weaker than both the condition in Shmaya and Yariv (2016)

and our conditions, as he allows the misspecified model to put positive probability on

signals outside of the support of the correctly specified model. A similar result follows

from our characterization under slightly more restrictive conditions to account for our

more stringent requirements on the support of the model.

There is a literature that seeks to provide a foundation for the emergence of a misspec-

ified model as a robust phenomenon (Ba 2021; Fudenberg and Lanzani 2022; Gagnon-

Bartsch, Rabin, and Schwartzstein 2018; He and Libgober 2021; Frick, Iijima, and Ishii

2021). Our approach is complementary to this literature in that we provide tools to ana-

lyze the updating rules that result from these theories. One of the main classes of models

we consider, introspection-proof models, identifies a class of models that are naturally

robust to many of these criteria. This condition, which requires that the misspecified

agent correctly anticipates the unconditional distribution of signals is analogous to con-

ditions used to correct misspecified models in Espitia (2021), Spiegler (2020), Mailath

and Samuelson (2019), and solution concepts like cursed equilibrium (Eyster and Ra-

bin 2005), behavioral equilibrium (Esponda 2008), and analogy expectation equilibrium

(Jehiel 2005).

Our characterization draws a distinction between the prospective bias of the agent –

how the agent reasons about information yet to be realized– and the retrospective model

– how the agent reasons about realized information. Similar distinctions have previously

been highlighted in specific non-Bayesian settings in Benjamin, Rabin, and Raymond

(2016); Benjamin, Bodoh-Creed, and Rabin (2019); He and Xiao (2017). The distinction

5Other papers on communication games with biased receivers include Alonso and Câmara (2016);
Lee, Lim, and Zhao (2020).
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they draw describes the time inconsistency properties of the updating rules. In contract,

we distinguish between how a time consistent misspecified agent effectively has the

potential to make two types of mistakes, mistakes anticipating how they’ll update and

mistakes actually updating. We argue that all biases induced by misspecified models can

in some sense be uniquely described by the differences between this kind of prospective

and retrospective reasoning. In Section 7.2 we briefly discuss a way to incorporate time

inconsistencies into our setting.

Much of the literature on misspecification uses the misspecified model to capture

either a prospective or retrospective bias. The work on misspecified causal graphs

((Spiegler 2016)), and Berk-Nash equilibrium (Esponda and Pouzo 2016) take a largely

prospective perspective, focusing on identifying how an agent (incorrectly) predicts the

world will act once they’ve made their decision. In contrast, papers like Heidhues et al.

(2018); Levy, Razin, and Young (2022) as well as much of the behavioral work that

documents and models specific biases in updating (see Benjamin (2019) for a survey)

focus on retrospective biases. When modeling even simple economic decisions, like the

environment in Section 6.2, or interactions between economic agents, such as those stud-

ied in Bohren and Hauser (2021); He (2020); Frick et al. (2021), both prospective and

retrospective biases play a role.

2 Model

2.1 The Informational Environment.

We study belief updating in the following informational environment. Suppose nature

selects one of N states of the world ω ∈ Ω ≡ {ω1, ω2, . . . , ωN} according to prior dis-

tribution p ≡ (p1, ..., pN) ∈ ∆(Ω), which we assume to be strictly interior. An agent

observes a signal of the state drawn from a measurable space (Z,F), where Z is an

arbitrary set with element z and F ⊆ 2Z is a σ-algebra defined on Z. To ensure that

densities exist, we define a σ-finite reference measure ν on (Z,F); we will assume all

subsequent measures are absolutely continuous with respect to ν.6 Let µi ∈ ∆(Z) be

the true probability measure on Z in state ωi. Assume that µi and µj are mutually ab-

solutely continuous for each i, j = 1, ..., N and µi is absolutely continuous with respect

6When Z is not finite, this introduces a number of measure-theoretic and topological complications.
A standard tool to resolve these complications is to define a reference measure that dominates the other
measures in the model. This allows us to consider multiple types of signal spaces within the same
framework, such as settings where the signal measures have densities and settings where the signal is
not a real-valued continuous random variable. Note that our set-up is the finite state version of the
misspecified parametric environment from Kleijn and van der Vaart (2006).
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to ν for all i = 1, ..., N .7 This ensures that no signal perfectly rules out a state.8 Let

∆∗(Z) denote the set of all probability measures that are mutually absolutely continuous

with respect to µ1 (note this also implies the measures are mutually absolutely contin-

uous with respect to µi for i 6= 1). Finally, let µ ≡
∑N

i=1 piµi denote the unconditional

measure on Z.

This set-up is rich enough to capture many different common signal structures used

in the literature, including real-valued continuous signals (Z ⊆ R and ν is the Lebesgue

measure), finite signals (Z ⊆ R is finite and ν is the counting measure), multidimen-

sional signals, causal graphs, Markov signals, and signal distributions that are neither

continuous nor discrete (e.g. mixture distributions).9

2.2 Modeling Errors in Belief Updating

We are interested in exploring the relationship between two approaches used to model

behavioral biases and errors in belief-formation: (i) a “non-Bayesian” approach that

consists of defining an arbitrary updating rule and/or a prediction about future beliefs;

and (ii) a “misspecified Bayesian” approach that derives beliefs from Bayesian updating

with respect to a misspecified model. We introduce each approach in turn, then discuss

the relative advantages and disadvantages of each approach.

The Non-Bayesian Approach. This approach, often used in the behavioral learning

literature (e.g. see Benjamin (2019) for review), describes how an agent forms a pos-

terior belief after observing each possible signal realization—that is, an updating rule.

When there is an ex-ante decision before the signal is observed, an agent must also

predict what future beliefs will be. We refer to this as a forecast, which describes a

predicted distribution over the posterior belief. The posterior belief determines how

the optimal action depends on the signal realization for decisions that occur after the

signal is observed, whereas the forecast guides pre-signal action choices by pinning down

the likelihood of different post-signal actions. In addition to ex-ante decision-making,

the forecast is a necessary component for strategic interaction and social learning.Our

general definitions of an updating rule and a forecast nest specific updating rules and

forecasts used in these non-Bayesian approaches to belief-formation.

An updating rule specifies how an agent forms beliefs after observing each signal

7Given our assumptions, one could set ν = µi for any i or ν = µ. We chose to separate these objects
to maintain a reference measure that is independent of the state and prior.

8Note this implies that dµi

dν (z) = 0 if and only if
dµj

dν (z) = 0 except on a set of ν-measure 0, so that
signals that lead to a Bayesian posterior that places probability zero on a state or signals for which the
Bayes posterior is not defined are a probability 0 events.

9This set-up can also capture signals that are multiple draws from an urn (Rabin 2002), signals that
are up to K realizations of some process (He 2020), and signals that are a realization of a Brownian
motion (Fudenberg, Romanyuk, and Strack 2017).
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realization.

Definition 1 (Updating Rule). An updating rule h : Z → ∆(Ω) is a function that

maps a signal realization to a posterior belief over the state space such that z 7→ h(z) is

measurable and not constant ν-almost everywhere.

An agent uses updating rule h(z) if, fixing prior p, for each i = 1, ..., N , the agent assigns

probability h(z)i to state ωi after observing signal realization z ∈ Z.10 We restrict

attention to updating rules that do not interpret any signals as perfectly ruling out a

state and map a certain prior belief to a certain posterior belief: h(z)i = 0 iff pi = 0

and h(z)i = 1 iff pi = 1. A special case of an updating rule is Bayesian updating with

respect to the true family of measures (µi)ωi∈Ω. Given a signal realization z ∈ Z, this

corresponds to

hB(z)i ≡
pi
dµi
dν

(z)∑N
j=1 pj

dµj
dν

(z)
, (1)

with 0/0 = 0 by convention.11

An updating rule can capture many common biases studied in the literature. For

example, suppose Ω = {ω1, ω2} and define the biases with respect to the belief that

the state is ω2, i.e. h(z)2. Partisan bias in favor of ω2 is captured by h(z)2 = hB(z)α2
for some α ∈ (0, 1), a counting updating rule is captured by Z = {ω1, ω2}K for some

K ∈ N and h(z)2 = 1
K

∑K
k=1 1zk=ω2 , confirmation bias is captured by h(z)2 ≥ hB(z)2 if

p2 ≥ 1/2 and h(z)2 ≤ hB(z)2 if p2 ≤ 1/2, h(z)2 = αp2 + (1 − α)hB(z)2 captures linear

underreaction for α ∈ (0, 1) and overreaction for α > 1, h(z)2
h(z)1

= p2
p1

(
dµ2
dµ1

(z)
)β

captures

geoemetric overreaction for β > 1 and underreaction for β ∈ (0, 1), and base rate neglect

is captured by h(z)2
h(z)1

=
(
p2
p1

)α
dµ2
dµ1

(z) for some α ∈ (0, 1). We refer to bias that arise from

the updating rule as retrospective bias, since it arises following the signal realization.

A forecast is an agent’s prediction of how she will form beliefs after observing the

signal—that is, it is a distribution over posterior beliefs. In order for the forecast to be

compatible with the signal, the space of posteriors cannot be “larger” than the space of

signal realizations. In the case of a finite support Z, this condition is straightforward—it

requires that the cardinality of the support of the forecast is less than or equal to the

cardinality of Z. In the case of an infinite Z, the condition is a bit more nuanced—it

uses mutual absolute continuity to relate the measure-zero sets of the forecast to the

10We start with a fixed prior, but one could instead define an updating rule as a mapping from the
signal and the prior to a posterior in order to study dynamics or comparative statics with respect to
the prior. Our framework and analysis naturally extends to this set-up, albeit with more cumbersome
notation. See Section 7.1 for the formal treatment of this more general set-up.

11This defines an equivalence class of updating rules that differ on a set of measure 0 with respect
to ν (and thus with respect to all distributions considered).
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measure zero sets of the information structure.

Definition 2 (Forecast). A forecast ρ̂ is a Borel probability measure over ∆(Ω) for

which there exists a measurable g : Z → ∆(Ω) such that µ ◦ g−1 and ρ̂ are mutually

absolutely continuous.

For a given updating rule h, we define the accurate forecast with respect to h as

ρh(X) ≡ µ({z : h(z) ∈ X}) (2)

for any Borel set X. This is well defined since h is measurable. We denote the special

case of the accurate forecast with respect to Bayes rule as ρB(X) ≡ µ({z : hB(z) ∈ X}).
Bias can also enter through the forecast. For example, suppose Ω = {ω1, ω2} and

denote the posterior belief by the belief that the state is ω2. When the accurate forecast

with respect to Bayes rule is uniform on [0, 1], then overprecision is captured by a

distribution that over-weights extreme beliefs and underweights intermediate beliefs,

while underprecision overweights intermediate beliefs and overweights extreme beliefs.

We provide more specific examples of forecasts in Section 6.2. We refer to bias that

arises from the forecast as prospective bias, since it stems from a prediction of what the

signal will be.

Given that updating rules are more frequently the object of focus in the non-Bayesian

learning literature, one goal of this paper is to construct reasonable forecasts and analyze

how they interact with different updating rules. In this vein, we construct two classes

of forecasts with compelling properties Section 5.

The Misspecified Model Approach. This approach defines an agent’s subjective

model of the signal process. Posterior beliefs and predictions of posterior beliefs are

both pinned down by this model and Bayes rule.

A misspecified model is a family of subjective measures over the signal space that is

not equal to the family of true measures. We focus on misspecified models where µi and

µ̂i are mutually absolutely continuous for all i = 1, ..., N .12

Definition 3 (Misspecified Model). A misspecified model corresponds to (µ̂i)ωi∈Ω ∈
∆∗(Z)N such that there exists an ωi ∈ Ω where µ̂i 6= µi.

An agent with a misspecified model uses Bayes rule as defined in Eq. (1) to form her

posterior belief with respect to her subjective measures. Mutual absolute continuity

with respect to the correct model implies that no set of signal realizations that arise

with probability zero under the misspecified model occur with positive probability un-

12This implies that dµi

dν (z) = 0 iff dµ̂i

dν (z) = 0 except on a set of ν-measure 0. It also implies that µ̂i
is absolutely continuous with respect to ν for all i = 1, ..., N .
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der the correctly specified model, and that the misspecified model does not place posi-

tive probability on sets of signal realizations that occur with probability zero under the

correctly specified model. It also implies that µ̂i and µ̂j are mutually absolutely con-

tinuous for each i, j = 1, ..., N , since µi and µj are mutually absolutely continuous. Let

µ̂ ≡
∑N

i=1 piµ̂i denote the subjective unconditional signal measure (note this depends on

the prior).

It follows directly from Bayes rule and mutual absolute continuity that a misspecified

model induces an updating rule. Specifically, (µ̂i)ωi∈Ω induces posterior belief

pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)
(3)

that the state is ωi. A model also induces a forecast, which is the unconditional distri-

bution of posteriors according to the model. Specifically, (µ̂i)ωi∈Ω induces forecast

µ̂

z :

{
pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)

}
ωi∈Ω

∈ X


 (4)

that the posterior belief is in Borel set X.

2.3 Defining a Representation

The goal of this paper is to connect these two approaches. Specifically, we seek to char-

acterize when different updating rules and forecasts can be represented as a misspecified

model, and when this representation is unique. To this end, we formalize what it means

for a misspecified model to represent an updating rule, in the sense that the model pre-

scribes the same posterior beliefs as the updating rule following each signal realization,

and for the model to represent a forecast, in the sense that the model prescribes the

same forecast over posterior beliefs.

Definition 4 (Representing Updating Rules and Forecasts).

1. An updating rule h is represented by misspecified model (µ̂i)ωi∈Ω if, for every signal

z ∈ Z, an agent who uses Bayes rule to update her posterior with respect to

this misspecified model forms the beliefs prescribed by the updating rule ν-almost

everywhere:

pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)
= h(z)i. (5)

2. A forecast ρ̂ is represented by misspecified model (µ̂i)ωi∈Ω if, for every Borel set

10



X ⊂ ∆(Ω):

µ̂

z :

(
pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)

)
ωi∈Ω

∈ X


 = ρ̂(X). (6)

If an updating rule maps a positive measure of signal realizations to the same poste-

rior belief and can be represented by a given misspecified model, then any other model

that shifts mass between the signal realizations that map to the same posterior will also

represent this updating rule. However, the difference between these models is trivial

in an economic sense and they all induce the same forecast. Therefore, we define the

following notion of essential uniqueness to capture the idea that the representation is

unique in terms of the model features that are relevant for beliefs and decisions.

Definition 5 (Essentially Unique Representation). An updating rule h has an essen-

tially unique representation if all misspecified models representing h are equivalent when

restricted to sets of signal realizations in the σ-algebra generated by h, i.e. PZ ≡ {Z ∈
F : h(Z) = X for all Borel sets X ⊂ ∆(Ω)}.

Informally, an updating rule has an essentially unique representation when any misspec-

ified model representing the updating rule is equivalent on the sets of signal realizations

that map to the same posterior belief.

2.4 Comparison of Approaches

A fundamental aspect of behavioral learning models, which separates them from most

fully rational models, is the distinction between “prospective” and “retrospective” belief

formation. The way a behavioral decision-maker forecasts her future behavior may

be in some sense different from how she formed beliefs in the past. This is common

in the literatures on time consistency, projection bias, reference dependence, and self-

control. This motivates the two components of our behavioral learning set-up: we

formalize this retrospective bias in the form of an updating rule, or updating rule, and

this prospective bias in the form of a forecast. While misspecified models are generally

time-consistent, misspecification allows for a stochastic version of this phenomena. In

misspecified settings, the distribution an agent expects her future beliefs and behavior

to be drawn from is fundamentally different from the distribution her past behavior was

actually drawn from.

The updating rules approach is often used to model a specific form of bias or belief-

updating error in a specific context. In general, this literature studies beliefs and be-

havior for specific parameterizations of a bias. In contrast, the model misspecification

approach is often applied to general learning environments and is used to simultaneously
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model a range of biases within the same framework. For example, recent work in the

literature on learning with model misspecification establish general convergence results

and show that in many situations, agents’ behavior converges to a Berk-Nash equilibrium

(Bohren and Hauser 2021; Frick et al. 2020; Fudenberg et al. 2020). Connecting these

approaches makes it straightforward to apply the tools developed in the misspecified

learning literature to generalize the stylized results from the updating rules literature

to a larger set of parameterizations of a given bias. For instance, we use these tools to

generalize the learning results from Rabin and Schrag (1999) to a larger set of updating

rules that capture the conceptual features of confirmation bias. This establishes that the

qualitative insights of Rabin and Schrag (1999) do not rely on their specific parameter-

ization of confirmation bias or their specific choice of information structure (i.e. binary

signals).

To a large extent, the literature on behavioral biases has focused on updating rules,

which allow for a simple way to define and express biases. But updating rules are ‘incom-

plete’ in that on their own, they do not pin down all aspects of belief formation required

for economic analysis. On the other hand, a misspecified model of belief formation is

complete, in the sense that it describes all aspects of the environment necessary for anal-

ysis. Therefore, mapping updating rules into the misspecified model approach makes

it possible to study the implications of a given bias in a much richer set of economic

environments.

3 Simple Example

Consider a binary state space Ω = {L,R} with a flat prior Pr(R) = 1/2, and a signal

space Z = {z1, z2, z3, z4}. In a slight abuse of notation, when the state space is binary

we can define the updating rule as the probability assigned to state R after observing

each signal, i.e. h(z) = Pr(R|z) for each z ∈ Z, and the forecast as a distribution ρ̂ over

a set of probabilities that the state is R. Note | supp ρ̂ | ≤ 4 since a signal cannot map to

multiple beliefs. In this set-up, a model corresponds to a pair of vectors (µ̂L, µ̂R), where

each vector specifies a subjective probability mω
k for each signal zk in each state ω, i.e.

µ̂ω = (mω
1 ,m

ω
2 ,m

ω
3 ,m

ω
4 ) with

∑4
k=1m

ω
k = 1.

We first show that when an updating rule is considered in isolation, if it can be

represented by a misspecified model then this model is generally not unique. As we

will show in Lemma 1, a very mild condition determines whether an updating rule h

can be represented by a misspecified model. In this example, the condition requires the

updating rule to map at least one signal to a posterior above the prior and similarly

one signal to a posterior below the prior, i.e. mink h(zk) < 1/2 < maxk h(zk). In fact, a

continuum of misspecified models represent such an h: any solution (m1,m2,m3,m4) ∈
∆ to

∑4
k=1 h(zk)mk = 1/2 pins down a model with signal distribution mR

k = 2h(zk)mk in
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state R and signal distribution mL
k = 2(1−h(zk))mk in state L that represents h.13 Aside

from knife-edge cases,
∑4

k=1 h(zk)mk = 1/2 has multiple solutions. Each corresponding

model induces a unique forecast, which assigns probability mk = mR
k /2 + mL

k /2 to

posterior belief h(zk).

The forecast determines the prospective bias. Therefore, for a given updating rule,

the chosen model to represent it will pin down the prospective bias through the in-

duced forecast. Different models that represent the same updating rule can lead to very

different predictions depending on the forecast they induce.

We develop a similar result for forecasts. As we will show in Lemma 2, a forecast

ρ̂ in this example can be represented by a misspecified model if and only if it yields

an expected posterior equal to the prior, i.e.
∑

x∈supp ρ̂ xρ̂(x) = 1/2. This condition,

which we refer to as plausibility, ensures that the decision maker believes that their

prior captures all their current uncertainty about the state. For example, the forecast

ρ̂ = {.5, .5} with support {x, 1 − x} for some x ∈ (0, .5) can be represented by a

misspecified model since .5x + .5(1 − x) = .5 satisfies the plausibility condition. One

such model is mR
1 = x/2, mR

2 = x/2, mR
3 = (1 − x)/2 and mR

4 = (1 − x)/2 in state R,

and similarly for state L substituting 1 − x for x.14 This model induces updating rule

h(z1) = h(z2) = x and h(z3) = h(z4) = 1− x.15 Again, multiple models can represent a

given forecast. The model mR
1 = x/3, mR

2 = x/3, mR
3 = x/3 and mR

4 = 1− x in state R,

and similarly for state L substituting 1− x for x, also represents ρ̂. This model induces

a different updating rule: it maps {z1, z2, z3} to posterior x and z4 to posterior 1− x.16

In fact, for any updating rule that assigns at least one signal to each posterior x and

1 − x, it is possible to find a misspecified model that induces this updating rule and

represents ρ̂.

The updating rule determines the retrospective bias. Therefore, which model is cho-

sen to represent a given forecast determines the retrospective bias through the induced

updating rule. For example, if the updating rule generated by the correct model maps

13To see that any such model represents h, note that it induces posterior belief mR
k /(m

R
k + mL

k ) =
h(zk) following signal realization zk, and therefore, the desired updating rule.

14To see that this model represents ρ̂, note that from Bayes rule, it induces posterior belief mR
k /(m

R
k +

mL
k ) following signal zk. This simplifies to posterior belief x following z1 and z2 and posterior belief 1−x

following z3 and z4. Therefore, it induces forecast ρ̂(x) = µ̂({z1, z2}) = (mR
1 +mL

1 )/2+(mR
2 +mL

2 )/2 = .5
and ρ̂(1− x) = µ̂({z3, z4}) = .5 by an analogous calculation, as desired.

15In fact, any α ∈ (0, 1) pins down a model that represents ρ̂ with signal distribution mR
1 = αx,

mR
2 = (1 − α)x, mR

3 = α(1 − x) and mR
4 = (1 − α)(1 − x) in state R, and similarly for state L

substituting 1− x for x. For each α, the corresponding model induces updating rule h(z1) = h(z2) = x
and h(z3) = h(z4) = 1−x. Therefore, all models in this class induce the same forecast and updating rule,
and hence, their difference is economically irrelevant. This motivates our notion of essential uniqueness
defined in Definition 5.

16To see that this model represents ρ̂, note that from h(z1) = h(z2) = h(z3) = x and h(z4) = 1− x,
it induces forecast ρ̂(x) = (mR

1 +mR
2 +mR

3 )/2 + (mL
1 +mL

2 +mL
3 )/2 = .5 and similarly ρ̂(1− x) = .5.
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{z1, z2} to posterior x, then mapping {z1, z2, z3} to x corresponds to slanting information

towards state L, whereas mapping {z1, z3} to x corresponds to inverting the interpreta-

tion of z2 and z3. Therefore, different models that represent the same forecast can lead

to very different predictions depending on the updating rule they induce.

This multiplicity gives rise to several important questions. First, given an updating

rule, what (if any) restrictions does this place on the set of forecasts that are compatible

with it for a representation? In other words, does fixing a retrospective bias restrict

the set of feasible prospective biases, and vice versa? Second, given an updating rule

and forecast that are jointly compatible with a representation, are these two parts suffi-

cient to pin down a unique representation, or does a model contain additional relevant

information about the decision environment?

Our first main result answers these questions. We establish a necessary and sufficient

condition for a forecast to be compatible with a given updating rule, in that the pair

can be jointly represented by a misspecified model, and vice versa. This condition is

quite mild: in this example, any plausible forecast and updating rule can be jointly rep-

resented provided that the support of the forecast is equal to the image of the updating

rule, i.e. given h, supp ρ̂ = {h(z1), h(z2), h(z3), h(z4)}. Therefore, representing a given

retrospective bias does not place very strong restrictions on the set of prospective biases

that can arise alongside it, and vice versa. Further, we establish that this representation

is unique. Hence, the updating rule and forecast jointly pin down a complete model for

analysis.

Given that updating rules are much more frequently studied in the literature, we

next turn to the question of how to select a forecast to pair with a given updating rule.

We focus on two classes of forecasts that have desirable properties in relation to the

correct model: introspection-proof forecasts and naive consistent forecasts. For a given

updating rule h, introspection-proofness imposes the requirement that the forecast is

correct with respect to h. Suppose the updating rule generated by the correct model

maps {z1, z2} to posterior x and {z3, z4} to 1 − x and consider the updating rule that

maps {z1, z2, z3} to x and z4 to 1−x. Then the introspection-proof forecast corresponds

to ρ̂(x) = µ(z1)+µ(z2)+µ(z3) and ρ̂(1−x) = µ(z4), where µ is the correct unconditional

model, as this is the accurate probability of each posterior given the biased updating rule.

Naive-consistency imposes the requirement that the forecast is equal to the accurate

forecast for an agent with the correct model. In this example, this corresponds to

ρ̂(x) = µ(z1) +µ(z2) and ρ̂(1−x) = µ(z3) +µ(z4), since this is the correct forecast given

an unbiased updating rule.
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4 Representing Updating Rules and Forecasts

This section derives our main representation result. We first establish a necessary and

sufficient condition for an updating rule to be represented by a misspecified model, and

derive an analogous result for a forecast. We then establish a necessary and sufficient

condition on an updating rule and forecast pair for them to be jointly represented by a

misspecified model, and shows that this model is essentially unique.

4.1 Representing Updating Rules

We begin by fixing an updating rule and characterizing when it can be represented by

a misspecified model. Let N (h) ≡ supp ρh denote the support of the accurate forecast

ρ for updating rule h, which is well defined, and let

S(h) ≡ rel int(ConvN (h)) (7)

denote the relative interior of the convex hull of this support.17 An important feature of

Bayesian updating is that the posterior belief is equal to the prior in expectation. We

use this martingale property of beliefs to characterize necessary and sufficient conditions

for there to exist a misspecified model that represents an updating rule.

Lemma 1 (Existence of an Updating Rule Representation). There exists a misspecified

model (µ̂i)ωi∈Ω with µ̂i ∈ ∆∗(Z) that represents updating rule h(z) if and only if p ∈ S(h).

This result extends Lemma 1 from Shmaya and Yariv (2016) to a more general signal

space.18 Some care must be taken here, both due to the lack of structure on the signal

space and the requirements that a misspecified model is absolutely continuous with

respect to the reference measure ν and has non-zero Radon-Nikodym derivatives.19 The

space of posterior beliefs has more structure than the signal space, which we leverage for

this characterization. In particular, given an updating rule h, if the prior belief does not

lie in the set S(h) as defined in Eq. (7), then it is impossible for the martingale property

to hold for any “full support” measure. Therefore, the prior belief must lie in S(h) for

it to be possible to represent h. It also turns out that this condition is sufficient for the

prior to be the center of mass for some distribution.

The condition in Lemma 1 is very weak. For all practical purposes, it only rules

17Recall that the relative interior of a set S is the set of points that are on the interior of S within
its affine hull.

18In Shmaya and Yariv (2016), S(h) is the relative interior of the convex hull spanned by posteriors.
Our set S(h) is the analogue of this set with the additional measurability restrictions necessary for this
to be well-defined on infinite signal spaces.

19These conditions prevent probability 0 events from occurring with positive probability and rule
out misspecified models that, for instance, create atoms by placing positive probability on signals that
lie in the support but occur with probability 0 under the correctly specified model.
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out pathological updating rules such as an updating rule that increases the posterior

probability of some state ω following all possible signal realizations. Therefore, this result

establishes that most updating rules of interest can be represented by a misspecified

model. However, this representation is generally not essentially unique. As we saw in

the example in Section 3, there are often many misspecified models that represent a

given updating rule. A natural next question is which representation one should select,

which we address in Section 5.

4.2 Representing Forecasts

We next develop an analogous result to Lemma 1 for forecasts. A forecast is plausible if

the expected posterior, taken with respect to the agent’s forecast, is equal to the prior.

Definition 6 (Plausible Forecast). A forecast is plausible if
∫
∆(Ω)

xidρ̂(x) = pi for each

ωi ∈ Ω.

In order for the forecast to be represented by a misspecified model, it must be plausible.

In fact, this is both a necessary and sufficient condition for a forecast to be represented

by a misspecified model.

Lemma 2 (Existence of a Forecast Representation). There exists a misspecified model

(µ̂i)ωi∈Ω with µ̂i ∈ ∆∗(Z) that represents forecast ρ̂ if and only if ρ̂ is plausible.

Plausibility is a necessary property of Bayesian updating: a Bayesian agent always

believes that on average, her posterior will be equal to her prior. In other words, even

a misspecified Bayesian agent does not believe that she is systematically biased. Unlike

the updating rule, which needs very little structure to be consistent with a misspecified

model, a forecast must satisfy this strong requirement of Bayesian learning. However,

while the plausibility requirement rules out many forecasts, it still allows for a broad

class of forecasts as we illustrate in the following example.

Example 1. Suppose there are two equally likely states of the world Ω = {L,R}. Let

Z = [0, 1] and F be the Borel σ-algebra, and let the correctly specified model be a set of

full support distributions over Z. Consider the following parametric family of forecasts,

where, in a slight abuse of notation, dρ̂θ denotes the probability density function of the

forecast:

dρ̂θ(x) =
xθ−1L (1− xL)θ−1

Γ (θ)2/Γ (2θ)
(8)

for θ > 0, where x = (xL, xR) ∈ ∆ is a posterior belief. This corresponds to the family

of beta distributions with mean 1/2.20 Any forecast from this family is plausible since

20Note that these are indeed forecasts, as g(z) = (z, 1−z) satisfies the mutually absolutely continuous
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∫
∆(Ω)

xi dρ̂θ(x) = 1/2 for i = L,R. Therefore, any such forecast can be represented by a

misspecified model.

As in the case of updating rules, a forecast on its own does not necessarily identify a

unique misspecified model. In fact, a continuum of misspecified models can be consistent

with a give forecast. For example, consider the case of θ = 1 in Example 1. This

corresponds to the uniform forecast, i.e. dρ̂(x) = 1. For any γ > 0, the misspecified

model with pdfs dµ̂R(z) = 2γz2γ−1 and dµ̂L(z) = 2γzγ−1 − dµ̂R(z) represents ρ̂.21 From

Bayes rule, this model induces posterior belief dµ̂R(z)/(dµ̂R(z) + dµ̂L(z)) = zγ. Each

value of γ captures a different level of retrospective bias: as γ increases, the updating

rule slants information more towards state R.

4.3 Decomposition

As shown above, an updating rule or a forecast on its own does not identify a unique mis-

specified model. In the next result, we show that an updating rule and a forecast jointly

identify a misspecified model that is essentially unique. In other words, a misspecified

model can be decomposed into a “prospective bias”, the forecast, and a “retrospective

bias”, the updating rule. We also show that neither component imposes much structure

on the other.

Given that we focus on misspecified models that are mutually absolutely continuous

with respect to the correctly specified model, we must place some restriction on how

the forecast and updating rule jointly behave over measure 0 sets. Specifically, a fore-

cast cannot place positive probability on a set of posteriors that are associated with a

measure zero set of signals under the updating rule h. This corresponds to the subjec-

tive forecast ρ̂ being mutually absolutely continuous with the accurate forecast ρh. It

is straightforward to see why this condition is necessary to find a misspecified model

to represent the forecast and updating rule. It turns out that it is also sufficient, and

therefore, is the only joint requirement on the updating rule and forecast for such a

representation to exist.

Theorem 1 (Decomposition). Consider a forecast ρ̂ and an updating rule h. Let ρh be

the accurate forecast for h. There exists a misspecified model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N that

represents h and ρ̂ if and only if ρ̂ is plausible and mutually absolutely continuous with

ρh. If such a model exists, it is essentially unique and defined by

µ̂i(Z) =
1

pi

∫
Z

hi(z)
dρ̂

dρh
(h(z)) dµ(z). (9)

condition.
21To see this, note that the unconditional signal cdf is µ̂(z) = zγ . This induces forecast cdf ρ̂(x) =

µ̂(x1/γ) = x which is the uniform forecast.
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for any measurable Z ⊂ Z, where µ is the unconditional measure over signals in the

correct model.

This result shows that the updating rule and the forecast are the “essential” compo-

nents of a misspecified model: together they completely pin down a misspecified model.

It also shows that these components are largely independent of each other: aside from

the mild restriction that the forecast and updating rule have the same measure zero sets,

the forecast does not place restrictions on the updating rule and vice versa. Thus, a

misspecified model is fully pinned down by the retrospective and prospective biases that

it induces, and these two forms of bias are largely separate properties of the model—

they do not contain overlapping restrictions. For instance, optimistic updating does

not imply optimistic forecasting. This insight has appealing consequences for economic

modeling, as it allows for the interaction between different natural biases within the

same misspecified model.

This representation provides a powerful tool for the construction of models of biased

learning, as it reduces a misspecified model into two components that transparently re-

late to the conceptual properties the model seeks to capture. Rather than specifying a

family of conditional probability distributions—which is potentially quite complicated

and removed from the conceptual bias of interest—one can simply write down a rea-

sonable parameterization of the desired retrospective and prospective biases. Together

these biases completely capture how a misspecified agent’s behaviour will depart from

that of a correctly specified agent.

It may, at first glance, appear odd that the correctly specified model appears in the

representation in Eq. (9). This is innocuous: since the forecast doesn’t place structure

on the unconditional distribution over signals that induce the same posterior, using the

correctly specified distribution to determine randomizations over each of the elements

of h−1(x) is a simple way to ensure that the correctly specified and misspecified models

are mutually absolutely continuous.

Intuition for proof. We first prove an intermediate result that significantly simplifies

the process of finding misspecified model(s) to represent a given updating rule. Given

either a state-contingent distribution µ̂i in state ωi or the unconditional distribution

µ̂, we establish a necessary and sufficient condition for this distribution to be part of

a misspecified model representing a given updating rule. Moreover, if a model that

includes this distribution exists, then this single distribution uniquely pins down the

remainder of the model—in other words, all of the other state-contingent distributions.

When the condition is not satisfied, then the updating rule is incompatible with the

given measure and it cannot be part of a model that represents the updating rule.
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Theorem 1 shows that, together with a forecast, the updating rule identifies a unique

misspecified model. However, it also indicates that a plethora of forecasts induce the

same updating rule, and each pair is represented by a different misspecified model. If

one’s goal is to select a natural misspecified model to represent an updating rule, then

Theorem 1 provides no guidance on how to do so. This motivates the remainder of the

paper, in which we explore which forecasts to pair with an updating rule in order to

construct misspecified model representations with certain desirable properties.

5 Selecting Forecasts

In this and the following sections, we use the decomposition into forecasts and updating

rules to identify natural restrictions on the forecast that provide conceptual guidance for

which model to select. The first condition—introspection-proofness—imposes structure

on how the misspecified model relates to the correctly specified model. The second

condition—naive consistent forecasting—is a condition on the agent’s belief about how

he will form beliefs in the future. Each condition uniquely selects a misspecified model

when such a model exists.

5.1 Introspection-Proof Models

A common concern with the use of misspecified models as a modeling tool is that,

given a large number of observations, an agent may observe a pattern that is incredibly

unlikely under her misspecified view of the world. For example, she may observe an

extreme violation of the law of large numbers. Therefore, if an agent forms her view

of the world by observing a lot of data—in the context of this framework, an infinite

sequence of independent draws of the signal and state—one might worry that the agent

could, through introspection, come to realize that she is misspecified. Motivated by this

concern, we define the following notion of an introspection-proof model.

Definition 7 (Introspection-Proof Model). A misspecified model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N

with induced unconditional measure µ̂ is introspection-proof if µ̂(Z) = µ(Z) for all

measurable sets Z ∈ F .

Using the tools developed in Theorem 1, we establish a necessary and sufficient con-

dition for an updating rule and forecast to have an introspection-proof representation—

namely, the forecast must be plausible and accurate with respect to the updating rule.

When such a representation exists, the following result also constructs the corresponding

model.

Proposition 1. Fix an updating rule h. There exists an introspection-proof misspecified

model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N that represents h and the accurate forecast ρh if and only if
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ρh is plausible. If this representation exists, then it is unique and defined by

µ̂i(Z) =

∫
Z

1

pi
h(z)i dµ (10)

for all measurable Z ∈ F . There is no introspection-proof misspecified model that repre-

sents h and a forecast ρ̂ 6= ρh.

This result follows from Theorem 1 and the observation that ρ̂IP = ρh, and therefore,

trivially ρ̂IP and ρh are mutually absolutely continuous. The requirement that ρh is

plausible is quite restrictive. Recall that a plausible forecast ρ satisfies
∫
∆Ω

xi dρ(x) = pi

for all i, which by the change of variables formula becomes
∫
Z hi(z) dµ = pi. So the

accurate forecast is plausible only if the updating rule is on average equal to the prior

under the correctly specified signal distribution.22

When an updating rule is represented by an introspection-proof misspecified model,

then the agent observes exactly the distribution of signal realizations that she expects,

given her model of the world. Regardless of the information that she selects to validate

her model, she does not observe violations that would cause her to second guess this

worldview. Alternatively, introspection-proofness can be viewed as a robustness criteria

for the updating rule: from the perspective of an analyst who only observes signal

realizations, any agent who updates using an updating rule that admits an introspection-

proof misspecified model is indistinguishable from a correctly-specified Bayesian agent,

and therefore, this agent will naturally pass any tests that the analyst designs to detect

Bayesianism. If an updating rule can’t be represented by an introspection-proof model,

then with infinite data the analyst will be able to reject that the agent is a correctly-

specified Bayesian.

The condition required the forecast to be plausible is reminiscent of the Bayes-

plausibility condition in Kamenica and Gentzkow (2011). It requires that the forecast

of the expected posterior belief from the updating rule is equal to the prior, where the

expectation is taken with respect to the true unconditional signal distribution. If this

condition does not hold, then it is impossible for the true distribution over posterior

beliefs to be equal to the forecast, and thus it can’t be a forecast from an agent using

a misspecified model. An agent’s posterior beliefs must satisfy the martingale property

with respect to the subjective unconditional signal distribution. Under the introspection-

proof condition, this simplifies to Eq. (10). Moreover, Eq. (10) is sufficient to construct

22A natural class of biases that may appear to satisfy this condition are those that either over-
or underestimate the precision of information, in the sense that the corresponding misspecified model
is Blackwell ranked with respect to the true model. But this is not the case. In Appendix E, we
provide examples of misspecified models that are Blackwell less informative than the true model but
not introspection-proof and Blackwell more informative than the true model but not introspection-proof.

20



an introspection-proof misspecified model and it uniquely pins down such a model.

Introspection-proofness provides the researcher with a natural choice of misspecified

model to represent a given updating rule. An introspection-proof misspecified model

must preserve the “center of mass” of beliefs, but otherwise has the freedom to arbitrarily

distort the spread of these beliefs. This makes it possible to represent conceptual biases

such as conservatism in belief updating or overreaction to new information with an

introspection-proof misspecified model, as we illustrate in the following example.

Example 2 (Conservatism). Consider a common updating rule for conservatism in belief

updating, h(z) = λhB(z) + (1− λ)p for some λ ∈ (0, 1) (Epstein et al. 2008; Hagmann

and Loewenstein 2019; Gabaix 2019). In other words, the posterior belief is a weighted

average of the Bayesian posterior and the prior. This updating rule is represented by the

introspection-proof misspecified model µ̂i ≡ (1−λ)µi +λµ. Note that the second term in

this sum depends on the prior.

On the other hand, updating rules that systematically shift beliefs in one direction,

such as partisan bias, can never be paired with forecasts that satisfy this condition, as

any reasonable parameterization of such a bias must shift the center of mass of beliefs.

Example 3 (Partisan Bias). Consider the following model of partisan bias. There are

two states of the world ω ∈ {ω1, ω2} and an agent who updates according to update rule

h(z)1 = (hB(z)1)
2 and h(z)2 = 1−(hB(z)1)

2. In this model, after any signal the decision

maker has beliefs that are more favorable to state ω2 than the correctly specified agent.

Under the accurate forecast ρh∫ 1

0

xi dρh(x) =

∫
Z
h(z)i dρh(h(z)) =

∫
Z
h(z)i dµ(z).

But,
∫
Z h(z)1 dµ <

∫
Z hB(z)1 dµ = p1, so the accurate forecast is not plausible. This

argument clearly holds not only here, but more generally for any bias that systematically

skews the updates in one direction.

Moreover, this condition requires a certain amount of complexity in how the updating

rule distorts updates which prevents many simple updating rules from satisfying it. For

example, the canonical model of overreaction cannot satisfy it.

Similar approaches to introspection-proof models have been used in existing work

to construct plausible restrictions on the space of misspecified models being considered.

For example, Spiegler (2016) uses a similar condition to connect misspecified causal

graphs—as opposed to updating rules—to a misspecified model. He requires a condi-

tion resembling introspection-proofness on each link of the graph, which pins down a

misspecified probability distribution over the outcome of interest. Mailath and Samuel-
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son (2019) study a model of omitted variable bias, where the set of omitted variables

combined with an introspection-proof condition pin down the misspecified model agents

use.

Alternative Notions of Introspection. This notion of introspection-proofness is rel-

atively strong, in that it requires the subjective unconditional signal measure to exactly

match the correct unconditional measure. With a bit more structure on the signal space,

one could do a conceptually similar exercise with weaker requirements. For example,

one could require that mean of the subjective unconditional signal measure matches the

mean of the correct unconditional signal measure, but allow the subjective unconditional

signal measure to differ from the correct unconditional signal measure on other dimen-

sions, such as the variance, that may be harder to detect than differences in means. We

explore alternative definitions of introspection-proof in Appendix D.

5.2 Naive Consistent Forecasts

Another natural forecast is one in which the agent naively predicts that she will form

accurate beliefs in the future. This property is analogous to common naivete assumptions

made in many behavioral models (e.g. models of time inconsistency), and has previously

been made in models of biased learning such as Benjamin et al. (2019); Bohren and

Hauser (2021). We say a forecast exhibits naive consistent forecasting when the agent’s

forecast of future beliefs is identical to the true forecast of future beliefs when an agent

updates using Bayes rule.

Definition 8 (Naive Consistent Forecast). Given prior p, the naive-consistent forecast

is defined by the accurate forecast with respect to the Bayesian updating rule hB, ρ̂NCF ≡
ρB.

Informally, naive consistent forecasting requires that for any Borel set of posteriors X,

the agent using forecast ρ̂NCF (X) places the same probability on the posteriors lying in

X as the accurate forecast with respect to the Bayesian updating rule hB(z). So, an

agent who exhibits naive consistent forecasting places the same probability as a correctly

specified agent that she will form a posterior belief in set X. That is, the forecast ρ̂NCF

is the distribution of posteriors that a correctly specified agent would generate. As this

forecast is the forecast a correctly specified Bayesian has, it is always plausible.

Using Theorem 1, we establish that mutual absolute continuity of ρ̂NCF and ρh is

the only property that an updating rule must satisfy to be represented by a misspecified

model that exhibits naive consistent forecasting.

Proposition 2 (Naive Consistent Representation). Fix an updating rule h(z), and the

naive consistent forecast ρ̂NCF . There exists a misspecified model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N
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that represents h(z) and ρ̂NCF (X) if and only ρh and ρ̂NCF are mutually absolutely

continuous. If this representation exists, it is essentially unique and defined by

µ̂i(Z) = µi({z : hB(z) ∈ h(Z)}) (11)

for all Z ∈ P.

The absolute continuity condition is relatively mild: it simply requires that the set of

posteriors that are possible under the updating rule are the same as the set of posteriors

that the agent believes are possible under the forecast. Formally, µ({z : h(z) ∈ X}) = 0

if and only if ρ̂NCF (X) = 0. Naive consistent forecasting also implies that in each state

ωi, an analogue of the naive consistent forecasting property holds. In each state ωi,

a naive consistent forecast predicts that the posterior will be in set X with the same

probability as a correctly specified agent predicts that the posterior will be in this set.

This is a consequence of Lemma 3 and is straightforward to see from Bayes rule.

In Bohren and Hauser (2021), we impose naive consistent forecasting to study social

learning in the presence of overreaction or partisan bias.

Example 4 (Overreaction). Consider a binary state space ω ∈ {ω1, ω2} and an agent

who updates using the updating rule defined by

h(z)2
1− h(z)2

=
p

1− p

(
dµR
dν

(z)
dµL
dν

(z)

)γ

.

in state ω2, with complementary probability h(z)1 = 1−h(z)2 in state ω1 and overreaction

parameter γ > 1. If the random variable h(z, 1/2)2 is continuous with support [0, 1], then

this admits a misspecified model that exhibits naive consistent forecasting at all priors.

This naive consistent representation is particularly convenient in the social learning

game studied in Bohren and Hauser (2021). In that game, a sequence of short-lived

agents see a private signal zt with they interpret using the updating rule and choose an

action at ∈ {L1, L2, R1, R2}. An agent receives utility u(a, ω) from their action choice

where u(L1, ω1) > u(L2, ω1) > u(R2, ω1) > u(R1, ω1) and u(R1, ω2) > u(R2, ω2) >

u(L2, ω1) > u(L1, ω1). If all agents use a naive consistent forecast, then at any belief

the update following each action is exactly the update that an agent would make in the

correctly specified game. That is, at any prior pt, the perceived probability of each action

is equal to the probability that a correctly specified player would take that action, the

update a player would make if, for instance, they didn’t take into account that them-

selves and others were interpreting information using the updating rule h(z), but instead

believed that all agents were updating correctly. This does not imply that the learning

dynamics in this problem are the same, or even similar to, that of the correctly specified
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social learning game. Since agents are in fact using a biased updating rule to interpret

information, the realized action frequency is different from the frequency that would be

realized in the game with correctly specified agents. As we show in the paper, this can

cause beliefs to fail to converge.

5.3 Biased Forecasts with Accurate Updating

Introspection-proof models and naive consistent forecasting both pin down a forecast

with respect to the correctly specified signal distribution. That is, the forecast is either

accurate with respect to the agent’s updating rule or with respect to the Bayesian

updating rule. This isolates the retrospective bias from any prospective bias by having

the agent naively form forecasts as-if they were correctly specified. One can also consider

situations in which an agent correctly interprets signals (i.e. uses the Bayesian updating

rule hB(z)) but has a biased forecast. These situations such down any retrospective

biases and only allow for prospective biases. The following definition formalizes this

notion of a retrospectively correct model.

Definition 9 (Retrospectively Correct Model). A misspecified model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N

is retrospectively correct if it induces hB(z), i.e. for all ωi ∈ Ω,

pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)
= hB(z)i (12)

ν-almost everywhere.

The following corollary follows immediately from Theorem 1.

Corollary 1. Fix a forecast ρ̂. There exists a retrospectively correct model (µ̂i)ωi∈Ω ∈
∆∗(Z) that represents ρ̂ if and only if ρ̂ and ρB are mutually absolutely continuous and

ρ̂ is plausible.

This establishes that many forecasts are consistent with Bayesian updating. An agent

can form very wrong predictions about their future beliefs, but still update correctly

after observing a signal. Therefore, the misspecified model approach can be used to

capture prospective biases without needing to also allow for retrospective bias.

6 Applications

We next provide three applications to demonstrate the results from Sections 4 and 5.

In the first application, we start with the updating rule approach and show how the

introspection-proof condition is a natural requirement to impose when selecting an up-

dating rule in a dual-selves model with self-image concerns. In the second application,

we start with the misspecified model approach and show how the updating rule and fore-

cast decomposition yields insight into the way the different components of bias induced
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by the misspecified model impact the design of lending contracts. Continuing with this

environment, in the final application we allow for borrower heterogeneity in updating

and show how second degree price discrimination is not possible when agents use the

naive consistent forecast.

6.1 Optimal Bias with Self-Image Concerns

The first application is a dual-selves model with self-image concerns, where a manager

first chooses an updating rule to interpret information about ability, then uses this

updating rule to evaluate himself and workers. We show that the introspection-proof

constraint places a natural upper bound on the level of motivated reasoning that the

manager exhibits. Moreover, the manager compensates for overestimating the ability

of workers sharing a group identity with the manager by underestimating the ability

of workers from the other group identity, despite group identity being orthogonal to

productivity. In contrast, without the introspection-proof constraint, the manager does

not distort beliefs for the other group identity. Therefore, self-image concerns in combi-

nation with introspection-proof updating leads to inaccurate beliefs about workers from

all group identities, whereas self-image concerns on their own only lead to inaccurate

beliefs about workers that share a group identity with the manager.

Set-up. Suppose a manager evaluates a worker. The worker has either low or high

ability, ωw ∈ {L,H}, drawn with equal probability. The manager selects evaluation

a ∈ [0, 1] for the worker. Before evaluating the worker, the manager observes a two-

dimensional signal zw = (yw, tw). The first dimension yw ∈ {b, g} provides information

about the worker’s ability, with distribution Pr(g|H) = Pr(b|L) = α > 1/2. We refer

to this as the worker’s test performance. The second dimension is the worker’s group

identity tw ∈ {M,F}, which we assume is independent of (yw, ωw) and distributed

according to q ≡ Pr(M). This group identity can be interpreted as a demographic

variable that is readily observed from interacting with the worker.

Analogous to the worker, the manager has ability ωm ∈ {H,L} drawn with equal

probability. The manager also observes his own test performance ym ∈ {b, g}, which has

the same distribution as the worker’s test performance yw. Without loss of generality,

assume that the manager’s group identity is tm = M , and therefore the manager’s two-

dimensional signal is zm = (ym,M). The manager’s ability and signal are independent

of the worker’s ability and signal.

We consider a dual-selves model where the manager’s first self chooses an updating

rule for interpreting the signal, and the second self uses this rule to update his beliefs

about his own ability and the worker’s ability then evaluates the worker. Before the

signals are realized, the first self chooses an updating rule h for the second period self to
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use. Given that the state is binary, in a slight abuse of notation we let h(z) denote the

manager’s subjective probability that ability is high following signal z. After the signals

are realized, the second self updates his belief about his own ability to h(zm) and his

belief about the worker’s ability to h(zw), then chooses evaluation a.

The manager cares about his self-image, captured by the second self’s belief that he

is of high ability, and accurately forecasting the worker’s ability,

u(a, ωw, zm) = h(zm)− c(1{ωw=H} − a)2, (13)

where c > 1/2q(1− α) to ensure that the manager puts sufficient weight on accurately

evaluating the worker.23 Each self maximizes his expected utility, where the first self

takes this expectation with respect to the correctly specified model before signals are

realized and the second self takes this expectation with respect to the chosen updating

rule h after signals are realized.

Given updating rule h, it is straightforward to see that the second self will choose

evaluation a∗(zw) = h(zw). Therefore, the first self chooses an updating rule h to

maximize

E[h(zm)− c(1{ωw=H} − h(zw))2]. (14)

Given that the manager must choose the same updating rule to interpret his own and

the worker’s signals, the choice of updating rule influences both the payoff from self-

image and the payoff from the accuracy of the evaluation. Self-image concerns lead the

manager to exhibit motivated reasoning, i.e. to choose an updating rule that inflates

the interpretation of test performance for members of group M , while the desire for

accuracy prevents this motivated reasoning from becoming too extreme. This is the key

trade-off in selecting an updating rule.

The Optimal IP Updating Rule. The first self may wish to select an updating rule

such that the second self does not observe a pattern of signals that, after evaluating a

sufficiently large number of workers, is at odds with his forecast about his beliefs—in

other words, an introspection-proof updating rule. We next characterize the optimal

introspection-proof updating rule and compare it to the optimal updating rule without

this constraint.

From Proposition 1, an updating rule has an introspection-proof representation if∑
y∈{b,g}

1

2
(qh(y,M) + (1− q)h(y, F )) =

1

2
. (15)

23This condition ensures that the manager does not choose an updating rule that maps a noisy signal
into a certain belief about ability.
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(a) Introspection-Proof (b) Unconstrained

Figure 1. Optimal average update by group (α = .7, c = 4, q = .5).

In order to inflate self-image and simultaneously satisfy the introspection-proof con-

dition, which requires consistency with the observed signal distribution, the manager

must compensate for overestimating the ability of group M workers by deflating the

interpretation of test performance for group F workers, thereby underestimating their

ability. Given Bayesian updating rule hB(g, t) = α and hB(b, t) = 1 − α, this leads to

the following result.

Proposition 3. The optimal introspection-proof updating rule inflates the interpretation

of both test outcomes for group M , h(y,M) = hB(y,M) + 1−q
2cq

for y ∈ {b, g}, and

deflates the interpretation of both test outcomes for group F , h(y, F ) = hB(y, F ) − 1
2c

for y ∈ {b, g}.

The optimal updating rule features inaccurate beliefs about both groups that endoge-

nously emerge from the interaction between self-image concerns and the introspection-

proof constraint. Fig. 1(a) illustrates this updating rule.

The optimal distortion for group M is decreasing in q: when the hiring pool is

more similar to the manager in terms of group identity, the manager uses a less biased

updating rule for group M , resulting in more accurate evaluations. This is because it

becomes more costly for the manager to distort information in a way that improves his

self-image, as this distortion leads to a bigger loss from inflating the evaluation of the

larger share of group M workers. In contrast, the optimal distortion for group F is

independent of q: as q increases, distortion is less costly for this group since it comprises

a smaller share of workers, but also less beneficial as a means to balance the distortion

against group M since less distortion against group M is desired. It turns out that these

two forces exactly balance for the linear-quadratic payoff form Eq. (13).
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The Optimal Unconstrained Updating Rule. When the updating rule is not

constrained to be introspection-proof, self-image concerns still lead the manager to inflate

the interpretation of test performance for members of group M . However, there is no

reason to distort the information for group F . This leads to the following result.

Proposition 4. The optimal unconstrained updating rule inflates the interpretation of

both test outcomes for group M , h(y,M) = hB(y,M)+ 1
2cq

for y ∈ {b, g}, and accurately

interprets both test outcomes for group F , h(y, F ) = hB(y, F ) for y ∈ {b, g}.

The optimal updating rule only features inaccurate beliefs about the manager’s

group. This contrasts with the optimal introspection-proof updating rule, in which

the introspection-proof constraint forces the overestimation of own group ability to be

counterbalanced by underestimating the ability of the other group. Therefore, in set-

tings where agents evaluate a sufficiently large pool of workers such that consistency

with the underlying signal distributions is a reasonable requirement, self-image concerns

can lead to inaccurate beliefs about other groups even though the manager derives no

intrinsic payoff benefit from this distortion.

Without the discipline of the introspection-proof constraint, distorting self-image

is only costly for the manager when he is hiring type M workers. This leads to a

higher level of signal distortion for group M relative to the optimal introspection-proof

updating rule. Thus, the introspection-proof constraint serves as a natural moderator to

the magnitude of the motivated reasoning bias that can emerge. Without this constraint,

the manager stands to lose less from distorting his belief about his ability, as he does

not have to compensate for this distortion by also distorting the perception of group

F . Fig. 1(b) illustrates the optimal unconstrained updating rule. Although there is less

belief distortion for group F , the higher distortion for group M dominates and leads to

less accurate evaluations overall.24

6.2 Lending Contracts with Bias

In this application, we show how the decomposition in Theorem 1 can be used to de-

termine how the retrospective and prospective biases induced by a misspecified model

impact the optimal lending contract. Each form of bias has a distinct and intuitive

impact on the structure of the optimal contract. Using a parameterized family of under-

and overconfident forecasts, we then show that a lender leverages overconfident forecasts

by charging a high upfront price for a favorable interest rate, and leverages underconfi-

dent forecasts by offering an upfront discount then subsequently charging a high interest

24The expected loss E((1ω=H − h(zw))2) from the evaluation using the optimal unconstrained up-
dating rule is 1−α2 − (1−α)2 + 1/8qc2, which is larger than the expected loss from using the optimal
introspection-proof updating rule, 1− α2 − (1− α)2 + (1− q)/(8qc2).
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rate.

The Entrepreneur’s Borrowing Problem. Consider a setting in which a lender

offers an entrepreneur access to capital. The entrepreneur has a project that is either

low or high quality, ω ∈ {L,H}, drawn with equal probability. In period t = 0, the

entrepreneur chooses whether to pay origination fee c > 0 to open a line of credit

with the lender. In period t = 1, the entrepreneur receives signal z ∼ µω with support

Z ⊆ [0, 1] about the quality of her project. After observing the signal, if the entrepreneur

opened a line of credit then she chooses an amount I ≥ 0 to borrow at rate r > 0. If

the entrepreneur did not open a line of credit, then she cannot borrow, I = 0. The

entrepreneur invests all of the money she borrows in the project. In state L, the project

leads to return g(I, L) = 0 for any level of investment I. In state H, the return is

increasing in the level of investment by the entrepreneur, g(I,H) = 2
√
I. After realizing

returns, the entrepreneur pays back her loan. The entrepreneur’s payoff is

g(I, ω)− (1 + r)I − c ∗ 1opencredit (16)

The entrepreneur has a misspecified model of the signal process, captured by µ̂L(z)

and µ̂H(z). We let h denote the induced updating rule, where in a slight abuse of

notation h(z) is the entrepreneur’s subjective probability that quality is high following

signal z, and let ρ̂ denote the induced forecast, where in a slight abuse of notation ρ̂(x)

is the probability of posterior x that the state is H. From Theorem 1, ρ̂ is plausible and

mutually absolutely continuous with ρh.

Suppose the entrepreneur has posterior belief x ∈ [0, 1] that the return is high after

observing the signal. Then she chooses an investment level to maximize her ex-post

expected return minus the loan repayment,

max
I≥0

2x
√
I − (1 + r)I. (17)

This yields optimal investment strategy I∗(x; r) = x2/(1 + r)2. Therefore, when the

entrepreneur uses updating rule h to form her posterior belief, she chooses investment

level h(z)2/(1+r)2 following signal realization z. The entrepreneur chooses to open a line

of credit if her ex-ante expected return minus the loan repayment exceeds the origination

fee, or, substituting I∗(x; r) into Eq. (17), Eρ̂[x
2]/(1 + r) ≥ c, where Eρ̂ denotes the

expectation with respect to forecast ρ̂. Therefore, the entrepreneur’s updating rule

influences her chosen investment level following the signal, whereas her forecast influences

her credit decision before observing the signal.

The Optimal Contract. The lender is risk-neutral and it costs the lender I to lend

I units of capital. The lender has a correctly specified model of the signal process
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and a correct model of the entrepreneur’s model. This induces forecast ρh over the

entrepreneur’s posterior belief. The lender offers a contract that specifies an origination

fee c ∈ R and a borrowing rate r ∈ R to maximize his expected revenue subject to the

constraint that the entrepreneur chooses to open a line of credit,

max
c,r∈R

c+ rEρh [I∗(x; r)] s.t. Eρ̂[x
2]/(1 + r) ≥ c.

From Theorem 1, we know that a misspecified model is fully pinned down by its

induced updating rule and forecast. We next show that the optimal contract can be

described as a function of the expectation and variance of these two objects. Let Vρ̂ ≡∫ 1

0
x2 dρ̂ − 1/4 denote the variance of entrepreneur’s forecast of his posterior belief,

Vh ≡
∫ 1

0
h(z)2dµ− (

∫ 1

0
h(z)dµ)2 denote the true variance of the entrepreneur’s posterior

belief, and mh ≡
∫ 1

0
h(z)dµ denote the true expectation of the entrepreneur’s posterior

belief. The expectation of the entrepreneur’s forecast is mρ̂ = 1/2 since the forecast is

plausible.

Proposition 5 (The Optimal Contract). The optimal interest rate is

r∗(h, ρ̂) =
Vh − Vρ̂ +m2

h − 1/4

Vh + Vρ̂ +m2
h + 1/4

(18)

and the optimal origination fee is c∗(h, ρ̂) = (Vρ̂ + 1/4)/(1 + r∗(h, ρ̂)).

Fixing an updating rule, the more informative the entrepreneur expects her signals

to be as measured by the variance of her forecast, the lower the optimal interest rate

and the higher the optimal origination fee. As the variance of the forecast increases, the

entrepreneur has a higher value for the lending product since she expects to have more

precise information before making an investment decision, and therefore, the lender can

charge a higher origination fee. Further, the lender finds it optimal to charge a lower

interest rate since the entrepreneur’s benefit from the low interest rate is proportional

to her chosen investment, and this chosen investment is convex in the posterior belief.

Therefore, when the entrepreneur expects more extreme posterior beliefs, she overesti-

mates the value of a low interest rate and is willing to pay a higher fee to enter such

contracts. In contrast, the higher the expectation or the variance of the entrepreneur’s

actual posterior belief, the higher the interest rate and the lower the origination fee.

This is because the entrepreneur’s investment strategy is increasing and convex in her

posterior belief—and therefore, higher average beliefs or, fixing the average, higher vari-

ance leads to higher expected investment and hence, the lender earns higher revenue

from interest.

We next show that when the forecast is introspection proof, then the lender charges
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the entrepreneur the same interest rate as that which she would charge a correctly

specified agent. This is because the entrepreneur correctly anticipates the mean and

variance of her posterior belief, Vρ̂ = Vh and mρ̂ = mh, as is the case for a correctly

specified agent, and when this property holds then the optimal interest rate is zero.

Corollary 2 (Introspection-Proof Optimal Contract). When the forecast ρ̂ and updating

rule h can be represented by an introspection-proof misspecified model, then the optimal

interest rate is the same as that charged to a correctly specified agent, r∗(h, ρ̂) = 0.

From these results, we see that the retrospective and prospective biases induced

by a misspecified model have a fundamentally different impact on decision-making and

contract design. Therefore, our decomposition provides a crucial tool for understanding

how the forms of bias induced by a misspecified model impact economic behavior.

Overconfident and Underconfident Forecasts. We next fix the updating rule as

Bayes rule, h = hB, so that there is no bias in updating, and explore how the optimal

contract differs with the bias in the forecast. An entrepreneur with an overconfident

forecast is offered a contract with an origination fee that is significantly higher than

what an entrepreneur with an unbiased forecast would be willing to accept and a negative

interest rate. In contrast, an entrepreneur with a sufficiently underconfident forecast is

offered a contract with an origination fee that is approximately zero and a positive

interest rate. Therefore, an updating rule on its own does not significantly restrict the

range of optimal contract terms—depending on the forecast, the optimal contract can

feature very different origination and borrowing costs.

Consider the following parametric family of forecasts, where, in a slight abuse of

notation, dρ̂θ denotes the probability density function of the forecast:

dρ̂θ(x) =
xθ−1(1− x)θ−1

Γ (θ)2/Γ (2θ)
(19)

for θ > 0 and x ∈ [0, 1]. This corresponds to the family of beta distributions with

mean 1/2. Suppose that the accurate forecast with respect to Bayes rule is uniform, i.e.

dρB = 1. Then θ = 1 corresponds to the accurate forecast (and also the naive consistent

forecast, since these are equal when h = hB). For θ > 1, as θ increases the entrepreneur

is increasingly underconfident about the precision of her information in that she places

more mass on intermediate posteriors and less mass on extreme posteriors relative to the

accurate forecast. For θ < 1, as θ decreases the entrepreneur is increasingly overconfident

about the precision of her information in that she places more mass on low and high

posteriors and less mass on intermediate posteriors relative to the accurate forecast.

From Proposition 5, the optimal interest rate is r∗(hB, ρ̂θ) = θ−1
7θ+5

and the optimal
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(a) Origination fee c∗ (b) Interest rate r∗

Figure 2. Optimal contract.

origination fee is c∗(hB, ρ̂θ) = (θ+1)(7θ+5)
8(2θ+1)2

(Fig. 2 illustrates this optimal contract).25

When the lender has an accurate forecast, θ = 1, the optimal interest rate is zero,

r∗(hB, ρB) = 0, and the optimal origination fee is c∗(hB, ρB) = 1/3. We compare this

benchmark to the optimal contracts for under- and overconfident forecasts.

When the entrepreneur is overconfident, i.e. θ < 1, the lender offers a negative in-

terest rate, r∗(hB, ρ̂θ) < 0 and a higher origination fee than the accurate benchmark,

c∗(hB, ρ̂θ) > 1/3. The overconfident borrower believes she will have very precise informa-

tion to utilize when choosing how much to borrow in the future. In contrast, the lender

knows that the entrepreneur overestimates the frequency of the signal realizations for

which the she will borrow a large amount (i.e. the realizations for which the negative

interest rate is very costly to the lender). Therefore, the entrepreneur overestimates the

benefit of a negative interest rate. The lender leverages this forecasting bias by charging

a high upfront price for a very favorable interest rate.

In contrast, when the entrepreneur is underconfident, i.e. θ > 1, the lender offers the

entrepreneur an up-front discount via the origination fee, c∗(hB, ρ̂θ) < 1/3, and a positive

interest rate, r∗(hB, ρ̂θ) > 0. The lender knows that the entrepreneur underestimates

the frequency of the signal realizations that induce the entrepreneur to borrow a large

amount, and therefore, the entrepreneur underestimates the future cost of the positive

interest rate. Therefore, the lender offers an upfront discount in order to induce the

entrepreneur to enter the contract, then subsequently profits from the positive interest

rate. For high enough θ, the optimal origination fee approaches zero.

25This follows from VhB
= 1/12 when dρB = 1 and Vρ̂ = 1/(8θ + 4).
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6.3 Lending Contracts with Heterogeneous Entrepreneurs

In this next application, we modify the lending framework from Section 6.2 to consider a

setting where entrepreneurs have heterogeneous updating biases: some exhibit optimism

bias, in which they overestimate future returns, and others are unbiased. We show

that a key property of naive consistent forecasting is that when all entrepreneurs use

this forecast, then the lender cannot engage in second degree price discrimination and

screen by updating rule. We also illustrate how the updating rule approach makes it

straightforward to derive comparative statics on how the optimal contract varies with

the extent of the bias: more biased types or more extreme bias leads to cheaper access

to credit but higher borrowing costs.

Suppose that there are two types of entrepreneurs. A share α ∈ (0, 1) are unbiased

and update using Bayes rule, i.e. hB. The remaining 1 − α exhibit optimism bias

in that they overestimate the probability of high quality after observing the signal,

h(z) = hB(z)γ for some γ ∈ (0, 1), where lower γ corresponds to more severe bias. The

lender cannot observe whether a given entrepreneur is biased, but knows the frequency of

biased entrepreneurs α in the population and the extent of their bias γ. All entrepreneurs

use the naive consistent forecast, ρ̂ = ρB. As discussed in Section 5, this is a natural

form of unbiased forecast.

Naive consistent forecasting means that, before observing the signal of returns, both

the unbiased and biased entrepreneurs have the same prediction about future beliefs,

and therefore, the same expectation about their future borrowing behavior. This leads

them to select the same option from any menu of contracts, which means that the lender

cannot screen between the two types e.g. engage in second degree price discriminate.

Therefore, the lender offers a single contract to both types. In contrast, other forecasts

lead to different predictions about future beliefs for each type. Therefore, it would be

possible to induce different types to choose different contracts.

The share of biased entrepreneurs and the extent of their bias impacts the terms of

the optimal contract. In particular, the origination fee is decreasing in the degree of

bias and share of biased entrepreneurs, while the interest rate is increasing. As either

parameter increases, the lender leverages the optimistic entrepreneur’s unanticipated

willingness to borrow large amounts at high interest rates by offering a contract that is

cheaper to enter but has a higher interest rate. This reduces investment by the unbiased

entrepreneurs relative to their level in the optimal contract for their type. We formally

present these comparative statics in Appendix C.

7 Dynamics

In order to consider dynamics, we extend the definition of an updating rule to specify

a posterior belief for each possible signal realization and prior belief p ∈ ∆(Ω), h(z, p),
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and similarly for a forecast ρ̂(x, p). In this case, the analysis from Sections 4 and 5 pins

down the misspecified model(s) that represent the updating rule and/or forecast at each

prior.

7.1 Prior-Independent Representations.

An important question in this expanded framework is whether there exists a representa-

tion that is independent of the prior. We explore this question for updating rules below

and present an analogous analysis for forecasts in Appendix D.3.

Definition 10 (Prior-Independent Representation). An updating rule h(z, p) has a prior-

independent representation if there exists a model (µ̂i)ωi∈Ω that represents h(z, p) at all

p ∈ ∆(Ω).

When this property holds, the subjective model representing the updating rule does not

vary with the prior belief about the likelihood of each state. This makes it a conceptually

appealing property for biases in which an agent is inherently Bayesian but has a mistaken

understanding of the information generating process that is independent of her current

worldview. For example, biases such as overreaction and optimism are not inherently

linked to the agent’s prior belief. In contrast, the property is conceptually at odds

with biases that directly depend on the agent’s current worldview in the sense that this

worldview influences her perception of information. For example, confirmation bias is

inherently linked to the agent’s prior belief about the state, and therefore, is naturally

represented by a model that varies with the prior. As we will show below, the property

is also at odds with some biases in which an agent is non-Bayesian, as representing such

biases in a Bayesian framework can require prior-dependence (e.g. Epstein et al. (2008)).

The following proposition presents a necessary and sufficient condition for an updat-

ing rule to have a prior-independent representation. In particular, such a representation

exists if and only if it is possible to factor the prior likelihood ratio pi/pj out of the

posterior likelihood ratio h(z, p)j/h(z, p)i for any pair of states. When this condition

holds, then any model that represents an updating rule at some prior p also represents

the updating rule at any other prior p′—and therefore, can form a prior-independent

representation.

Proposition 6 (Prior-Independent Representation). Fix an updating rule h(z, p)) such

that p ∈ S(h(·, p)) for all p ∈ ∆(Ω). Then h(z, p) has a prior-independent representation

if and only if

pi
pj

h(z, p)j
h(z, p)i

(20)

is independent of p for all p ∈ ∆(Ω), z ∈ Z, and i, j = 1, ..., N . When this holds, then
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any model that represents h at prior p also represents h at all other priors p′ ∈ ∆(Ω).26

This property has an important implication for empirical work. When an updating rule

has a prior-independent representation, then identifying the updating rule at one prior

pins down the updating rule at all priors.

Many canonical parameterizations of common biases have prior-independent repre-

sentations. For example, the parameterization of overreaction in Example 4 and the pa-

rameterization of partisan bias in Bohren and Hauser (2021) both have prior-independent

representations (see Appendix F.1). Intuitively, any bias that distorts the true signal

likelihoods dµi
dν
/
∑

ωj∈Ω
dµj
dν

independently of the prior will have a prior-independent rep-

resentation.

Many biases are also naturally parameterized in a way that only admits prior-

dependent representations. For example, the direction of confirmation bias and the

magnitude of base rate neglect depend on the prior. Therefore, updating rules that only

admit prior-dependent representations are essential for capturing the essence of these

biases (see Page 8 for examples of such updating rules). While less obvious, the linear

parameterization of over/underreaction in Epstein et al. (2008) (see Example 2) and the

posterior parameterization of partisan bias in Example 3 only admit prior-dependent

representations (see Appendix F.1). In the former, even though the over/underreaction

parameter is independent of the prior, the additivity of the non-Bayesian updating rule

with respect to the prior and the Bayesian posterior differs structurally from the multi-

plicative form of Bayes rule with respect to the prior and signal likelihoods, and therefore,

can only be represented by Bayesian updating in a misspecified model when the model

varies with the prior belief. In the latter, distorting the Bayesian posterior, rather than

the signal likelihood, links the magnitude of the bias to the prior even though the pa-

rameter capturing the bias is independent of the prior. Similarly, the misspecified causal

models from Spiegler (2020) only admit prior-dependent representations.27

Even when a prior-independent representation exists for a given updating rule, the

unique model that represents a forecast-updating rule pair may not be prior-independent

due to the dependence of the forecast on the prior. This brings us to the following result,

26Whenever an updating rule h can be represented by at least two models at some prior p, then
trivially a prior-dependent representation exists even when a prior-independent representation also
exists. To see this, suppose Eq. (20) holds and consider two models that represent h at prior p. Then
both models represent h at all priors. To form a prior-dependent representation, select one model to
represent h at a subset of priors P ⊂ ∆(Ω) and select the other model to represent h at the remaining
priors ∆(Ω) \ P .

27While prior-independent representations lend themselves to more straightforward dynamic analy-
sis, prior-dependent representations are still tractable. For example, recent work in the literature on
misspecified learning establishes general convergence results in settings where the model varies with the
prior belief (Bohren and Hauser 2021; Frick et al. 2020).

35



which establishes a desirable property for the naive consistent forecast.

Proposition 7. Fix an updating rule h(z, p) that has a prior-independent representation.

Then the unique representation of h(z, p) and the naive consistent forecast is prior-

independent.

We already know that, by definition, the naive consistent forecast is consistent with

the forecast induced by the correctly specified model in a one-period setting. In a dy-

namic setting in which a sequence of signals is observed, it turns out that the naive

consistent forecast paired with an updating rule that has a prior-independent repre-

sentation satisfies a stronger consistency property. While ρ̂(x, p) specifies the period-t

forecast of the posterior belief in period t + 1, in a dynamic setting one can also define

the period-t forecast of the posterior belief in any future period τ > t. It turns out

that the representation of the naive consistent forecast and an updating rule that has a

prior-independent representation induces period-t forecasts over posterior beliefs in any

future period τ > t that are equal to the period-t forecast of beliefs in period τ induced

by the correctly specified model.

7.2 Time Inconsistency.

Time inconsistency is a key property of many dynamic behavioral models. We next

discuss how a prior-dependent representation is a natural way to allow for dynamic

inconsistency.

Consider a dynamic setting in which a state ω is drawn at the beginning of the

game. An agent observes a sequence of signals drawn independently from µi when the

realized state is ωi. Suppose the agent’s updating rule and forecast is represented by

prior-independent model (µ̂i)ωi∈Ω, and the agent accurately anticipates that she will use

this updating rule and forecast in all periods. In contrast to many dynamic behavioral

models, this leads to behavior that is dynamically consistent: the optimal action an agent

chooses following any signal realization is the same regardless of whether she commits

to an action strategy before the signal is realized or selects an action after the signal is

realized.

While dynamic consistency is desirable in certain settings, dynamic inconsistency is

an inherent feature of certain biases e.g. confirmation bias or disbelief in the law of

large numbers (Benjamin et al. 2016). Therefore, representing such biases requires a

misspecified model that can exhibit dynamic inconsistency. That is, the misspecified

model an agent believes they will use in future periods must differ from the (potentially)

misspecified model they actually use to form beliefs in future periods. A prior-dependent

representation is a natural way to allow for this. For example, suppose the forecast and

updating rule at prior p are represented by model (µ̂i(·; p))ωi∈Ω and the agent believes
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she will use the forecast and updating rule induced by this model in all future periods. In

contrast, the agent’s actual updating rule and forecast has a prior-dependent represen-

tation denoted by family of models ((µ̂i(·; p))ωi∈Ω)p∈∆(Ω). This can lead to dynamically

inconsistent behavior: since the agent’s model of how to interpret information changes

with her belief but she does not anticipate this, the agent may wish to deviate from her

ex-ante action strategy after observing the signal and updating her belief.

Prior-dependent representations do not always lead to dynamic inconsistency. When

the agent accurately anticipates how her model varies with the prior, a prior-dependent

representation can capture an agent who is time consistent. For example, if the true

model varies with the prior as in active and social learning environments, then the

unique representation of an agent who is Bayesian and has an accurate forecast will be

prior-dependent. Alternatively, a biased agent who is sophisticated about her bias will

accurately predict how her future updating rule and forecast will vary with her future

belief, and therefore, exhibit time consistency.

8 Conclusion

We develop a representation that links updating rules to misspecified models. We show

that any misspecified model can be represented through an update rule and a plausible

forecast and vice-versa under mild conditions. This provides a natural tool for expressing

a misspecified model and it’s implications on decision making entirely in terms of the

two important biases it induces; the prospective and retrospective bias. In addition,

this provides a natural way to complete an update rule through the construction of a

forecast. We identify paths to complete an update rule – the introspection-proof model

and the naive consistent forecast – and provide necessary and sufficient conditions for

these to exist. These results allow us to embed well-documented information processing

biases into economic decision problems where the update rule on its own would have

been insufficient. This decomposition also highlights the importance of eliciting more

than the agent’s updating rule in experimental work in order to get a complete picture

of how the economically relevant ways an agent reasons about information.

A Proofs from Section 4

Proof of Lemma 1. (If:) Let F ≡ {x : xi =
∫
Z h(z)i dµ̂, µ̂ ∈ ∆∗(Z)}. We first show

that F = S(h), which implies that S(h) = rel int F since both sets are convex, and

then show that any prior that lies in the relative interior of F can be represented by a

misspecified model. Consider any x ∈ S(h). Since S(h) is a compact convex set, there

is a set of K ≤ N ai ∈ S̄(h) s.t.
∑K

j=1 λjaj = x, λj > 0,
∑
λj = 1. Fix ε ∈ (0,min{λj}),

and for each aj take a collection of disjoint balls of radius δ < ε
2K

around aj, Bδ(aj).

The set of signals that map to this ball has positive measure.
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Define a density by

dµ̂

dµ
(z) =


λj− ε

2K

µ(h−1(Bδ(ai)))
if z ∈ h−1(Bδ(ai))

ε

2µ(Z\h−1(
⋃K
j=1Bδ(aj)))

o.w.

if µ(Z \ h−1(
⋃K
j=1Bδ(aj))) > 0, otherwise let dµ̂

dµ
(z) =

λj
µ(h−1(Bδ(ai)))

if z ∈ h−1(Bδ(ai)).

Then with respect to this density |
∫
Z h(z)idµ̂−xi| ≤ ε, so x ∈ F . By standard argument

any point in F is in the closure of S(h), so these two sets are the same. So, we can work

directly with points in F .

Consider the vector m ∈ ∆(Ω) where mi =
∫
Z h(z)i dµ, the expected value of the

misspecified posterior under the true unconditional distribution, which exists, lies in F ,

and has non-zero Radon-Nikodym derivative ν-a.e.. Since p is in the relative interior,

there exists an ε > 0 s.t. q = (1 + ε)p − εm ∈ F . Moreover, there exists a probability

distribution γ ∈ ∆(Z) absolutely continuous with respect to ν s.t. q =
∫
Z h(z)i dγ.

Consider the compound lottery where with probability 1
1+ε

the signal z is drawn from γ

and with complementary probability is it is drawn from µ. Call this measure µ̂. Then∫
Z h(z)i dµ̂ = pi. Finally, suppose that there was a set Z with ν-positive measure where

for all z ∈ Z dµi
dν

(z) > 0 but dµ̂i
dν

(z) = 0. This set occurred with positive probability in

the under µ so it must occur with positive probability under µ̂, which is a contradiction.

Therefore, by part 3 we can represent this with a misspecified model.

(Only If:) Take a measure µ̂ ∈ ∆∗(Z). This induces a full support distribution over

supp ρh, denoted ρ̂µ̂ ≡ µ̂ ◦h−1. Let mi =
∫
Z h(z)idµ̂. Suppose m was not on the relative

interior. Then there exists a hyperplane that properly supports S(h) at m, v ∈ RN

s.t. v · m ≥ v · s for all s ∈ S(h), strict for any s on the relative interior. But then,

since the relative interior is non-empty, and any point on the relative interior can be

written as the convex combination of points in the support, implying at least one of

these points is not on the hyperplane, and since any neighborhood of that point occurs

with positive probability v ·m =
∫
v ·s dρ̂µ̂ < v ·m by the full support assumption, which

is a contradiction. �

Proof of Lemma 2. (If:) Fix a plausible forecast ρ̂ and and the associated function

g : Z → ∆(Ω). Let µ̂ = ρ̂ ◦ g−1 be the pushforward measure. By change of variables

formula ∫
Z
g(z)iµ̂(z) =

∫
∆(Ω)

xidρ̂(x) = pi

so by Lemma 2, a misspecified model with unconditional signal distribution µ̂ exists and

induces update rule g(z). This misspecified model has forecast ρ̂ by construction.

(Only If: ) Fix a misspecified model (µ̂i)
N
i=1. Let h(z) be the update rule defined
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by Bayes Rule with respect to this misspecified model. Then if ρ̂(X) = µ̂(h−1(X)) is

a forecast, it is, by definition, the forecast represented by the misspecified model. By

construction, h(z) is a measurable function s.t. ρ̂(X) = 0 if and only if ρh(X) = 0. So

ρ̂ is a forecast. Finally, for any i∫
∆(Ω)

xidρ̂(x) =

∫
Z
h(z)idµ̂(z) =

N∑
i=1

pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)
pidµ̂i = pi,

so it is a plausible forecast. �

Before proving Theorem 1, we first prove the following lemma, which establishes when

a measure over the signal space can be part of a model representing a given updating

rule.

Lemma 3.

1. Updating rule h(z) can be represented by a misspecified model with unconditional

signal distribution µ̂ ∈ ∆∗(Z) iff ∫
Z
h(z)i dµ̂ = pi (21)

for all i. If a representation exists, then µ̂i(Z) = 1
pi

∫
Z
h(z)i dµ̂ for any measurable

set of signals Z ⊂ Z and state ωi with pi > 0.

2. Updating rule h(z) can be represented by a misspecified model with conditional

signal distribution µ̂j ∈ ∆∗(Z) in state ωj iff∫
Z

h(z)i
h(z)j

dµ̂j =
pi
pj

(22)

for all i. If a representation exists, then µ̂i(Z) =
pj
pi

∫
Z
h(z)i
h(z)j

dµ̂j for any measurable

set of signals Z ⊂ Z and state ωi with pi > 0.

The first part of this result is reminiscent of the well-known Bayes plausibility condi-

tion from the literature on communication games (Kamenica and Gentzkow 2011)—that

is, the posterior belief must be a martingale with respect to the prior. The second part

follows from the well-known condition that the likelihood ratio of the probability of

state ωi to state ωj is a martingale with respect to the distribution in state ωj—in this

case, applying this condition with respect to the subjective distribution µ̂j. In either

case, once one distribution is fixed, this distribution in conjunction with the updating

rule either pin down the entire set of conditional signal distributions or violate Bayes-
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plausibility, and therefore, cannot be part of a misspecified model that represents the

updating rule.

Lemma 3 also simplifies the process of selecting a model to represent an updating

rule. In particular, since specifying either the unconditional signal measure or one of the

state-contingent signal measures uniquely pins down the remainder of the misspecified

model, a condition that selects an essentially unique such measure will also uniquely

select a misspecified model.

Proof of Lemma 3. Part 1: First suppose h(z) can be represented by a misspeci-

fied model with perceived unconditional signal distribution µ̂. It follows from standard

argument that beliefs must be a martingale, so if h(z) describes posteriors then∫
Z
h(z)i dµ̂ = pi.

Now suppose that µ̂ is a measure where∫
Z
h(z)i dµ̂ = pi.

Define conditional distributions

µ̂i(Z) =

∫
Z

1

pi
h(z)i dµ̂

for all Z ∈ F . These are probability distributions. It remains to show this induces the

correct belief. Since µ̂i is absolutely continuous with respect to µ, Bayes rule and the

properties of the Radon-Nikodym derivative imply that

Pr(ω|z) =
pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν̂

(z)
=

pi
dµ̂i
dµ̂

(z)∑N
j=1 pj

dµ̂j
dµ̂

(z)
= h(z)i,

so these distributions induce the correct posteriors. Finally any family of misspecified

models must solve
h(z)1 −h(z)2 0 . . . 0

h(z)1 0 −h(z)3 . . . 0
...

. . .

h(z)1 −h(z)N

p1 p2 p3 . . . pN




dµ̂1
dµ̂

(z)
dµ̂2
dµ̂

(z)
...

dµ̂N
dµ̂

(z)

 =


0

0
...

0

1


µ̂-a.s. so the conditional distributions are unique.

Part 2. Suppose h(z) can be represented by a misspecified model with conditional

signal distribution µ̂j. Then, by standard argument, for any i the likelihood ratios
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h(z)i/h(z)j must be martingales with respect to µ̂j so∫
Z

h(z)i
h(z)j

dµ̂j =
pi
pj
.

Now suppose that µ̂j is a measure that satisfies∫
Z

h(z)i
h(z)j

dµ̂j =
pi
pj

for update rule h and all i. Define the misspecified model

µ̂i(Z) =

∫
Z

pj
pi

h(z)i
h(z)j

dµ̂j.

This is a misspecified model that induces update rule h(z). Finally any family of mis-

specified models must solve
h(z)1 −h(z)2 0 . . . 0

h(z)1 0 −h(z)3 . . . 0
...

. . .

h(z)1 −h(z)N

p1 p2 p3 . . . pN




1

dµ̂2
dµ̂1

(z)
...

dµ̂N
dµ̂1

(z)

 =


0

0
...

0

1


µ̂i a.s. so this model is unique. �

Proof of Theorem 1. (If:) By assumption ρ̂ is absolutely continuous with respect to

ρh, so dρ̂
dρh

exists. For any Borel set X, define

ρ̂i(X) ≡
∫
X

1

pi
xi
dρ̂

dρh
dρh =

∫
h−1(X)

1

pi
hi(z)

dρ̂

dρh
(h(z)) dµ(z)

where the second equality follows from change of variables. These are probability mea-

sures, and
∑
piρ̂i(X) = ρ̂(X). For any measurable Z, define

µ̂i(Z) ≡
∫
Z

1

pi
hi(z)

dρ̂

dρh
(h(z)) dµ(z).

For any Borel set X, note that

ρ̂i(X) =

∫
X

1

pi
xi
dρ̂

dρh
dρh =

∫
h−1(X)

1

pi
hi(z)

dρ̂

dρh
(h(z)) dµ(z) = µ̂(h−1(X)).

Therefore, for any Z ∈ P , this agrees with ρ̂ which implies µ̂i(Z) = ρ̂i(∆(Ω)) = 1 by

the assumption that ρ̂ is a forecast. Therefore µ̂i is a probability measure that induces

the specified forecast.
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We are integrating a measurable function over a measurable set, so the model

{µ̂i}ωi∈Ω is indeed a family of measures over (Z,F). Moreover, {µ̂i}ωi∈Ω clearly in-

duces the the specified updating rule h, as dρ̂
dρh

is non-zero a.s. over the support of ρh.

Uniqueness for sets in P follows from Lemma 3 applied to the transformed signal spaces

where signals are posteriors.

(Only If:) The forecast must be plausible by Lemma 2. Suppose that there exists

a Borel X such that ρh(X) > 0 but ρ̂(X) = 0 and a misspecified model (µ̂i)ωi∈Ω

that induces the desired forecast and updating rule exists. Let Z = h−1(X). Then

by the mutual absolute continuity of the misspecified and correctly specified measures,

0 = µ̂(Z) = µ(Z) = ρh(X) > 0, which is a contradiction. Nearly identical logic implies

that ρh(X) = 0 but ρ̂(X) > 0 is a contradiction. Therefore, ρh and ρ̂ must be mutually

absolutely continuous.

This result follows from Lemma 3: an unconditional measure is enough to uniquely

identify the misspecified model that represents a given updating rule. Similarly, it

is immediate that a forecast and a misspecified model consistent with that forecast

uniquely identify an updating rule and that an updating rule and a misspecified model

that induces that updating rule uniquely identify a forecast. �

B Proofs from Section 5

Proof of Proposition 1. Suppose h(z) is an updating rule such that∫
Z
h(z)i dµ = pi for all ω ∈ Ω

then by Lemma 1 there exists a misspecified model (µ̂ω)ω∈Ω that induces unconditional

distribution µ over Z and is represented by updating rule h(z). By the proof of Lemma 1,

µ̂i(Z) =

∫
Z

1

pi
h(z)i dµ

describes a family of misspecified models that induce the desired distribution and up-

dating rule. Moreover, as argued before any family of misspecified models must solve
h(z)1 −h(z)2 0 . . . 0

h(z)1 0 −h(z)3 . . . 0
...

. . .

h(z)1 0 0 . . . −h(z)N

p1 p2 . . . pN




dµ̂1
dµ

(z)
dµ̂2
dµ

(z)
...

dµ̂N
dµ

(z)

 =


0

0
...

0

1


so there is at most one Radon-Nikodym derivative that solves this equation, and thus

the misspecified models are unique.
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Now suppose that (µ̂i)ωi∈Ω describes a family of introspection proof misspecified

models that are represented by updating rule h(z) and have unconditional distribution

µ. By the above logic, the Radon-Nikodym derivative dµ̂i

dµ
= 1

pi
h(z)i. This implies that

µ̂i(Z) =

∫
Z

1

pi
h(z)i dµ(z) = 1

so the desired condition holds. �

Proof of Proposition 2. (If:) The existence of a naive-consistent forecast follows

immediately from Theorem 1. For any X such that Z = h−1(X), note that µ̂i(Z) =

ρ̂i(X) = µi(h
−1
B (X)) = µi(h

−1
B (h(Z))) by construction of ρ̂i and the naive-consistency of

the forecast

(Only If:) Let ρB = µ(h−1(X)) be the accurate Bayesian forecast. Suppose there

exists a naive-consistent representation (µ̂i)ωi∈Ω and there exists a Borel set X s.t.

ρB(X) > 0 but ρ̂(X) = 0. Then µ̂(h−1(X)) = 0, which by absolute continuity implies

that µ(h−1(X)) = 0. But, this then implies that µ(h−1B (X)) = 0 which is a contradiction.

A similar argument applies to the case where ρB(X) = 0 but ρ̂(X) > 0. �

C Proofs from Section 6

Proof of Proposition 3. Fix the manager’s expected self-image, γ ≡ E(h(zm)|M) =

(h(g,M) +h(b,M))/2. The larger γ, the more the test scores for group identity M need

to be inflated on average. In order to maintain the introspection-proof constraint, this

requires on average a lower interpretation of test scores for group identity F , (h(g, F ) +

h(b, F ))/2 = 1−qγ
2(1−q) . For a given γ, the first self chooses an updating rule to maximize

− E[(1ωw=H − h(zw))2],

where the expectation is taken with respect to the true distribution over zw, subject

to the constraint that the self-image is indeed equal to γ, 1
2
(h(g,M) + h(b,M)) = γ

and that the updating rule is introspection-proof, 1
2
(h(g, F ) + h(b, F )) = 1−2qγ

2(1−q) . This is

solved by:

h∗(g,M ; γ) = α + γ − 1/2

h∗(b,M ; γ) = 1− α + γ − 1/2

h∗(g, F ; γ) = α +
q

1− q

(
1

2
− γ
)

h∗(b, F ; γ) = 1− α +
q

1− q

(
1

2
− γ
)
.
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To choose the optimal γ, the first self maximizes

max
γ∈[0,1]

γ − cE[(1ω=H − h∗(zw; γ))2].

This is solved by γ∗ = 1
2

+ 1−q
2qc

. This leads to the IP-updating rule in Proposition 3. �

Proof of Proposition 4. Fix the manager’s expected self-image, γ ≡ E(h(zm; p)|M) =

(h(g,M)+h(b,M))/2. Similar to the derivation for Proposition 3, the optimal updating

rule in terms of γ is

h∗(g,M ; γ) = α + γ − 1/2

h∗(b,M ; γ) = 1− α + γ − 1/2

h∗(g, F ; γ) = α

h∗(b, F ; γ) = 1− α.

This leads to the optimal γ∗ = 1
2cq

+ 1
2
, which is higher than in the introspection-proof

case. �

Proof of Proposition 5. The optimal origination fee satisfies the participation con-

straint with equality, c = Eρ̂[x
2]/(1 + r). Plugging this into the lender’s profit simplifies

the problem to

max
r≥0

Eρ̂[x
2]/(1 + r) + rE[h(z)2]/(1 + r)2. (23)

Taking the first order condition and setting it equal to zero yields Eq. (18). �

Proof of Corollary 2. A correctly specified entrepreneur uses update rule hB and

forecast ρB. Note that VhB = VρB and mhB = 1/2. From Eq. (18), this implies that the

optimal interest rate is zero, r∗(hB, ρB) = 0. When the entrepreneur uses updating rule

h and forecast ρh, she correctly anticipates her posterior beliefs. Therefore, Vh = Vρh
and mh = mρh = 1/2. This is the only forecast that can be jointly represented by a

misspecified model with h. �

Proof of Proposition 6. (If:) Fix an interior prior p ∈ ∆(Ω). By Lemma 1, there

exists a misspecified model (µ̂i)
n
i=1 that represents h(z, p) at p. Therefore, by Bayes rule,

for ν-almost all z
h(z, p)i
h(z, p)j

=
pi
dµ̂i
dν

pj
dµ̂j
dν

.
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So the condition from observation 1 implies that

h(z, p′)i
h(z, p′)j

=
p′i
dµ̂i
dν

p′j
dµ̂j
dν

which is exactly the condition h(z, p′) must satisfy to be induced by (µ̂i)
n
i=1 at p′.

(Only If:) Suppose that h(z, p) admits a prior independent representation (µ̂i)
n
i=1.

By Lemma 1, for every p h(z, p) ∈ S(h(·, p)). Moreover, by Bayes rule

h(z, p)i
h(z, p)j

=
pi
dµ̂i
dν

pj
dµ̂j
dν

,

so for any p,p′

pjh(z, p)i
pih(z, p)j

=
pjh(z, p′)i
pih(z, p′)j

.

�

Proof of Proposition 7. Fix a prior p and let (µ̂i)
N
i=1 be the essentially unique rep-

resentation of h(z, p) and the naive consistent forecast given by ?? at prior p.

It follows from Proposition 6 that this induces h(z, p) at every prior, as for any p′

the likelihood ratio of the heuristic must be the likelihood ratio induced by Bayes rule

with respect to the representation;

p′j
p′i

h(z, p′)i
h(z, p′)j

=
pj
pi

h(z, p)i
h(z, p)j

=
dµ̂i
dν

(z)
dµ̂j
dν

(z)
.

By construction, this representation induces the naive consistent forecast at p′, as for

any Borel X

ρNCF (X; p′) =
N∑
i=1

p′iµi({z : hB(z) ∈ X}) =
N∑
i=1

p′iµ̂
i(h−1(X))

so the forecast induced by (µ̂i)
N
i=1 is the ρNCF . �

Analysis from Section 6.3. Since the lender cannot screen types, he offers a contract

that specifies an origination fee c ∈ R and a borrowing rate r ∈ R to maximize his

expected revenue subject to the constraint that both types choose to open a line of

credit,

max
c,r∈R

c+ r(αEρB [I∗(x; r)] + (1− α)Eρh [I∗(x; r)]) (24)

s.t. EρB [x2]/(1 + r) ≥ c.
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The expectation in the constraint is taken with respect to the accurate forecast ρB since

both types of entrepreneurs use this forecast.

Although both types have the same ex-ante prediction of future beliefs when de-

ciding whether to open the line of credit, when deciding how much to borrow, the

biased entrepreneur overestimates her future returns and borrows more than the unbi-

ased entrepreneur. Further, for a given signal, the amount borrowed is increasing in the

entrepreneur’s bias. This leads to the following result.

Proposition 8.

1. Fixing the level of bias γ, the optimal origination fee is decreasing and the optimal

interest rate is increasing in the share of biased types 1− α .

2. Fixing the frequency of biased entrepreneurs α, the optimal origination fee is de-

creasing and the optimal interest rate is increasing in the level of bias 1− γ.

As the bias increases (γ decreases), the optimal interest rate increases and the lender

profits from the increased optimism of the entrepreneur. The origination fee has an

inverse relationship with the level of bias: a higher bias leads to a lower fee. This is

the result of naive consistency: since all entrepreneurs form the same expectations over

their future borrowing behavior ex-ante, the only way for the lender to offer a contract

with a higher interest rate is to lower the upfront fee.

Proof. The lender chooses c to satisfy the constraint E[hB(z)2]/(1+r) ≥ c with equality.

Therefore we can rewrite Eq. (23) as

max
r
E[hB(z)2]/(1 + r) + r(αE[hB(z)2]/(1 + r)2 + (1− α)E[hB(z)2γ]/(1 + r)2)

This has first order condition

−E(hB(z)2)

(1 + r)2
−2r(αE(hB(z)2)

(1 + r)3
+

(1− α)E(hB(z)2γ)

(1 + r)3
+
αE(hB(z)2)

(1 + r)2
+

(1− α)E(hB(z)2γ)

(1 + r)2
= 0.

Solving this expression for r leads to

r∗(α, γ) =
(1− α)(E(hB(z)2γ)− E(hB(z)2))

(1 + α)E(hB(z)2) + (1− α)E(hB(z)2γ)

The optimal origination fee is c∗(α, γ) = E[hB(z)2]/(1 + r∗). If all entrepreneurs were

unbiased (α = 1), then the lender would want to offer an interest rate of r∗(1, γ) = 0,

as the entrepreneur invests optimally. This results in an origination fee of c∗(1, γ) =

E[hB(z)2]. Otherwise, the lender offers a lower origination fee and a higher interest

rate. �
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D Extensions

D.1 Almost Introspection-Proof.

Given a misspecified model, it is natural to ask (i) how far away is the forecast it induces

from the true distribution over misspecified posteriors, (ii) how far away is the forecast

it induces from the “optimal” forecast for the given updating rule. A natural way to

formalize these questions is in terms of divergences.

Definition 11. Fix a misspecified model (µ̂i)ωi∈Ω. Let ρ̂ and h be the updating rule and

forecast induced by this misspecified model. ρ̂ is the KL-optimal forecast for updating

rule h if it minimizes minρ̂∗ D(ρ̂∗||µ ◦ h−1) across all forecasts that can represented by a

misspecified model that induces h(z)

The KL-optimal forecast provides a natural benchmark for in some sense quantifying

the additional prospective distortions induced by a misspecified model.

Before characterizing the KL optimal forecast ρ̂∗, it is convenient to think about the

following natural exercise. Even if no introspection-proof representation exists, perhaps

a natural model to represent an updating rule would be the one that in some sense

did the best against any sort of test for misspecification the agent could construct. To

formalize this, let Tn : Zn → ∆{0, 1} be a test, a mapping from a realized sequence of

signals to a 0 or 1. We say a sequence passes the test if the realization of this random

variable is 1, and it fails otherwise. Using this, we can define another class of misspecified

models:

Definition 12. Given an updating rule h(z), a misspecified model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N

that represents h is α-introspection proof if across all possible representations it solves

inf
µ̂

sup
Tn

lim inf − lnPr(Tn = 0)

n

s.t. P̂ r(Tn = 1) ≥ 1− α for all n

µ̂ represents h(z).

That is, given any hypothesis test that rejects the misspecified model with probability

less than α, the α-introspection-proof model minimizes the worst-case probability of

rejection under the true distribution as n grows large.

This has a natural connection to a well-studied problem in statistics. We are inter-

ested in the probabilities of type 1 and 2 error for a hypothesis test where:

H0 : µ̂

H1 : µ
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By the Chernoff-Stein lemma, for any µ̂, the solution to the inner optimization problem

is D(µ̂||µ), where D is KL-divergence, so we can reframe this problem as

minD(µ̂||µ)

s.t.

∫
hi(z)

dµ̂

dν
dν = pi for all i.

Using tools from information geometry, we can then characterize the α-introspection-

proof misspecified model.

Theorem 2. Let ψh : RN
+ → R be the joint moment generating function of posteriors

ψh(λ) = Eµ(eλ·h(z)). Given an updating rule h(·), the α-introspection-proof misspecified

model is given by:
dµ̂i
dµ

=
1

pi
hi(z) exp(λ · h(z)− logψh(λ))

where λ ∈ Rn
+ solves

∫
(pi−hi(z))eλ·h(z)dµ = 0 for each i.28 This model has KL-divergence

p · λ− logψh(λ) from the truth.

The updating rule h(z) pins down the exponential family that the α-introspection-

proof misspecified model belongs to while the true distribution determines the exact

representative of this family. Applying the change of variables formula, this also char-

acterizes the KL-optimal forecast, which satisfies for any x ∈ ∆(Ω)

dρ̂∗

dρh
(x) = exp(λ · x− logEρh(exp(λ · x))),

where λ is the λ from above and ρh = µ ◦ h−1.

D.2 State Dependent Introspection-proof

We motivated our notion of introspection-proofness as robustness of the misspecified

model to infinite independent draws of the state and the signal. A natural, related

notion, would be to instead fix the true state of the world ωi and then require the

misspecified model to be robust to observing infinite conditionally independent draws of

z.

Definition 13. A family of misspecified models (µ̂i) representing updating rule h(z) is

ωi-Introspection-proof Model Relative to ωj if for all measurable A

µ̂j(A) = µi(A)

This restriction requires there to exist some state ωj where the observed frequencies

28Since h(z) is a bounded random variable ψh exists. λ solves maxλ p · λ − logψh(λ), which has a
solution iff the convex hull condition is satisfied.
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of different signals matches the truth. As with introspection-proofness, this condition is

enough to pin down a unique misspecified model that represents a given updating rule.

Theorem 3. Fix an updating rule h(z). This can be represented by an ωi-introspection-

proof misspecified model relative to ωj, (µ̂k)Nj=1 if and only if for all k ∈ {1, 2, . . . N}∫
Z

h(z)k
h(z)j

dµi =
pk
pj
.

Moreover, if this representation exists, for any k and any measurable A

µ̂k(A) =

∫
A

pj
pk

h(z)k
h(z)j

dµi.

This condition is once again a variation of the martingale property of beliefs, in this

case, the requirement that the likelihood ratio is a martingale with respect to the true

data generating process. While it seems very similar to the original introspection-proof

condition, this condition is in fact, much less restrictive.

D.3 Prior-Independent Representations of Forecasts

Observation 1. A forecast has a prior-independent representation if ρ̂(x′, p′) = ρ̂(x, p)

for x′ such that x′i/x1 =
p′1
p′i

pi
p1

xi
x1

.

E Comparison to Blackwell’s Order

Roughly, an information structure is Blackwell more informative than another infor-

mation structure if and only if it is a mean preserving spread of the distribution of

posteriors, which is equivalent to the existence of a garbling matrix. A garbled distribu-

tion in general induces different probabilities of each signal realization, as it combines

signals to make them less precise. In contrast, it is difficult to combine signals in a way

that is introspection-proof, as the agent still observes a draw from the original signal

space. In this section, we formally show that these concepts are distinct by providing

examples in which a misspecified model is Blackwell ranked with respect to the true

model but not introspection-proof, and introspection-proof but not Blackwell ranked

with respect to the true model.

Consider a finite signal space Z = {z1, z2, . . . zK} and let Q be a N ×K matrix with

(Q)ij = µi({zj}). Define Q̂ analogously. In this framework, Q and Q̂ capture models.

Model Q̂ is Blackwell less informative than Q iff there exists an K×K stochastic matrix

M s.t. QM = Q̂. The definition of introspection-proof corresponds to pQ = pQ̂, where

p is the (row) vector of priors as defined in Section 2. Proposition 1 establishes that

introspection-proof is equivalent to the the requirement that HQ′p′ = ĤQ′p′, where H

is the matrix with Hij = hB(zj)i and Ĥ is the matrix with Ĥij = h(zj)i.
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To see that a misspecified model can be Blackwell ranked with respect to the true

model but not introspection-proof, consider the models

Q =

(
3
4

1
4

1
4

3
4

)
Q̂ =

(
2
3

1
3

1
4

3
4

)
.

Then Q̂ is a garbling of Q (use M = (7/8, 1/8; 1/24, 23/24)) and therefore, Blackwell

less informative. But Q̂ is not introspection-proof with respect to Q for any interior

prior, as unlike garbling information, the unconditional probabilities of each signal must

be the same under Q and Q̂, e.g. for z1,

p1
2

3
+ (1− p1)

1

4
= p1

3

4
+ (1− p1)

1

4
,

which only holds at p1 = 0.

However, the introspection-proof condition does not preclude a model from being

Blackwell ranked with respect to the true model. To see that a model can be Blackwell

ranked and introspection-proof, consider prior p1 = 1/2 and model

Q̂ =

(
3
4
− τ 1

4
+ τ

1
4

+ τ 3
4
− τ

)
.

for τ ∈ [0, 1/4]. Then model Q̂ is introspection-proof with respect to Q and is also

Blackwell less informative than Q.

To see that models that are not Blackwell ranked with respect to the true model can

also be introspection-proof, consider

Q =

(
2
8

3
8

2
8

1
8

1
8

2
8

3
8

2
8

)
Q̂ =

(
5
16

5
16

5
16

1
16

1
16

5
16

5
16

5
16

)
.

Then Q and Q̂ are not Blackwell ranked but Q̂ is introspection-proof with respect to Q.

F Additional Examples

F.1 Examples of Updating Rules with Prior-Independent and Prior-Dependent

Representations

In this section we show that the parameterization of overreaction in Example 4 and

the parameterization of partisan bias in Bohren and Hauser (2021) satisfy the condition

in Proposition 6, and therefore, have a prior-independent representation. We also show

that the parameterization of over/underreaction in Epstein et al. (2008) (see Example 2)

and the parameterization of partisan bias in Example 3 do not satisfy the condition in

Proposition 6, and therefore, do not have a prior-independent representation.
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In Example 4,
h(z, p)i
h(z, p)j

=
pi
pj

(
dµi
dµj

(z)

)γ
.

It is straightforward to see that it is possible to factor the prior out of this updating

rule.

Consider the parameterization of partisan bias from Bohren and Hauser (2021).

There are two states, |Ω| = 2. Normalize the signal to be the posterior probability

of ω1 following a flat prior, z = dµ1
dν
/(dµ2

dν
+ dµ1

dν
), with support Z ⊂ [0, 1]. Consider

updating rule h(z, p)1/h(z, p)2 = p1z
α/(1− p1)(1− zα), where α ∈ (0,∞) is the partisan

bias parameter. Again it is straightforward to see that it is possible to factor the prior

out of this updating rule.

In contrast, the model of over/underreaction in Example 2 does not satisfy the con-

dition in Proposition 6, as

pj
pi

h(z, p)i
h(z, p)j

=
dµi
dν

+
∑N

k=1 pk
dµk
dν

dµj
dν

+
∑N

k=1 pk
dµk
dν

clearly depends on the prior. Similarly, in the model of partisan bias in Example 3,

p2
p1

h(z, p)1
h(z, p)2

=
p2
p1

(
hB(p, z)21

1− hB(p, z)21

)

where hB(p, z)1 ≡
p1
dµ1
dν

(z)

p1
dµ1
dν

(z)+p2
dµ2
dν

(z)
. This expression also clearly depends on the prior.

F.2 Linear Under- and Overreaction

Fix a correctly specified model (µi)ωi∈Ω, and consider the updating rule for under- and

overreaction defined by Epstein et al. (2008):

h(z) = αhB(z) + (1− α)p

for some α ∈ (−∞, 1]. We can use Lemma 3 to find misspecified models that represent

this updating rule. For instance, consider a misspecified model with an unconditional

measure that is equal to the true unconditional measure, µ̂ = µ. Then µ̂ satisfies Eq. (21)

as
∫
Z hB(z) dµ̂ =

∫
Z hB(z) dµ = p by standard argument, and therefore,

∫
Z(αhB(z) +

(1−α)p) dµ̂ = p. Given this unconditional distribution, the state-contingent distribution

in state ωi is given by:
dµ̂i
dν

=

[
α

pi
hB(z)i + (1− α)

]
dµ

dν
.

In other words, it is completely pinned down by the true unconditional measure µ̂, the

Bayesian updating updating rule hB, and the under- or overreaction parameter α.
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This representation is not unique. Suppose for instance that |Ω| = 2, Z = [0, 1], p =

1/2, µ is the uniform distribution over Z and |hB(z)1 − 1
2
| is symmetric about z = 1/2.

Then the distribution with pdf f(z) = 3/2− 6(z− 1/2)2 also satisfies
∫
Z hB(z)f(z)dz =

1/2, and therefore,
∫

(αhB(z) + (1 − α)/2) f(z)dz = 1/2. While in the first case, the

agent correctly anticipates the frequencies of different signals but underreacts to them, in

this case, the agent underestimates the frequency of “extreme” signal realizations which,

given that hB(z) is monotone, means that in addition to underreacting to the signal, the

agent also anticipates that she’ll observe signal realizations which, on average, are less

informative than the signal realizations she actually observes.
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Alonso, R. and O. Câmara (2016): “Bayesian persuasion with heterogeneous priors,”
Journal of Economic Theory, 165, 672–706.

Arrow, K. J. and J. R. Green (1973): “Notes on Expectations Equilibria in Bayesian
Settings,” Institute for Mathematical Studies in the Social Sciences Working Papers.

Augenblick, N. and M. Rabin (2021): “Belief movement, uncertainty reduction, and ra-
tional updating,” The Quarterly Journal of Economics, 136, 933–985.

Ba, C. (2021): “Robust Model Misspecification and Paradigm Shift,” Mimeo.
Benjamin, D., A. Bodoh-Creed, and M. Rabin (2019): “Base-rate neglect: Foundations

and implications,” .
Benjamin, D. J. (2019): “Errors in probabilistic reasoning and judgment biases,” Handbook

of Behavioral Economics: Applications and Foundations 1, 2, 69–186.
Benjamin, D. J., M. Rabin, and C. Raymond (2016): “A Model of Nonbelief in the Law

of Large Numbers,” Journal of the European Economic Association, 14, 515–544.
Bohren, A. (2016): “Informational Herding with Model Misspecification,” Journal of Eco-

nomic Theory, 222–247.
Bohren, J. A. and D. N. Hauser (2021): “Learning with heterogeneous misspecified mod-

els: Characterization and robustness,” Econometrica, 89, 3025–3077.
Chauvin, K. P. (2020): “Euclidean properties of bayesian updating,” .
Cripps, M. W. (2018): “Divisible Updating,” .
de Clippel, G. and X. Zhang (2019): “Non-bayesian persuasion,” .
Epstein, L., J. Noor, and A. Sandroni (2008): “Non-Bayesian updating: a theoretical

framework,” Theoretical Economics, 3, 193–229.
Espitia, A. (2021): “Confidence and Organizations,” .
Esponda, I. (2008): “Behavioral equilibrium in economies with adverse selection,” American

Economic Review, 98, 1269–91.
Esponda, I. and D. Pouzo (2016): “Berk-Nash Equilibrium: A Framework for Modeling

Agents with Misspecified Models,” Econometrica, 84, 1093–1130.
Esponda, I., D. Pouzo, and Y. Yamamoto (2019): “Asymptotic Behavior of Bayesian

Learners with Misspecified Models,” .
Eyster, E. and M. Rabin (2005): “Cursed Equilibrium,” Econometrica, 73, 1623–1672.
Frick, M., R. Iijima, and Y. Ishii (2020): “Stability and Robustness in Misspecified Learn-

ing Models,” .
——— (2021): “Welfare comparisons for biased learning,” .

52



Fudenberg, D. and G. Lanzani (2022): “Which misperceptions persist?” Available at
SSRN 3709932.

Fudenberg, D., G. Lanzani, and P. Strack (2020): “Limits Points of Endogenous Mis-
specified Learning,” .

——— (2022): “Selective Memory Equilibrium,” Available at SSRN 4015313.
Fudenberg, D., G. Romanyuk, and P. Strack (2017): “Active learning with a misspec-

ified prior,” Theoretical Economics, 12, 1155–1189.
Gabaix, X. (2019): “Behavioral inattention,” in Handbook of Behavioral Economics: Appli-

cations and Foundations 1, Elsevier, vol. 2, 261–343.
Gagnon-Bartsch, T., M. Rabin, and J. Schwartzstein (2018): “Channeled attention

and stable errors,” .
Hagmann, D. and G. Loewenstein (2019): “Persuasion With Motivated Beliefs,” .
He, K. (2020): “Mislearning from Censored Data: The Gambler’s Fallacy in Optimal-Stopping

Problems,” .
He, K. and J. Libgober (2021): “Evolutionarily stable (mis) specifications: Theory and

applications,” .
He, X. D. and D. Xiao (2017): “Processing consistency in non-Bayesian inference,” Journal

of Mathematical Economics, 70, 90–104.
Heidhues, P., B. Koszegi, and P. Strack (2018): “Unrealistic Expectations and Mis-

guided Learning,” Econometrica, 86, 1159–1214.
Jehiel, P. (2005): “Analogy-based expectation equilibrium,” Journal of Economic Theory,

123, 81–104.
Kamenica, E. and M. Gentzkow (2011): “Bayesian persuasion.” American Economic Re-

view, 2590–2615.
Kleijn, B. J. and A. W. van der Vaart (2006): “Misspecification in infinite-dimensional

Bayesian statistics,” The Annals of Statistics, 837–877.
Lee, Y.-J., W. Lim, and C. Zhao (2020): “Cheap Talk with Prior-biased Inferences,” .
Lehrer, E. and R. Teper (2017): “The dynamics of preferences, predictive probabilities,

and learning,” .
Levy, G., R. Razin, and A. Young (2022): “Misspecified Politics and the Recurrence of

Populism,” American Economic Review, 112, 928–62.
Mailath, G. J. and L. Samuelson (2019): “The Wisdom of a Confused Crowd : Model-

Based Inference,” .
Molavi, P. (2021): “Tests of Bayesian Rationality,” arXiv preprint arXiv:2109.07007.
Nyarko, Y. (1991): “Learning in Misspecified Models and the Possibility of Cycles,” Journal

of Economic Theory, 55, 416–427.
Rabin, M. (2002): “Inference by believers in the law of small numbers,” The Quarterly Journal

of Economics, 117, 775–816.
Rabin, M. and J. L. Schrag (1999): “First Impressions Matter: A Model of Confirmatory

Bias,” The Quarterly Journal of Economics, 114, 37–82.
Shmaya, E. and L. Yariv (2016): “Experiments on decisions under uncertainty: A theoret-

ical framework,” American Economic Review, 106, 1775–1801.
Spiegler, R. (2016): “Bayesian networks and boundedly rational expectations,” Quarterly

Journal of Economics, 131, 1243–1290.
——— (2020): “Behavioral implications of causal misperceptions,” Annual Review of Eco-

nomics, 12, 81–106.
Zhao, C. (2022): “Pseudo-Bayesian updating,” Theoretical Economics, 17, 253–289.

53


	1 Introduction
	1.1 Literature Review

	2 Model
	2.1 The Informational Environment.
	2.2 Modeling Errors in Belief Updating
	2.3 Defining a Representation
	2.4 Comparison of Approaches

	3 Simple Example
	4 Representing Updating Rules and Forecasts
	4.1 Representing Updating Rules
	4.2 Representing Forecasts
	4.3 Decomposition

	5 Selecting Forecasts
	5.1 Introspection-Proof Models
	5.2 Naive Consistent Forecasts
	5.3 Biased Forecasts with Accurate Updating

	6 Applications
	6.1 Optimal Bias with Self-Image Concerns
	6.2 Lending Contracts with Bias
	6.3 Lending Contracts with Heterogeneous Entrepreneurs

	7 Dynamics
	7.1 Prior-Independent Representations.
	7.2 Time Inconsistency.

	8 Conclusion
	A Proofs from SectionRepresentation 
	B Proofs from SectionConstructForecasts
	C Proofs from SectionApplications
	D Extensions
	D.1 Almost Introspection-Proof.
	D.2 State Dependent Introspection-proof
	D.3 Prior-Independent Representations of Forecasts

	E Comparison to Blackwell's Order
	F Additional Examples
	F.1 Examples of Updating Rules with Prior-Independent and Prior-Dependent Representations
	F.2 Linear Under- and Overreaction

	References

