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Abstract

We study the fundamental value pricing relationship for nontraditional assets, for which yields

and rare event crash risk are unobservable, and not well understood. We introduce a novel test for

deviations from fundamental value pricing for such assets. Simulations show that our test performs

well for some benchmark examples that bubble tests based on unit roots or explosive behavior may

find hard to handle. For traditional stocks and stock indexes, our test typically does not detect

bubbles. When applied to cryptocurrencies, our test suggests suggests the presence of a bubble

for multiple large cryptocurrencies at risk adjusted discount rates up to 25% per year, and even at

50% per year. For Ethereum, extremely high risk adjusted discount rates, above 71% per year, are

needed for our test to fail to reject the no-bubble null hypothesis. For Stellar, the null is rejected

even at the very high risk adjusted discount rate of 100% per year.
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1 Introduction

Financial innovation necessitates the creation of new assets. Such assets are difficult to value from

fundamentals, and have a limited trading history. In such assets, identifying when the price differs

from the fundamental (intrinsic) value is difficult but very important. In other words, how can one

identify bubbles in innovative assets? In this paper we propose a flexible bubble test that can be

applied to such assets. A natural application of our new test is to cryptocurrencies. First, there is

considerable uncertainty about the determinants of value for cryptocurrencies. Comparing Bitcoin to

a bubble and a Ponzi scheme, economist Paul Krugman ended his January 29, 2018, op-ed article

with “This will end badly, and the sooner it does, the better,”1 a view in line with the market value of

Bitcoin deviating from its fundamental value. Second, over the last decade large and liquid markets

for cryptocurrencies have developed and so traded price sequences are available for many of these

cryptoassets, although over a limited time period.

The key to our test is that while we observe price dynamics, we do not observe the use value of

the assets or the risk of rare catastrophic events that have not yet been realized. In other words, there

may be significant “Peso risk” present. This is a major challenge for bubble tests that are based on

parametric specification of such processes. By contrast, we use a parsimonious asset pricing framework

that makes minimal assumptions about these processes. Notably, we make no assumption about how

they vary over time. This is important as time variation in these processes may lead to prices that

exhibit bubble-like behavior (e.g., rapid rises) even though prices accurately reflect fundamental values.

We provide several examples for which our tests identify bubbles accurately, while parametric

approaches fail. Further, in simulated economies we show that our approach is robust and conservative.

Specifically, it almost always avoids falsely rejecting the no-bubble hypothesis (Type I errors) while

correctly identifying bubbles in most cases when they are present. As an empirical exercise, we apply

our test to some large cryptocurrencies. For BitCoin, Dogecoin, and several other cryptocurrencies,

price dynamics are consistent with fundamental pricing according to our test, whereas for Ethereum

and Stellar the presence of bubbles are strongly suggested.

To understand our framework, consider the following simple asset pricing formulation. The fun-

damental value of an asset is defined as the present value of the discounted cash flows it is expected

to generate in the future. In a continuous time setting, this is simply expressed as

Vt
def
= Et

[∫ T

t
e−r(z−t)Szdz + e−r(T−t)PT

]
. (1)

1Paul Krugman, “Bubble, Bubble, Fraud and Trouble,” Op-Ed, New York Times, January 29, 2018.
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Here, St represents the instantaneous benefit, the surplus flow, received when owning the asset at t,

and r is the risk adjusted discount rate. In the absence of a bubble, the market value of the asset, Pt,

i.e., the price it trades at in the market, equals its fundamental value

Pt = Vt, for all t ≤ T.

If Pt > Vt at any point, then a bubble is present at t. If Pt < Vt, an inverse bubble is present. We

jointly denote any observation of Pt 6= Vt a bubble.

In differential form, the pricing relation of Equation (1) becomes

E [dPt] = rPtdt− Stdt, (2)

or, equivalently, defining the yield as yt
def
= St

Pt
,

E

[
dPt
Pt

]
= (r − yt)dt. (3)

If observed price dynamics of an asset are consistent with fundamental prices, (i.e., Pt = Vt for all

t), they will be consistent with (3). If price dynamics are inconsistent with (3), then there must be a

bubble. Our focus in this paper is on studying whether (3) is violated.

Although the relation presented in Equation (3) is consistent with fundamental value pricing, in

an infinite horizon setting it may also be consistent with the presence of a rational bubble (see, e.g.,

Blanchard 1979, and Froot and Obstfeld 1991).2 Our focus is not to distinguish between rational

bubbles and fundamental value pricing. We therefore study a finite horizon setting, assuming a finite

terminal date far into the future, T < ∞, at which point the asset makes its final payment, FT , and

seizes to exist. In this case, the fundamental value pricing relation becomes:

Pt = Et

[∫ T

t
e−r(z−t)Szdz + e−r(T−t)FT ,

]
. (4)

which is necessary and sufficient for the absence of bubbles, and equivalent to the condition that

Equation (3) holds at all points in time t < T , together with the terminal condition PT = FT . Our

finite horizon specification also means that our approach will in general not detect a bubble in an asset

that acts as a store of value by fiat (whether through government backing as for traditional currencies,

2We conduct our analysis in a homogeneous beliefs setting, in which there is agreement about the expectation in (1).
In heterogeneous beliefs models, bubbles may also arise in finite horizon settings with rational agents under some fairly
strong conditions (private information, short sale constraints and lack of common knowledge of trades), see Allen et al.
(1993). Our focus on models with homogeneous beliefs, rules out such bubbles.
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or via other mechanisms).

For many assets, such as the equity claims on a publicly traded company, the values of the yield,

yt, the risk adjusted discount rate r, and the dynamics of dPt are known or observed. Specifically,

the price Pt is observed, the surplus, St, is captured by periodic dividend payments (and thereby also

the yield, yt) and the risk adjusted discount rate, r, can be estimated from an asset pricing model

(e.g., the Capital Asset Pricing Model). Finally, the dynamics of dPt are easily measured from traded

prices.

For other assets less information is available. New companies have limited price and return obser-

vations, may yet have not made a single dividend payment, and often have negative earnings. In such

cases, valuation may be inferred from the historical performance of comparable mature firms within

the same industry. Occasionally, the surplus flow may not be observed, but still inferred; for example,

the convenience yield on some commodities is not observed, but the properties and determinants of

such yields are well understood and so empirical proxies are available. For other assets, such empirical

proxies may not be known.

Our test is most useful for nontraditional assets, for which the surplus process St is both unobserv-

able and not necessarily universally agreed on. Indeed, there may be competing explanations what

the surplus flow represents. Moreover, for these nontraditional asset there are limited historical ob-

servations of the price process. Of course, limited time series make accurate estimates on the presence

and frequency of rare events challenging.

Our test is general, but we focus on cryptocurrencies as they provide a natural application. For

cryptocurrencies, there are competing explanations for what the surplus represents and its magnitude.3

Moreover, cryptocurrencies may be exposed to rare event risk that have not yet been realized; new

regulation or technological problems. To capture this risk, we consider a small risk per unit time, λt,

that the cryptocurrency instantaneously becomes obsolete, crashes, and loses all of its value. Until

the event occurs, it is unobserved, but the risk still affects price dynamics in a rational market. For

(3) to hold under the presence of such risk, realized returns must be higher than they would be in its

absence (to make up for the loss if the crash eventually arrives). For a traditional asset, such crash risk

may also be present, but given that the asset has a long history of observations, it must likely be very

small in each period; otherwise a crash would most likely have already occurred and the asset would

already be worthless. For an asset with limited history, the per period crash risk may be significant

while the cumulative risk that that a crash has arrived is still modest.

Our goal is to study whether observed price dynamics of a nontraditional asset are consistent

3We defer a discussion of these until we introduce our empirical tests.
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with (3), while making as few assumptions as possible about the yield and crash processes, yt and

λt. The assumptions we impose are that the econometrician sets an upper bound on the sample

averages of these processes over the period of study, and also an upper bound on the risk adjusted

discount rate r. The restriction on λt is very natural since it is directly related to the cumulative crash

probability over the observation period. The upper bound on the yield, yt, could, for example, arise

if the econometrician has an idea about the possible sources of the surplus, choosing the maximum

among the competing explanations.

Our approach is in the spirit of the literature on Peso problems, with respect to the unobserved

crash risk part of the model, see Rogoff (1977, 1980), Krasker (1980), Lizondo (1983), and Kaminsky

(1993). This literature explains apparent deviations from efficiency in forward exchange markets by

rare events that have yet not occurred, e.g., devaluations. For example, Krasker (1980), using a linear

specification of the crash risk process, λt, showed that efficiency in the mark/pound forward rate

during the German hyperinflation era, from January 1921 to September 1923, could not be rejected

when taking into account the possibility for sudden stabilization of the German mark. We deviate

from these approaches in making no assumptions about the functional form of the crash risk processes,

by incorporating unobserved surplus yields, and by incorporating time-varying volatility. This allows

us to analyze general nontraditional assets, going beyond the dynamics of currency forward rates.

1.1 Related literature on bubbles and mispricing

Many papers in econometrics, time series analysis, empirical finance and related fields have focused

on the development and applications of econometric tests for identification of bubbles. Following

Phillips et al. (2011), most of the approaches to testing for bubbles in financial and economic time

series in econometrics focus on identifying explosive behavior in the time series, in the form of the

autoregressive coefficient being greater than one in autoregression approximations. Specifically, in this

framework the null hypothesis of a unit root (the autoregressive coefficient equals one) in autoregression

approximations to the time series of log prices is tested against the alternative of explosive behavior,

in terms of the autoregressive coefficient being graters than one.

Phillips et al. (2011) propose a sup augmented Dickey-Fuller, sup-ADF (SADF), statistic for

testing for the presence of explosive behavior in time series dealt with. A number of papers deal with

extensions of the approaches proposed in Phillips et al. (2011) and develop tests for explosive behavior

in autoregressive processes under wide range of model specifications such as inclusion of time trend

and assumptions on the structure of time series dependence in the autoregression errors, including

time-varying volatility (see Phillips et al. (2014), Harvey et al. (2016), Harvey et al. (2018), Harvey
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et al. (2020) and the discussion therein). Phillips et al. (2015a, 2015b) propose Generalized Supremum

ADF (GADF) statistics for testing for multiple explosive regimes in time series and provide inference

approaches for dating bubble periods.

Several papers have focused on applications of the econometric approaches to testing for explosive

behavior in detection of bubbles in important economic and financial time series, including asset

prices (see the aforementioned papers), cryptocurrency prices (e.g., Astill et al. (2021), Cheah and

Fry (2015), Harvey et al. (2020)), housing and commodity prices, foreign exchange rates and others

(see Shi and Phillips (2021) and Skrobotov (2021) for a review of approaches to bubble/explosive time

series behavior and their empirical applications).

Our paper, being based on the fundamental value pricing relation (4), takes a different approach,

as we shall see.

1.2 The Fundamental Value of a Cryptocurrency

Cryptocurrencies are not traditional assets as they are frequently not claims to underlying cash flows,

and there have been various investigations into the source of their value. One of first papers to

develop a fundamental valuation model of Bitcoin is Athey et al. (2016). This paper uses a rational

expectations framework and the use of Bitcoin as a payments medium to analyze value dynamics.

Following this, there has been a strand of literature that focuses on the payments role of Bitcoin

as its source of value. Among others, Pagnotta and Buraschi (2018) build a model to analyze the

fundamental value of Bitcoin and other blockchain tokens, while Foley et al. (2019) emphasize how

Bitcoin could be used in illegal activities and hence be valuable for a segment of the population.

Fundamental uses of Bitcoin seem to be tied to its use as payments, however, as documented in Schuh

and Shy (2015), there has not been global adoption.

Various papers have postulated a relationship between cryptocurrencies and the size of the network

on which they operated. The idea here is that cryptocurrencies are the medium of exchange on a

platform and so their value is intimately tied to platform adoption and use. For example, Cong et al.

(2021) develop a theoretical model with endogenous user adoption, in which network effects cause the

cryptocurrency’s value to be increasing in adoption rates, and calibrate their model to the value and

adoption rates of 16 currencies between 2010 and 2018. Similarly, Sockin and Xiong (2018) considers

how the use value of a cryptocurrency translates into a market value.

Other papers consider cryptocurrencies as a bundle of attributes including store of value, medium

of exchange and also the potential exposure to hack or collapse risk. Such a fundamental valuation

is estimated by Biais et al. (2020), while Pagnotta (2022) emphasizes the importance of security in
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valuing cryptocurrencies.

The prevalence of market prices for cryptocurrencies has encouraged a rapidly growing literature.

Some authors have stressed that observed prices could be due to manipulation. Gandal et al. (2018),

studying suspicious trading activity on the Mt. Gox Bitcoin currency exchange, find evidence of

periods when Bitcoin’s price was subject to market manipulation. Issues with cross market prices

have also been documented in Makarov and Schoar (2020), while Choi et al. (2018) document a

premium due to regulation. In an interesting article, Griffin and Shams (2018) suggest demand for

Bitcoin might be endogenous and inflated. Liu and Tsyvinsky (2021) study the return dynamics

of three cryptocurrencies (Bitcoin, Ripple, and Ethereum), and verify that they are different than

those of other asset classes (stocks, currencies, commodities), in line with our model assumptions.

Further Urquhard (2016) suggests in several tests that Bitcoin violates weak form market efficiency,

for example showing return anti-persistence.

2 Model

Time is continuous, t ≥ 0. The fundamental value of a nontraditional asset equals

Vt = Et

[∫ τ∧T

t
e−r(z−t)Szdz + 1τt<T e

−r(T−t)FT

]
, (5)

Here, τ ≤ ∞ represents the time of an observable crash event, that immediately makes the asset

worthless if it occurs before the terminal date, T . As discussed in the introduction, the terminal date

lies in the far future, at which point the asset — if alive at that point— makes the payment FT and

seizes to exist. Here r is a risk adjusted discount rate for the type of risk, which we assume is constant.

The expectation is thus taken with respect to the physical (not risk neutral) measure, and risk premia

are accounted for by risk adjusting the discount rate, as in several standard asset pricing models. The

asset is traded in the market, at price Pt. If Pt = Vt for all t, then the price reflects fundamental value.

Otherwise, a bubble is present. The fundamental value yield process is yt = St
Vt

.

Note that the yield may be very low (or even zero) for a long time, even until the terminal date T ,

which may in turn lie far into the future. For a cryptocurrency, this suggests that its use value may

not necessarily be high now or in the near future, even if the asset is very valuable and even if there

is a bubble. For example, the current value may be derived from a small but nonnegligible chance

that the cryptocurrency will eventually (at FT ) replace the dollar as the world currency, in which

case it will become tremendously valuable. Large swings in the fundamental valuate (5) may then

occur if new information arrives that makes the market revise the likelihood that the replacement will

7



eventually happen.

The crash-time τ is determined by the first jump of the counting process Jt, with unobservable

time-varying and stochastic intensity. The value, crash, and yield processes are adapted to the fil-

tered probability space (Ω,F ,P, {Ft}t), carrying the counting process Jt with predictable stochastic

intensity λt, and a Wiener process Wt, and where the filtration {Ft}t is the internal one. Note

that the discounted value process e−rtVt is an Ft-martingale. It therefore follows from a martingale

representation theorem for jump diffusion processes, see Bjork (2011), that Vt has the representation

dVs
Vs

= (r + λs − ys)ds+ σsdWs − dJs, (6)

for some adapted volatility process σs, where we assume σs is bounded, i.e., σs ≤ σ̄. Moreover, we

assume that λt and σt have continuous sample paths (almost surely). Finally, we assume that dJs

and dWs are independent. Implicit in (6) is the assumption that dJs risk is not associated with a

risk-premium, for example, representing idiosyncratic risk. This is in line with the assumptions made

in Merton (1976).

Our specification, with only downward jumps that lead to a complete value destruction, may

see quite specific. However, the specification is natural in that it is the one that maximally “ties

our hands” how much one may explain explaining bubble-like behavior by unobserved rare event

risk. Unobserved upward jumps would pull down observed returns while not being realized, just like

unobserved crash risk pushes them up. As a consequence, incorporating such upward jumps woul

therefore all else equal lead to a higher inferred increase the likelihood of bubbles. Our approach is to

study the “strongest case against the presence of bubbles,” and we therefore do not include upward

jumps in the specification.

Note that the effect on returns in (6) due to unobserved instantaneous crash risk (λs) is always

positive. There may also be innovations at time s about future crash risk, i.e., about λt, t > s.

Such innovation can have either a positive or negative effect on the asset’s price. If future crash risk

increases, the current spot price decreases, and if it decreases the current price increases. In our model,

such innovation about future crash risk would be captured as a component of the dWs term, whereas

the event dJs = 1 captures an actual crash at t.

Also note that conditioned on s < τ (so that Js = 0), it follows from (6) that

E

[
dVs
Vs

∣∣∣∣ s < τ

]
= (r + λs − ys)dt. (7)

The difference between (3) and (7) is that the latter expression takes into account a survivorship bias
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effect, from knowledge about the fact that the asset does not not crash at s (or before).

The cumulative probability that the asset has survived until t is

Lt = e−tλ̄t , where λ̄t =
1

t

∫ t

0
λsds.

The average convenience yield up until t is

ȳt =
1

t

∫ t

0
ysds.

Our null hypothesis, that we wish to test, is that Ps = Vs for all s. The price dynamics {Ps}s,

0 ≤ s ≤ t, are observed until time t < τ , so Jt = 0. Because of standard results on the quadratic

variation of a Wiener process, it follows that {σs}s is observable for 0 ≤ s ≤ t. Moreover, per

assumption, the risk adjusted discount r is also known, or at least a bound r ≤ r̄ is known, e.g. being

determined by a trusted asset pricing model.

For a nontraditional asset, the processes {λs}s and {ys}s are not observed. For a traditional asset,

which has been traded for a long time, λ̄t is likely very small, since Lt would otherwise be small

and the asset would most likely have crashed by t. Similarly, for a traditional asset, the yield ys is

either observed (as for a plain vanilla stock) or at least well understood (as convenience yields are

for commodities). Here, such inferences are not available. Indeed, short-term run-ups in prices could

potentially be explained by high λs, and short-term run-downs by high yt.

The unobservability of the yield makes several traditional methods infeasible. For example, to

apply methods that detect bubbles based on abnormal yields (or inverse yields), see Shiller (2000,

2014), indirect methods of measuring the surplus are needed which makes such approaches challenging

in this environment. Applying various methods based on excess volatility, see Shiller (1981), would

also be challenging, since it requires frequent observations of the yield.

We wish to make as few restrictions as possible on {λs}s and {ys}s, but with no limitations there

is little one can infer about whether the price process is consistent with fundamental value. Our

assumption is therefore that the econometrician knows very little about their local dynamics, except

for that they are both nonnegative and bounded. Moreover, (s)he knows an upper bound on their

sample averages during the observation period:

λ̄t ≤ λ̄,

ȳt ≤ ȳ.
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For example, the econometrician may view it as highly unlikely that Lt < 0.05, which would correspond

to a 95% or higher likelihood that the asset would have crashed by t. This then implies that λ̄t ≤

− ln(0.05)
t . Similarly, arguments based on first principles may suggest that the average yield should have

an upper bound, for example, 15% per year.

Definition 1. The Consistency Verification Problem (CVP) is defined as follows: Given observations

of {Ps}s and {σs}s for the period 0 ≤ s ≤ t during which Js = 0, do there exist parameters (r, λ̄t, ȳt) ∈

Γ
def
= [r, r̄] × [0, λ̄] × [0, ȳ], so that the observed dynamics {Ps}s are well explained by the process for

{Vs}s, as defined by (6)?

We denote Γ the consistency set, and the CVP then addresses whether there are values of r, λ̄t, and

ȳt in this set, such that observed dynamics are consistent with fundamental values.

Implicit in our model is the assumption that the asset’s market risk does not depend on its volatility,

i.e., r does not depend on σt. This corresponds to assets for which the volatility variation over time

is exclusively caused by idiosyncratic risk. An alternative specification allows the variation to depend

on market risk, in which case

dVs
Vs

= (rf + ρ η σs + λs − ys)ds+ σsdWs − dJs. (8)

Here, ρ denotes the correlation of the asset’s return and the market’s returns. Specifically, the market

risk process is governed by a Wiener process Wm, such that 〈dW, dWm〉 = ρ dt, rf is the risk-free

rate, and η = rm−rf
σm is the market’s Sharpe ratio. Both ρ and rf may in principle vary over time. In

this setting, we would still assume that the crash risk is idiosyncratic.

We focus on the idiosyncratic variation of volatility with constant r, i.e., the specification defined

by (6), which we denote the base specification. But the analysis is identical under the alternative

specification (8), which we denote the Sharpe ratio specification. For robustness, we also do tests

using the Sharpe ratio specification.

We have so far developed the model in continuous time, which makes the arguments straightforward

and tractable. However, empirical tests are based on discrete observations, e.g., at weekly or daily

horizons. We therefore specify the discrete version of the CVP.

2.1 Discrete Consistency Verification Problem (CVP)

Consider discrete observations of returns

µn =
P(n+1)∆t − Pn∆t

Pn∆t
, n = 0, 1, . . . , N − 1.
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define λn = λn∆t∆t, yn = yn∆t∆t, σn = σn∆t

√
∆t, n = 0, 1, . . . , N − 1. For small ∆t, the following

approximate discrete relationship then holds

µn = u+ λn − yn + σnξn, (9)

where ξn are i.i.d., standard normally distributed, ξn ∼ N(0, 1), and where u = r∆t.4 Moreover, the

bounds on average crash intensity and yield in the discrete setting map like λ̄ 7→ λ̄∆t and ȳ 7→ ȳ∆t.

For large N , it follows from the Glivenko-Cantelli theorem that the empirical distribution function of

{ξn}n is close to that of the normal distribution function (in the maximum norm). This leads us to

Definition 2 (Discrete CVP). Consider the observed processes µn and σn, n = 1, 2, . . . , N , and the

consistency set Γ
def
= [u, ū]×[0, λ̄]×[0, ȳ]. These observations are said to be consistent with fundamental

values if there exists a triplet (u, λ, y) ∈ Γ, a sequence ξn, n = 1, . . . , N , and two nonnegative sequences

λn and yn, n = 0, . . . , N − 1, such that

1. µn = u+ λn − yn + σnξn, n = 0, . . . , N − 1

2. λ = 1
N

∑
n λn, and y = 1

N

∑
n yn,

3. The empirical distribution function associated with {ξn}n, Fξ, is approximately that of a standard

normal distribution, Φ: ||Fξ − Φ||∞ < ε(N), for some function ε(N)→N→∞ 0.

2.2 Solving the discrete CVP

To solve the discrete CVP, we proceed as follows: For a given u, we define

qn = µn − u,

which given knowledge of u is observable, and the sequence

Gs = Φ−1

(
s+ 1

N + 1

)
, s = 0, . . . , N − 1, (10)

where Φ is the cumulative distribution function of the standard normal distribution.

We now find the nonnegative sequences {λn}n and {yn}n with the minimal averages values, λ and

y, such that the sequence

xn =
qn − λn + yn

σn
,

4Under the Sharpe ratio representation, we would replace u with un = (rf + ρn∆tησn∆t)∆t.
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is approximately i.i.d. normally distributed, in that its empirical distribution function coincides with

G. Specifically, for each permutation Π : {0, . . . , N − 1} ↔ {0, . . . , N − 1}, we calculate the minimal

average realizations of {λn}n and {yn}n, such that

GΠ(n) = xn, n = 0, . . . , N − 1.

Among all permutations, we then choose the one choose, Π, that minimizes these averages.

We can find the solution by solving a linear programming problem. Specifically, define the cost

function

Cn,m = αmax(qn − σnGm, 0) + (1− α) max(σnGm − qn, 0), α ∈ [0, 1].

This is the “cost” of associating the nth observation of returns with the mth largest observation of ξn

as defined in (10), ξn = Gm, either by λn contributing to making the average λ larger (if qn−σnξn > 0),

or by yn contributing to making the average y larger (if qn − σnξn < 0).

When α = 1/2, the weight on λ and y in this optimization problem is the same. When α is close

to 1, almost all weight is put on λ, making it more costly to increase λ than y, and when α is close

to 0, almost all weight is put on y, making it more costly to increase y. We will mainly use α = 1/2,

putting equal weight on λ and y, which works well in simulations.

Solving the CVP then boils down to solving

min
{Xnm}n,m

N−1∑
n,m=0

CnmXnm, s.t. (11)

Xnm ∈ {0, 1}, n,m = 0, . . . , N − 1, (12)∑
m

Xnm = 1, n = 0, . . . , N − 1, (13)

∑
n

Xnm = 1, m = 0, . . . , N − 1. (14)

This problem can be solved in polynomial time using standard methods, e.g., with the so-called

Hungarian algorithm. Here, Xnm = 1 means that the nth observation, qn, is associated with the

realization ξn = Gm, i.e., that Π(n) = m. The associated values of λn and yn that minimize average

λ and y are then

λn = max
(
qn − σtGΠ(n), 0

)
,

yn = max
(
σnGΠ(n) − qn, 0

)
,
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and

λ =
1

N

N−1∑
n=0

λn, y =
1

N

N−1∑
n=0

yn,

with the associated estimated crash risk

L̂ = e−λ
NT .

If λ ≤ λ̄ and y ≤ ȳ, then (u, λ, y) is a solution to the CVP. We also define (λ, y) = CV P (u, α) =

CV P (u, α; {µn}n, {σn}n), as the average crash risk and yield associated with the solution to (11-14)

under observations {µn}n, and {σn}n. If no such solution (u, λ, y) ∈ Γ exists, then we conclude that

the observed price dynamics is not consistent with fundamental value pricing.

The CVP method takes the most conservative possible approach when studying the impact of

{λn}n and {yn}n, assuming that they are high in exactly the periods that makes price dynamics seem

as removed from fundamental pricing as possible (when not taken into account crash risk and yields).

We have

Proposition 1. Consider the fundamental value process (6). For large N , the solution to the CVP,

(λN , yN ) = CV P (u, α), satisfies

αλN + (1− α)yN ≤ λ̄N∆t + (1− α)ȳN∆t + op(1), (15)

where the left-hand-side represents estimated sample averages from the CVP, and the right-hand-side

represents actual sample averages.

Moreover, consider the sequences {λNn }n and {yNn }n associated with the solution (λN , yN ) =

CV P (u, 1/2), and the sequence

ξ̂n =
µn − u− λNn + yNn

σn
,

n = 0, . . . , N − 1. Define

QN
def
=

1

N

N−1∑
n=0

σnξ̂n.

Then, if λnyn = 0 for all n,

λ̄N∆t ≤ λN + yN + ȳ +QN + op(1). (16)

In the general case, when it may be that λnyn > 0, the following inequality holds:

λ̄N∆t ≤ λN + yN + 3ȳ +QN + op(1). (17)
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From the upper bound (15), we conclude that for large N , if there is no solution to the CVP that

is consistent with the reasonable range of average crash risk and average yield, then prices do not

reflect fundamental values, since the actual average values of λ and y are even higher. Equivalently,

the no-bubble hypothesis is rejected in this case.

The lower bounds (16,17) can be used to verify that the crash risk is reasonably low, so that there

is no bubble, i.e., to rule out type II errors. The bounds are especially useful when the average yield is

known to be low, i.e., when ȳ is close to zero. One such case arises when the yield is actually observed

(for example, for stocks), and a total return process (including dividends) can be defined. The total

return process, which is defined by
P(n+1)∆t−Pn∆t

Pn∆t
+ yn∆t in this case, then has the trivial bound ȳ = 0.

If the average yield may be high, then it will be difficult to distinguish dynamics where both

average crash risk and average yield are high (and there is a bubble) from those where they are both

low (and there is no bubble). The estimated variable QN , which can be both positive and negative,

measures how much the estimated average crash risk is “downgraded” by high random realizations

being estimated to occur exactly when volatility is high. If QN is high, there is a significant such

“downgrading,” and if the actual random realization differs from that estimated, the actual average

crash risk λ̄N∆t may be significantly higher than the estimated, λN . We therefore define

Ľ = e−(λN+yN+ȳ+QN )T ,

which excludes the “downgrading,” and therefore provides a lower bound on the survival probability

consistent with observations and (16). Compare this with the estimate which includes the “downgrad-

ing,” L̂ = e−λ
NT .

2.3 An instructive example

An instructive example is given in Figure 1. Here, we assume only three return observations, with

realizations µ0 = 0.165, µ1 = 0.300, µ2 = 1.0698. Assume that the expected return in each period is

u = 0.2, and that the volatility is σ0 = 0.2, σ1 = 1, and σ2 = 0.4.

As stated by (10), the random realizations of the ξm’s in these three observations are assumed

to be G1 = Φ−1(1/4) ≈ −0.675, G2 = Φ−1(1/2) ≈ 0, and G3 = Φ−1(3/4) ≈ 0.675. If we knew

in which order these realizations occurred, we could back out λn and yn. But, we do not know the

order. Indeed, there are six different possible permutations.5 The realization of λt and yt for each of

these permutations are shown in panels 3-8 of the figure. Blue bars represent λ’s and green bars y’s.

5These are (1,2,3), (1,3,2), (2,1,3), (2,3,1), (3,1,2), and (3,2,1).
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Panels 1 and 2 show the actual return realizations.

The sum of the λ’s then lead to the survival probability L = e−(λ1+λ2+λ3). We see that the “worst-

case scenario” for the test, in the sense of the highest implied survival probability and thereby the most

consistent dynamics with no bubbles, occurs in panel 3, which represents the permutation (1,2,3). The

survival probability under this scenario is L ≈ 44.9% so if we set the threshold for identifying a bubble

at a survival probability above 5%, we can then conclude that the return realizations are consistent

with no bubble in this example.

The number of possible permutations is only 6 in this example with three observations, but in-

creases quickly as the number of observations grows. The viability of our method relies on the possi-

bility of solving the optimization problem in polynomial time, using the Hungarian algorithm. Indeed,

we have verified that the method works well on a laptop for simulated problems with up to 10,000

observations, so we can conclude that the method works for up to 40 years of daily observations, and

can be used at even higher frequencies over shorter time periods (or on a more powerful computer).
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Figure 1: An instructive example: Panels 1 and 2 show realized returns over three periods (and

are identical). Panels 3-8 show the inferred λn’s (blue bars) and y′ns (green bars) for the 6 possible

permutations of G1, G2, and G3. Panel 3 has the highest implied survival probability of 44.9%.
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2.4 Variable discount rate CVP

Under the base specification, we have assumed that the risk adjusted discount rate is constant over

time. The CVP can be extended to include assets for which the discount rate varies over time,

also under the base specification with idiosyncratic risk. In continuous time, this corresponds to the

specification
dVs
Vs

= (rs + λs − ys)ds+ σsdWs − dJs, (18)

with the following average discount rate,

r̄t =
1

t

∫ t

0
rsds.

This is therefore a time varying discount rate specififcation with idiosyncratic risk.

For the discrete CVP with variable rates, we assume that the average risk adjusted discount rate

during the observation period is known, u, but that the per period discount rate may deviate from

the sample mean,

u =
1

N
un. (19)

Defining, uen = un − u, it then follows that (9) is replaced in this formulation of the CVP, which

assumes variable discount rates, by

µn = u+ uen + λn − yn + σnξn, (20)

and the variable CVP (V-CVP) is then:

Definition 3 (Variable CVP). Consider the observed processes µn and σn, n = 1, 2, . . . , N , and the

consistency set Γ
def
= [u, ū]× [0, λ̄]× [0, ȳ], where u defines the average discount rate, as in (19). These

observations are said to be consistent with fundamental values if there exists a triplet (u, λ, y) ∈ Γ,

sequences ξn and µen, and nonnegative sequencse λn and yn, n = 0, . . . , N − 1, such that

1.
∑

n u
e
n = 0,

2. µn = u+ uen + λn − yn + σnξn, n = 0, . . . , N − 1,

3. λ = 1
N

∑
n λn, and y = 1

N

∑
n yn,

4. The empirical distribution function associated with {ξn}n, Fξ, is approximately that of a standard

normal distribution, Φ: ||Fξ − Φ||∞ < ε(N), for some function ε(N)→N→∞ 0.
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By inspection, it follows that the solutions {λn}n, {yn}n, to CV P (u, 1/2) can be used to generate

all solutions {uen}n, {λVn }n, {yVn }n, to V-CVP. Specifically, the sequences {uen}n such that
∑

n u
e
n = 0,

and associated sequences

λVn = λn + uen × 1uen<0 ≥ 0,

yVn = yn − uen × 1uen>0 ≥ 0,

define the solutions to V-CVP. In other words, variations in the discount rate can be used to “move”

density between the estimated λ and y in V-CVP. Consequently, given u ∈ [u, u], the bounds λ ∈ [0, λ̄],

and y ∈ [0, y] are for V-CVP replaced by:

λ− y ≤ λ̄, (21)

y − λ ≤ ȳ, (22)

where λ and y are the solutions to CVP. If such solutions to CVP can be found that satisfy (21,22),

then a solution to V-CVP with parameters in the consistency set exists.

2.5 Comparison with Explosive Bubble tests

It is instructive to compare our approach with the SADF test, see Phillips et al. (2011) and Phillips

et al. (2015b). That method tests for the presence of so-called explosive bubbles by studying the

conjectured relationship

pt+∆t = κ+ νpt + εt. (23)

Here, pt = ln(Pt) represent log-prices. The authors define an explosive bubble to be present if ν > 1,

i.e., if the test finds a root with modulus higher than one.

This test for explosive bubbles is different from our fundamental value pricing test. Under the

hypothesis of fundamental value pricing, Pt = Vt, and Ito’s lemma leads to the following dynamic for

pt, while t < τ :

dp = d ln(V ) =
dV

V
− 1

2

(
dV

V

)2

.

This, in turn, leads to

E[dp] =

(
r + λt − yt −

σ2
t

2

)
dt.

Now, if λt ∼ αpt, α > 0, in some region of prices, i.e., if λt is increasing in log-prices in that region,
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we would expect the test to find:

E[∆pt] = E[pt+∆t]− pt ∼
(
r − yt −

σ2
t

2

)
∆t+ α∆t pt,

which would suggest the presence of an explosive bubble in periods of price run-ups, even though the

price of the asset reflects fundamental values, implying that there is no bubble present according to

our terminology.

We conclude that for nontraditional assets it may be difficult to use explosive bubble tests to draw

inferences about the presence of bubbles as defined in this paper, in the sense of deviations between

prices from fundamental values.

3 Tests

We first study the performance of the CVP test in simulations, and then apply the test to detect

bubbles in some stocks during the Dotcom boom, and to cryptocurrencies in recent periods.

3.1 Simulations

We run the CVP algorithm on a test bench of six simulated benchmark problems with 500 weekly re-

turns (approximately 10 years in total). Per assumption, the price and volatility sequences, {Pn}n=0,...,499

and {σn}n=0,...,499, are observed, whereas the crash risk and yield processes, {λn}n and {yn}n, are un-

observed. The six benchmark problems are shown in Figure 2. For each problem u = 0.004 per week,

corresponding to approximately r = 0.2 per year. Moreover, {λn}n and {yn}n are random and i.i.d.

in all benchmark problems except for problem 5. This makes these problems challenging for CVP,

which chooses these estimated processes to minimize the implied likelihood of a bubble.

We set the critical survival probability at L = 5%, corresponding to λ̄ = − ln(0.05)
10 = 0.2996

per year. If the implied survival probability from the estimate provided by CVP is lower than this

threshold, we reject the no-bubble hypothesis. Similarly, we define the maximum consistent yield to

be ȳ = 0.3 per year. Summary statistics, as well as the results of CVP and the SADF test in Phillips

et al. (2015b) are shown in Table 1.

The first series has a survival probability of L = 12.87%, and is therefore consistent with funda-

mental prices. The estimated survival probability is L̂ = 34.63%, so the test correctly fails to reject

the null hypothesis. We note that this estimate is significantly higher than the actual probability,

which is unsurprising: the {λn}n (as well as the {yn}n) sequences are randomly generated in all the
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benchmark problems, and will therefore typically affect the survival probability much less than when

chosen to minimize the probability. It is this conservativeness that makes the method robust.

Similarly, the null is not rejected for the benchmark problems 3 and 5, in line with both problems

having survival probabilities above 5%. Problem 5 has a crash intensity λn that is convex in Pt over

a specific price range, as seen in the bump of the λ sequence around n = 400. This makes log-prices

behave as if there is a feedback loop in that area, conditioned on there being no crash.

Benchmark problem 2 has a much lower survival probability and the null is also rejected for this

problem by CVP, implying a bubble. We note that the price path for this problem is more dramatically

increasing than for benchmark problem 1, driven by the higher λn’s. However, a dramatic price increase

is not necessary for a bubble to be detected. Indeed, the price path for problem 4 is less dramatic

than for problem 1, although problem 4 contains a bubble (L = 0.29%), whereas problem 1 does not.

The reason for problem 4’s modest price path behavior is that the yield sequence, {yn}n, is also high,

pulling down prices. Despite this offset, CVP rejects the no-bubble hypothesis for problem 4, and

detects that both the average crash risk and average yield are high — λ̂ = 0.3524 and ŷ = 0.2658.

Finally, the no-bubble hypothesis is also rejected for benchmark problem 6, which indeed also contains

a bubble (L = 0.13%). Note also that the lower bound on the survival probability, Ľ is higher than 5%

for all three no-bubble economies, suggesting that one can robustly view these economies as no-bubble

economies.

In contrast, the SADF statistic has a hard time to characterize these benchmark problems correctly,

as seen in row 7 of Table 1. The critical value of rejecting the no-bubble hypothesis at the 5% level

for these datasets is about 1.5. As suggested earlier, the SADF test detects a bubble in the feedback

benchmark problem 5 (SADF = 1.689), although no deviation from fundamental values is present (the

true survival probability is L = 48.7%), most likely because of the positive relation between prices and

crash risk. Also, the test strongly rejects the no-bubble hypothesis (at the 1% level, SADF = 2.37)

for problem 1, which does not contain a bubble (L = 12.87%) and, moreover, fails to detect bubbles

for problems 2 and 4 (L = 0.87% and L = 0.29%, respectively, for these two problems). We conclude

that the challenges for the SADF test to classify whether fundamental value deviations are present

are severe in our nontraditional asset setting.

To explore how efficient CVP is in detecting bubbles — defined by dynamics with actual survival

probabilities of L ≤ 5% — we simulate 1000 price paths with i.i.d. processes for λn and yn, 500

weeks of observations for each path, assuming a known discount rate r = 0.1. For each path, (λ̂, ŷ) =

CV P (r, 1/2) is calculated, leading to the implied survival probability L̂ = e−λ̂T . The cutoff threshold

for λ, corresponding L = 5% is then λ = 0.30.
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Simulation 1 2 3 4 5 6

Bubble No Yes No Yes No Yes
σ̄ 0.3599 0.3513 0.3590 0.3486 0.3495 0.3573
λ 0.2050 0.4740 0.1975 0.5829 0.0720 0.6608
y 0.0360 0.0450 0.2000 0.5846 0 0.2932
L 0.1287 0.0087 0.1388 0.0029 0.4870 0.0013

SADF 2.37 0.830 -0.627 0.639 1.689 0.778

λ̂ 0.1103 0.3259 0.0387 0.3524 0.0519 0.3573
ŷ 0.0039 0.0017 0.0678 0.2658 0.0082 0.0742

Ľ 0.11895 0.00525 0.07078 0.00000 0.22247 0.00059

L̂ 0.3463 0.0435 0.6895 0.0338 0.6072 0.0322

Table 1: Consistency verification for simulated data (at L = 5% level). Benchmark prob-
lems in panels 1,3, and 5, are consistent with fundamental prices. Benchmark problems
in panels 2, 4 and 6 not consistent, as shown in row 2. Rows 3-5 contain actual sample
averages of σn, λn, and yn, annualized. Row 6 contains actual survival probability. Row 7
contains the SADF statistic defined in Phillips et al. (2011). Rows 8-9 contain estimated
crash risk process and yield from CVP, and row 10 the implied survival likelihood. The
no-bubble null hypothesis is rejected when L̂ < 5%. Per period discount rate u = 0.004
for all problems.

The results are shown in Figure 3. Out of the 1000 simulations, 613 are correctly classified as being

consistent with fundamental value pricing, and 258 are correctly classified as being inconsistent. Of

the 129 incorrectly classified price paths (12.9% of the total number of simulations), the vast majority

are “type II errors,” i.e., failure to reject the no-bubble hypothesis although the survival probability

is less than 5%. These are the observations in the lower right quadrant of the figure. There are

only 9 “type I error” classifications (corresponding to 0.9% of the sample), i.e., rejections of the no-

bubble hypothesis even though the actual survival probability is higher than 5%. This disproportion

represents the conservative nature of the method, which looks at all possible realizations of crash risk

and yield that are consistent with the observed price path, and chooses the realizations that minimizes

their averages.

3.2 Tests on stocks

We run our test on a set of traditional assets, namely stocks. During the so-called Dotcom boom,

which lasted roughly from 1995 until early 2000, prices of Internet stocks and other related tech stocks

quickly increased, and then subsequently collapsed (the peak occurred in March 2000). Many have in
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hindsight viewed this as a bubble.6

An advantage of studying stocks is that their surplus is observed; it is the dividends the stock

pays. We may therefore study total returns, including dividends, and set ȳ = 0 for the total return

process. A challenge with studying the Dotcom boom is that many of the stocks involved were only

publicly traded fpr a short period before the collapse, because their IPOs occurred in 1998 or 1999.

We pick a sample of eight stocks, four of which — Microsoft, IBM, Ericsson, and Cisco — were

traditional tech stocks that were affected by the boom, and the other four — Yahoo, theGlobe.com,

Garden.com, and Vignette Corporation — were firms with more recent IPOs. We also include two

major stock indexes, S&P 500 and Nasdaq. We set the upper bound of the discount rate at r̄ = 15%,

a high number, but not unreasonable for an individual stock.

The results are shown in Table 2. We see that for none of the stocks is the presence of a bubble

unambigously determined, in the sense of the survival probability L̂ < 5%. The stocks that come

closest to the threshold are Yahoo, with L̂ = 0.0943, and Cisco, with L̂ = 0.1093. For both these

stock, the lower estimates, Ľ, are well below the bubble threshold, so a bubble is not ruled out,

whereas for the other stocks and the indexes, the lower bounds are also above the bounds, more

strongly suggesting that a bubble was not present in either of these.

Note that the estimated average crash intensity is very high for Vignette Corporation, at λ =

1.7640. Our model sugggests that the market understood that the company was a risky investment,

but still viewed it as worhwhile since, it would become very valuable in case a crash was avoided.

But a crash was not avoided. Indeed, at its peak in 2000 Vignette Corporation was worth almost

USD 10 Billion, while it was acquired for USD 320 million by Open Text Corporation in 2009. This

corresponds to a collapse of close to 97% of the company’s value.

We also study stocks and the market over a longer horizon. In Table 3, we show the estimated

survival probabilities, based on total returns between 1990 and 2020, for the tech stocks from the test,

as well as for Facebook, which after its IPO in 2012 has experienced strong growth. We also include

the S&P 500 and Nasdaq indexes, as well as the CRSP Total Market return index. Over this longer

period, and since these companies are mature, set the discount rate at r̄ = 11%, which is about the

long-term average market return per year.

Again, a bubble is not unambiguously suggested in this sample. The closest company to an unam-

biguous bubble is Cisco, followed by Microsoft. These two companies had very strong performances

over the period. Of the remaining companies, Ericsson is the only one for which a bubble is not ruled

6There is no consensus about the Dotcom boom being a bubble period. Pastor and Veronesi (2006) suggest that the
valuation of Nasdaq could be explained by high uncertainty about the benefits of new technologies. This explanation is
potentially in line with our model (the crash occurs if the technology does not work).
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MSFT IBM ERICY CSCO YHOO TGLO GDEN VGNT S&P 500 Nasdaq

Start Jan 95 Jan 95 Jan 95 Jan 95 Apr 96 Nov 98 Sep 99 Feb 99 Jan 95 Jan 95
date

λ̂ 0.2921 0.1687 0.3289 0.4444 0.6298 0.2919 0.3553 1.7640 0.0636 0.1319
ŷ 0.0116 0.0154 0.0511 0.0099 0.0439 0.8944 1.8729 0.0949 0.0107 0.0045
Ľ 0.0991 0.1927 0.0503 0.0318 0.0060 0.1835 0.4367 0.0523 0.6371 0.4864

L̂ 0.2334 0.4317 0.1943 0.1093 0.0943 0.6982 0.8604 0.1773 0.6910 0.4648

Table 2: Testing for bubbles during Dotcom boom. Included in the test are traditional
tech stocks: Mircorosft, IBM, Ericsson, Cisco; Dot.com stocks: Yahoo, TheGlobe.com,
Garden.com, Vignette Corporation; Indexes: S&P 500, Nasdaq. Tests based on weekly
returns and conditional volatility estimated from daily returns in preceding two weeks.

MSFT IBM ERICY CSCO FB S&P 500 Nasdaq Market

Start Jan 90 Jan 90 Jan 90 Jan 90 May 12 Jan 90 Jan 90 Jan 90
date

λ̂ 0.0871 0.0296 0.0790 0.0962 0.1377 0.0418 0.0617 0.0449
ŷ 0.0252 0.0424 0.0701 0.0247 0.0594 0.0216 0.0050 0.0128

Ľ 0.0064 0.1668 0.0061 0.0019 0.0841 0.4004 0.2778 0.3141

L̂ 0.0732 0.4107 0.0933 0.0564 0.3184 0.2855 0.1570 0.2490

Table 3: Testing for bubbles 1990-2020. Included in the test are: Mircorosft, IBM, Erics-
son, Cisco, Facebook; Indexes: S&P 500, Nasdaq, Total Market (CRSP). Tests based on
weekly returns and conditional volatility estimated from daily returns in preceding two
weeks.

out, i.e., for which it is not the case that Ľ ≥ 5%. We have carried out several variations of these

tests (not reported) with similar results, namely (i) that bubbles are in general not unambiguously

indentified, in that it is typically the case that L̄ ≥ 0.05; and (ii) they are often ruled out in that

Ľ ≥ 0.05. For Ericsson, the lower bound is Ľ = 0.0061, is well within the range of a bubble.

Interestingly, the average return on Ericsson stock was not high during the period (CAGR of

5.89% per year). The reason it is hard to rule out a bubble for Ericsson is that its growth during the

Dotcom boom was quite dramatic, after which it fell back. Indeed, after the peak on March 2, 2000,

Ericsson’s cumulative total return has been -83.2%. This is another example of what we saw earlier

in Section 3.1, that our test does not simply rely on total returns during the period.

Similar results as those provided here are obtained under several variations (not reported): for

major indexes and several major stocks over even longer time periods (50 years), varying the estimation

window for conditional volatility between 5 days and a month, and varying the discount rate between

10% and 20%.
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3.3 Tests on cryptocurrencies

We identify the set of cryptocurrencies with a market value of $1 Billion or higher (as of May 11,

2022). In contrast to stocks, we do not have as strong a view about what constitutes a reasonable

range of discount rates for cryptocurrencies. We choose to be really conservative, and view any annual

discount rate below 50% per year as reasonable, i.e., we view r ∈ [0, 0.5] as the reasonable range

of discount rates. We run the CVP-test on these 54 cryptocurrencies with market values above $1

Billion, under the hypothesis that r = 0.25, as well as r = 0.5. Our sample ends on May 9, 2022.

The results are shown in Table 4. As in the simulations, we use weekly observations for the price

series. The instantaneous volatility is calculated using a 7-day window of (non-overlapping) daily

observations. Three cryptocurrencies are unambiguously identified as containing bubbles: Ethereum

(ETH),7 Solana (SOL), and Stellar (XLM). Figure 4 shows prices of Ethereum and Stellar, side by

side with two cryptocurrencies that are not unambiguously identified as containing bubbles, Bitcoin

(BTC), and Dogecoin (DOGE).

We also run the test using the Sharpe ratio specification, with ρ = 1, i.e., assuming only market

risk in the nontraditional asset. The results, shown in Table 5, reaffirm our previous results. With a

market Sharpe ratio of 0.4 (per year), Ethereum, Solana, and Stellar are again identified as containing

bubbles. When the Sharpe ratio is increased to the very high level of 0.7, Solana no longer makes the

list whereas Ethereum (Classic) and Stellar remain in the bubble region.

We note that visually, the price behavior of these four cryptocurrencies look quite similar. Also,

although only three cryptocurrencies unambiguously are identified as containing bubbles (by L̂), about

half of the cryptocurrencies are identified as possibly containing bubbles (by Ľ).

We further study four major cryptocurrencies: Bitcoin, Ethereum, Dogecoin, and Stellar coin. We

solve CV P (r, 1/2) for equidistant choices of r inside and outside of the range, r ∈ [0, 1], and calculate

the implied average crash risk (λ̂), yield (ŷ), and survival probability (L̂) for each of these discount

rates. As in the simulations, we set L̂ = 5% as the critical value for rejecting the no-bubble hypothesis.

We do not have a strong view of what is an appropriate upper threshold for y, and therefore choose

a fairly high value, ȳ = 0.3 per year.

The result for Bitcoin is shown in Figure 5. As seen from the figure, the threshold for Bitcoin

lies at about r = 0.18, so we cannot conclude that a bubble is present. The same test for Ethereum

Classic is shown in Figure 6. Here, we see that up to a significantly higher discount rate, r > 0.72,

the no-bubble hypothesis is rejected. Figures 7 shows the same CVP tests for Dogecoin, for which

7Ethereum Classic (ETC) has a very similar behavior as Ethereum (ETH), and we therefore count them as the same
observation.
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the no-bubble hypothesis is not even rejected at r = 0. For Stellar, the no-bubble hypothesis is

unambiguously rejected even at the very high risk adjusted discount rate r = 1.

4 Conclusions

We have presented a new method to test for the presence of bubbles, especially suitable for assets

where the use value is not easy to determine. We do not find that there is a bubble in Bitcoin. From

being a computer science curiosity it has has seen wide adoption and in some parts of the world, even

retail investors are using it as a store of value. Although Bitcoin is too volatile to be a successful

means of payment, it has increasingly become an attractive investment for those who want exposure

to cryptocurrencies. In as much as the dollar only has value because all accept it has value so Bitcoin

has use value because it is accepted as such. By contrast, Ethereum does have a concrete use value

– payment for executing code on the blockchain. However, as competing chains are brought online,

and Ethereum moves to more efficient processing, the use value will plausibly decline over time. As

it is not the focal cryptocurrency asset that investors hold in their portfolio, the price could admit a

bubble.
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r = 0.25 r = 0.5

Name No. obs. λ̂ ŷ L̂ Ľ λ̂ ŷ L̂ Ľ

AAVE 921 0.0228 0.0034 0.0519 0.0000 0.0217 0.0035 0.0593 0.0000
ADA 1593 0.0055 0.0032 0.2897 0.0233 0.0049 0.0043 0.3271 0.0307
ALGO 241 0.0011 0.0238 0.9638 0.5566 0.0011 0.0261 0.9651 0.5376
APE 54 0.0922 0.0141 0.5750 0.4394 0.0899 0.0153 0.5832 0.4425
ATOM 148 0.0097 0.0161 0.8234 0.5537 0.0084 0.0183 0.8452 0.5439
AVAX 494 0.0405 0.0019 0.0611 0.0052 0.0393 0.0014 0.0663 0.0071
AXS 554 0.0351 0.0019 0.0646 0.0001 0.0333 0.0022 0.0747 0.0002
BCH 1744 0.0030 0.0028 0.4795 0.0092 0.0024 0.0043 0.5505 0.0104
BNB 1645 0.0100 0.0005 0.0960 0.0003 0.0082 0.0006 0.1457 0.0007
BSV 1271 0.0006 0.0072 0.8909 0.0121 0.0007 0.0089 0.8894 0.0126
BTC 3053 0.0058 0.0002 0.0806 0.0045 0.0045 0.0005 0.1416 0.0167
BTCB 382 0.0071 0.0094 0.6878 0.3944 0.0067 0.0105 0.6993 0.4206
BTT 107 0.0011 0.0180 0.9841 0.7052 0.0009 0.0212 0.9876 0.6760
CAKE 241 0.0031 0.0179 0.9015 0.7954 0.0034 0.0192 0.8953 0.8203
CRO 1218 0.0166 0.0023 0.0567 0.0005 0.0154 0.0031 0.0696 0.0006
DAI 1558 0.0000 0.0021 0.9944 1.0113 0.0000 0.0041 0.9948 0.9192
DOGE 1804 0.0083 0.0063 0.1199 0.0000 0.0080 0.0079 0.1290 0.0000
DOT 458 0.0133 0.0061 0.4270 0.3643 0.0113 0.0070 0.4840 0.4049
EGLD 241 0.0109 0.0170 0.6987 0.5422 0.0092 0.0188 0.7381 0.5406
EOS 1776 0.0038 0.0021 0.3824 0.0128 0.0032 0.0034 0.4454 0.0165
ETC 2115 0.0124 0.0036 0.0240 0.0001 0.0114 0.0049 0.0325 0.0001
ETH 2254 0.0120 0.0004 0.0214 0.0002 0.0104 0.0007 0.0356 0.0005
FIL 1560 0.0020 0.0047 0.6407 0.0263 0.0019 0.0060 0.6545 0.0324
FLOW 207 0.0116 0.0265 0.7224 0.5517 0.0107 0.0286 0.7401 0.5411
FTT 241 0.0071 0.0129 0.7922 0.7014 0.0066 0.0147 0.8054 0.7017
HBAR 945 0.0051 0.0037 0.5040 0.0111 0.0043 0.0051 0.5599 0.0123
HNT 385 0.0094 0.0090 0.6034 0.2386 0.0087 0.0105 0.6256 0.2454
HT 1355 0.0037 0.0011 0.4897 0.0595 0.0030 0.0021 0.5607 0.0794
ICP 365 0.0006 0.0371 0.9716 0.2561 0.0011 0.0387 0.9466 0.2596
KCS 1576 0.0070 0.0047 0.2071 0.0055 0.0065 0.0060 0.2333 0.0069
KLAY 241 0.0049 0.0169 0.8509 0.6170 0.0042 0.0194 0.8693 0.5868
LEO 1051 0.0021 0.0008 0.7279 0.3210 0.0013 0.0017 0.8231 0.4088
LINK 1561 0.0118 0.0006 0.0720 0.0025 0.0098 0.0009 0.1130 0.0048
LTC 2088 0.0052 0.0020 0.2139 0.0003 0.0044 0.0030 0.2731 0.0005
LUNA 241 0.0301 0.0012 0.3700 0.2422 0.0280 0.0011 0.3974 0.2743
MANA 1561 0.0038 0.0012 0.4274 0.0028 0.0027 0.0023 0.5470 0.0040
MATIC 1051 0.0104 0.0019 0.2112 0.0002 0.0088 0.0026 0.2688 0.0003
MKR 1540 0.0019 0.0033 0.6607 0.0377 0.0016 0.0048 0.7076 0.0414
NEAR 241 0.0123 0.0066 0.6659 0.2930 0.0104 0.0079 0.7090 0.3031
RUNE 357 0.0141 0.0122 0.4946 0.2024 0.0127 0.0138 0.5299 0.2075
SAND 159 0.0059 0.0369 0.8840 0.4225 0.0056 0.0388 0.8885 0.4191
SHIB 366 0.0449 0.0187 0.1012 0.0075 0.0446 0.0207 0.1030 0.0074
SOL 639 0.0374 0.0005 0.0347 0.0024 0.0348 0.0008 0.0435 0.0031
THETA 1537 0.0070 0.0005 0.2195 0.0024 0.0053 0.0008 0.3125 0.0046
TRX 1641 0.0118 0.0013 0.0644 0.0000 0.0108 0.0021 0.0801 0.0000
UNI 241 0.0015 0.0228 0.9516 0.6782 0.0008 0.0255 0.9745 0.6368
USDT 1853 0.0000 0.0023 0.9977 0.8860 0.0000 0.0050 0.9981 0.5652
VET 1674 0.0054 0.0026 0.2798 0.0005 0.0047 0.0034 0.3247 0.0008
WBTC 241 0.0066 0.0092 0.8050 0.6753 0.0054 0.0111 0.8376 0.6693
XLM 1906 0.0186 0.0055 0.0064 0.0000 0.0179 0.0069 0.0078 0.0000
XMR 2660 0.0077 0.0006 0.0531 0.0000 0.0061 0.0008 0.0979 0.0000
XRP 2667 0.0053 0.0055 0.1353 0.0000 0.0049 0.0069 0.1574 0.0000
XTZ 1561 0.0036 0.0035 0.4514 0.0294 0.0032 0.0045 0.4938 0.0407
ZEC 2022 0.0047 0.0037 0.2613 0.0200 0.0041 0.0048 0.3096 0.0286

Table 4: Tests for cryptocurrencies with market value above USD$1 Billion.
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S = 0.4 S = 0.7

Name No. obs. λ̂ ŷ L̂ Ľ λ̂ ŷ L̂ Ľ

AAVE 921 0.0340 0.0033 0.0120 0.0000 0.0128 0.0037 0.1893 0.0000
ADA 1593 0.0050 0.0039 0.3247 0.0403 0.0041 0.0059 0.3957 0.0653
ALGO 241 0.0006 0.0254 0.9811 0.5584 0.0006 0.0295 0.9800 0.5133
APE 54 0.0856 0.0164 0.5984 0.4512 0.0826 0.0193 0.6091 0.4619
ATOM 148 0.0076 0.0186 0.8582 0.5490 0.0064 0.0224 0.8792 0.5379
AVAX 494 0.0379 0.0017 0.0730 0.0087 0.0340 0.0024 0.0958 0.0142
AXS 554 0.0298 0.0025 0.0981 0.0003 0.0244 0.0042 0.1494 0.0005
BCH 1744 0.0027 0.0035 0.5181 0.0203 0.0018 0.0058 0.6361 0.0335
BNB 1645 0.0091 0.0004 0.1195 0.0008 0.0071 0.0005 0.1919 0.0031
BSV 1271 0.0006 0.0079 0.9057 0.0213 0.0003 0.0101 0.9405 0.0313
BTC 3053 0.0059 0.0002 0.0766 0.0086 0.0048 0.0003 0.1223 0.0479
BTCB 382 0.0066 0.0107 0.7037 0.4040 0.0062 0.0122 0.7192 0.4635
BTT 107 0.0009 0.0182 0.9870 0.7051 0.0006 0.0212 0.9923 0.6796
CAKE 241 0.0032 0.0184 0.9003 0.8422 0.0025 0.0217 0.9206 0.8074
CRO 1218 0.0156 0.0027 0.0677 0.0007 0.0141 0.0035 0.0873 0.0014
DAI 1558 0.0004 0.0007 0.9069 0.9307 0.0004 0.0008 0.9165 1.0262
DOGE 1804 0.0079 0.0063 0.1335 0.0001 0.0070 0.0083 0.1667 0.0018
DOT 458 0.0112 0.0075 0.4870 0.4089 0.0086 0.0099 0.5753 0.4589
EGLD 241 0.0092 0.0191 0.7380 0.5406 0.0076 0.0225 0.7770 0.5276
EOS 1776 0.0033 0.0028 0.4309 0.0320 0.0026 0.0044 0.5245 0.0785
ETC 2115 0.0116 0.0043 0.0306 0.0001 0.0103 0.0062 0.0456 0.0003
ETH 2254 0.0112 0.0005 0.0277 0.0006 0.0092 0.0010 0.0528 0.0024
FIL 1560 0.0020 0.0050 0.6365 0.0508 0.0016 0.0070 0.7061 0.0778
FLOW 207 0.0110 0.0278 0.7359 0.5499 0.0102 0.0317 0.7521 0.5092
FTT 241 0.0069 0.0139 0.7956 0.6986 0.0064 0.0160 0.8105 0.7004
HBAR 945 0.0044 0.0047 0.5534 0.0165 0.0039 0.0073 0.5921 0.0207
HNT 385 0.0080 0.0105 0.6476 0.2669 0.0060 0.0144 0.7219 0.2528
HT 1355 0.0039 0.0010 0.4775 0.0884 0.0028 0.0019 0.5825 0.1425
ICP 365 0.0009 0.0396 0.9566 0.2658 0.0004 0.0446 0.9789 0.2327
KCS 1576 0.0064 0.0053 0.2376 0.0099 0.0056 0.0070 0.2867 0.0175
KLAY 241 0.0046 0.0173 0.8586 0.6251 0.0043 0.0191 0.8690 0.6345
LEO 1051 0.0029 0.0005 0.6457 0.3257 0.0023 0.0007 0.7117 0.4570
LINK 1561 0.0097 0.0009 0.1172 0.0070 0.0070 0.0017 0.2129 0.0226
LTC 2088 0.0045 0.0024 0.2620 0.0007 0.0036 0.0037 0.3431 0.0017
LUNA 241 0.0263 0.0015 0.4195 0.2916 0.0232 0.0035 0.4652 0.3279
MANA 1561 0.0030 0.0020 0.5156 0.0070 0.0025 0.0034 0.5792 0.0192
MATIC 1051 0.0084 0.0028 0.2876 0.0005 0.0070 0.0041 0.3530 0.0012
MKR 1540 0.0017 0.0041 0.6834 0.0650 0.0014 0.0062 0.7371 0.1001
NEAR 241 0.0095 0.0089 0.7306 0.3182 0.0062 0.0110 0.8148 0.3650
RUNE 357 0.0125 0.0147 0.5364 0.2343 0.0101 0.0192 0.6031 0.2342
SAND 159 0.0051 0.0386 0.8984 0.4260 0.0037 0.0420 0.9252 0.4191
SHIB 366 0.0436 0.0205 0.1085 0.0089 0.0422 0.0230 0.1161 0.0103
SOL 639 0.0337 0.0006 0.0484 0.0045 0.0291 0.0009 0.0731 0.0090
THETA 1537 0.0052 0.0010 0.3226 0.0066 0.0035 0.0024 0.4693 0.0173
TRX 1641 0.0108 0.0018 0.0806 0.0001 0.0095 0.0029 0.1093 0.0002
UNI 241 0.0007 0.0248 0.9758 0.6645 0.0003 0.0289 0.9894 0.6096
USDT 1853 0.0001 0.0002 0.9823 1.0325 0.0001 0.0002 0.9842 1.1053
VET 1674 0.0044 0.0034 0.3470 0.0015 0.0033 0.0052 0.4515 0.0037
WBTC 241 0.0065 0.0095 0.8062 0.6779 0.0056 0.0111 0.8304 0.6846
XLM 1906 0.0174 0.0064 0.0090 0.0000 0.0160 0.0084 0.0133 0.0000
XMR 2660 0.0065 0.0007 0.0842 0.0001 0.0046 0.0009 0.1755 0.0022
XRP 2667 0.0050 0.0063 0.1517 0.0000 0.0046 0.0080 0.1747 0.0000
XTZ 1561 0.0032 0.0042 0.4941 0.0563 0.0024 0.0063 0.5813 0.0899
ZEC 2022 0.0040 0.0044 0.3166 0.0509 0.0033 0.0064 0.3864 0.1056

Table 5: Test for cryptocurrencies with market value above USD$1 Billion. Sharpe ratio
specification. 26



A Proofs

B Proofs

Proof of Proposition 1: Defining the discrete norms ‖x‖∞ = maxn=0,1...,N−1 |xn|, and ‖x‖1 = 1
N

∑N−1
n=0 |xn|,

it follows that the CVP algorithm solves

min
λ̂,ŷ

α‖λ̂‖1 + (1− α)‖ŷ‖1, s.t. (24)

‖GΠ − x̂‖∞ = 0, (25)

where

x̂n =
qn − λ̂n + ŷn

σn
, (26)

and the permutation operator Π−1 provides the sorting of x̂n, i.e., x̂Π−1(0) < x̂Π−1(1) < · · · < x̂Π−1(N−1).
The following lemma shows convergence in probability of the norms of the solution to (24-26) and

the equivalent problem based on the actual realizations of {ξn}n.

Lemma 1. Consider observations {σn}n, and {qn}n, where

qn = λn − yn + σnξn,

and ξn ∼ N(0, 1) are i.i.d. Define the permutation operator Π0, such that ξΠ−1
0 (0) < ξΠ−1

0 (1) < · · · <
ξΠ−1

0 (N−1), and the approximate realizations of ξn:

ξ̂n = Φ−1

(
1 + Π0(n)

1 +N

)
= GΠ0(n). (27)

Then, the solutions to the two problems:

Ea = min
λ̂a,ŷa,Πa

α‖λ̂a‖1 + (1− α)‖ŷa‖1, s.t. (28)

‖ξ̂Πa
− x̂a‖∞ = 0, (29)

x̂an =
qn − λ̂an + ŷan

σn
, (30)

and

Eb = min
λ̂b,ŷb,Πb

α‖λ̂b‖1 + (1− α)‖ŷb‖1, s.t. (31)

‖ξΠb
− x̂b‖∞ = 0, (32)

x̂bn =
qn − λ̂bn + ŷbn

σn
, (33)
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converge to the same value in probability,∣∣∣Ea − Eb∣∣∣ = op(1).

Note that the a-problem is identical to the CVP problem (24-26). It assumes that the random
realizations of {ξ}n are exactly according to the G-function, i.e., the inverse normal distribution
evaluated at equidistant points, whereas the b-problem is based on the actual realizations of the ξ’s,
which are random. Since these realizations are unobservable the b-problem is not solvable. The a-
problem is solvable, however, and since the two converge to the same estimates in probability, we can
draw inferences about the solution to the b-problem by analyzing the a-problem.

Proof of Lemma 1: Choose a confidence level β arbitrarily close to 100%, and a strictly positive
ε arbitrarily close to 0. By the Glivenko-Cantelli theorem, the empirical distribution function F of
{ξn}n is close to the normal distribution: P(‖F − Φ‖∞ < ε) ≥ β for sufficiently large N , where the
infinity norm is defined for functions on the real line: f : R→ R,

‖f‖∞ = sup
x
|f(x)|.

Consider the solution to the b-problem, with associated permutation operator Πb, so that ξΠ−1
b (n)

is increasing in n. From Cantelli-Glivenko, we have

P
(∣∣∣Φ(ξΠ−1

b (n))−
n

N

∣∣∣ ≤ ε, ∀n) ≥ β.
Focusing on such a β-probability event that satisfies this ε inequality, and defining εn = Φ(xΠ−1

b (n))− n
N ,

and

λ̂a
Π−1

b (n)
= λ̂b

Π−1
b (n)

+ σn

(
Φ−1

( n
N

+ εn

)
− Φ−1

( n
N

))
× 1εn>0,

ŷa
Π−1

b (n)
= ŷb

Π−1
b (n)

+ σn

(
Φ−1

( n
N

)
− Φ−1

( n
N

+ εn

))
× 1εn<0,

where λ̂b and ŷb are the solutions to the b-problem, and then defining

x̂an =
qn − λ̂an + ŷan

σn
,

it follows that ‖GΠb
− x̂‖∞ = 0, so this is a candidate solution to the a-problem, using the same

permutation operator as for the b-problem. Thus,

Ea ≤ α‖λ̂a‖1 + (1− α)‖ŷa‖1. (34)

Note that |εn| ≤ ε, ∀n, for such an event.
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We now write

‖λ̂a − λ̂b‖1 ≤ σ̄

N

∑
n

∣∣∣Φ−1
( n
N

+ ε
)
− Φ−1

( n
N

)∣∣∣
∼ 2σ̄

∫ 1−ε

1/2+ε
Φ−1(s+ ε)− Φ−1(s)ds

= 2σ̄

(∫ 1/2+ε

1/2
Φ−1(s)ds+

∫ 1

1−ε
Φ−1(s)ds

)
def
= 2σ̄R(ε)

One verifies that R(ε) is a continuous function on ε ∈ [0, 1/2], with R(0) = 0, and R′(ε) ∼
√
− ln(ε)

for small positive ε.8 An identical argument applies to ‖ŷa − ŷb‖1, leading to the identical inequality.
By the triangle inequality, we then have

‖λ̂a‖1 ≤ ‖λ̂b‖1 + 2σ̄R(ε),

‖ŷa‖1 ≤ ‖ŷb‖1 + 2σ̄R(ε),

and thus
Ea ≤ Eb + 2σ̄R(ε).

An identical argument, using the permutation operator Πa that solve the a-problem for the b-problem,
with the implied {λ̂bn}n and {ŷbn}n sequences that generate a candidate solution, yields

Eb ≤ Ea + 2σ̄R(ε).

So, with probability at least β:

|Ea − Eb| ≤ 2σ̄R(ε)→N→∞ 0.

Since β can be chosen arbitrarily close to 1 and ε arbitrarily close to 0, for sufficiently large N , the
lemma follows.

The first part of the proposition, (15), now follows directly from the fact that the actual {λn}n
and {yn}n provide a feasible solution to the b-problem. The minimal solution can, of course, never
have a higher realization, so

Eb ≤ α‖λ‖1 + (1− α)‖y‖1,

and by the lemma and the triangle inequality (15) follows.
For the second part of the proposition, Equation 16, we rewrite the b-formulation of the problem

8That
∫ 1/2+ε

1/2
Φ−1(s)ds =

√
π
2
ε2 + O(ε3) is easily verified. The integral

∫ 1

1−ε Φ−1(s)ds is a bit more subtle. From

standard tables, it follows that the definite integral
∫ 1

1/2
Φ−1(s)ds = 1√

2π
, so

∫ 1

1−ε Φ−1(s)ds = 1√
2π

−
∫ 1−ε

1/2
Φ−1(s)ds is

continuous in ε and tends to 0 as ε tends to 0. Moreover, Φ−1 is strictly positive so the integral is increasing in ε.
Finally, for small ε > 0, Φ−1(1 − ε) ∼ Lw

(
1

2πε2

)
, where Lw is the Lambert W -function whose asymptotic behavior is

well understood. Specifically,
∫ ε+ζ
ε

Lw
(

1
2πs2

)
ds = ζ

√
− ln(ε) +O(ζ2), which leads to the derivative condition.
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as

min
Πb

∑
n

∣∣λn − yn + σnξn − σnξΠb(n)

∣∣ ,
The estimated λ̂b and ŷb functions are then

λ̂bn = max(λn − yn + σn(ξn − ξΠb(n)), 0),

ŷbn = −min(λn − yn + σn(ξn − ξΠb(n)), 0),

and the correct solutions λ̂b = λ and ŷb = y correspond to Πb = I, the identity permutation operator.
Recall the condition:

Condition 1.

λnyn = 0, n = 0, . . . , N − 1.

Consider first the case when σn = σ̄, i.e., volatility is constant, so that the problem can be written

min
Π

∑
n

∣∣λn − yn + σ̄(ξn − ξΠ(n))
∣∣ . (35)

When ‖λ‖1 ≤ ‖y‖1, the bound is trivial (since then ȳ ≥ ‖y‖1 ≥ λ̄N∆t), so we focus on the interesting
case when ‖λ‖1 > ‖y‖1. Note that regardless of permutation operator, if we define rn = σ̄(ξn−ξΠa(n)),
it follows that

∑
n rn = 0, and the problem can be written

min
Π

∑
n

∣∣λn − yn + rΠ(n)

∣∣ .
We have

Lemma 2. If ‖λ‖1 > ‖y‖1 and Condition 1 is satisfied, then, define

λ̂n = max(λn + rΠ(n), 0)1Λ + max(rΠ(n) − yn, 0)1Y

ŷn = max(yn − rΠ(n), 0)1Y + max(−λn − rΠ(n), 0)1Λ

where 1Λ and 1Y are the indicator functions on the sets Λ = {n : λ > 0} and Y = {n : λ ≤ 0},
respectively. Under these conditions,

‖λ̂‖1 = ‖λ‖1 − Z,
‖ŷ‖1 = ‖y‖1 − Z,

where Z ≤ ‖y‖1, regardless of the permutation operator Π.

Proof of Lemma 2:
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We have

‖λ̂‖1 − ‖ŷ‖1 =
∑
n

(
(max(λn + rΠ(n), 0)−max(−λn − rΠ(n), 0))1Λ

− (max(yn − rΠ(n), 0)−max(rΠ(n) − yn, 0))1Y

)
=

∑
n

(
(max(λn + rΠ(n), 0) + min(λn + rΠ(n), 0))1Λ

− (max(yn − rΠ(n), 0) + min(yn − rΠ(n), 0))1Y

)
=

∑
n

(
(λn + rΠ(n))1Λ − (yn − rΠ(n))1Y

)
=

∑
n

(
λn1Λ − yn1Y − rΠ(n)

)
=

∑
n

(λn − yn)

= ‖λ‖1 − ‖y‖1.

The result then follows by defining Z = ‖λ‖1 − ‖λ̂‖1.

When applied to (35), Lemma 2 immediately implies that the solution satisfies:

‖λ̂b‖1 = ‖λ‖1 − Z,
‖ŷb‖1 = ‖y‖1 − Z,

where 0 ≤ Z ≤ ‖y‖1. We take the associated permutation operator Π as a starting point for analyzing
the time-varying volatility problem, which we rewrite as

min
Πb

∑
n

∣∣λn − yn + σ̄(ξn − ξΠb(n)) + ∆σn(ξn − ξΠb(n))
∣∣ , (36)

where σ̄ denotes the time series mean of {σn}n, and {∆σn}n denotes the sequence of deviations from
that mean. Of course, Π is a candidate solution permutation operator to the problem. If a better
permuation operator Πb exists, the improvement of using Πb over Π then must come from the terms

XΠb
n

def
= ∆σn(ξn − ξΠb(n)).

Define the sample mean of this variable:

X̄Πb =
1

N

∑
n

XΠb
n .

Now, since ξn is independent of σn, and σn is bounded above, the weak law of large numbers
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implies that
1

N

∑
n

∆σnξn = op(1),

and thus
X̄Πb = −Q+ op(1),

where

Q =
1

N

∑
n

∆σnξΠb(n).

The trade-off of moving from the permutation operator Π which is optimal under constant volatility,
to Πb which is globally optimal, is now between the increasing effect from the middle part of (36) —
the part multiplied by σ̄) — and the decreasing effect from the rightmost part — which depends on
{XΠb

n }n.
Now, consider the solution to (36), with permutation operator Πb, and define the estimates {λ̌bn}n,

and {y̌bn}n as those in the average volatility formulation (35) under the Πb permutation operator.
Obviously,

‖λ̌b‖1 + ‖y̌b‖1 > ‖λ̂b‖1 + ‖ŷb‖1,

since the Πb permutation operator is not designed to minimize the error under constant volatility,
whereas Π is. It also follows that

1

N

∑
n

∣∣∣λ̌n − y̌bn + σ̄(ξn − ξΠb(n)) + ∆σn(ξn − ξΠb(n))
∣∣∣ =

1

N

∑
n

∣∣∣λbn − ybn +XΠb
n

∣∣∣
≥ ‖λ̌b‖1 + ‖y̌b‖1 +XΠb ,

since by decomposing {0, . . . , N − 1} = Λ ∪ Y , where Λ = {n : λ̌b > 0}, Y = {n : λ̌b ≤ 0}, it follows
that

‖λb‖1 + ‖yb‖1 =
1

N

∑
n

∣∣∣λ̌bn − y̌bn +XΠb
n

∣∣∣
=

1

N

∑
n∈Λ

∣∣∣λ̌bn +XΠb
n

∣∣∣+
1

N

∑
n∈Y

∣∣∣−y̌bn +XΠ
n

∣∣∣
≥ 1

N

∑
n∈Y

(λ̌bn +XΠ
n ) +

1

N

∑
n∈Y

(−y̌bn +XΠ
n )

= ‖λ̌b‖1 + ‖y̌b‖1 +XΠb

≥ ‖λ̂b‖1 + ‖ŷb‖1 +XΠb

≥ ‖λ‖1 + ‖y‖1 − 2Z +XΠb

= ‖λ‖1 + ‖y‖1 − 2Z −Q+ op(1).

It follows that

‖λ‖1 ≤ ‖λb‖1 + ‖yb‖1 − ‖y‖1 + 2Z +Q+ op(1).

Now, since Z ≤ ‖y‖1, and ‖y‖1 ≤ ȳ, we have −‖y‖1 + 2Z ≤ ȳ. Moreover, ‖λa‖1 + ‖ya‖1 = ‖λb‖1 +
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‖yb‖1 + op(1) by Lemma 1, and by the law of large numbers

QN
def
=

1

N

∑
n

σnξ̂Πb(n) =
1

N

∑
n

∆σnξ̂Πb(n)

=
1

N

∑
n

∆σnξΠb(n) + op(1)

= Q+ op(1)

where the first equality follows from the fact that
∑

n ξ̂Πb(n) = 0 (because of the symmetric choice of
the G function). This takes us to:

‖λ‖1 ≤ ‖λb‖1 + ‖yb‖1 − ‖y‖1 + 2Z +Q+ op(1)

≤ ‖λa‖1 + ‖ya‖1 + ȳ +QN + op(1),

i.e., we have shown (16).
When the condition λnyn = 0 for all n is not satisfied, we can repeat the whole argument above,

with the adjusted coefficients λ̃n = max(λn − yn, 0) and ỹn = max(yn − λn, 0), which do satisfy the

condition λ̃nỹn = 0, and also ‖λ̃‖ ≤ ‖λ‖ and ‖ỹ‖ ≤ ‖y‖ ≤ ȳ. This then implies:

‖λ̃‖1 ≤ ‖λa‖1 + ‖ya‖1 + ȳ +QN + op(1).

We also have ‖λ̃‖1 + ‖ỹ‖1 ≥ ‖λ‖1 − ‖y‖1 ≥ ‖λ‖1 − ȳ, so ‖λ̃‖1 ≥ ‖λ‖1 − 2ȳ. Using this inequality, we
get

‖λ‖1 − 2ȳ ≤ ‖λ̃‖1 ≤ ‖λa‖1 + ‖ya‖1 + ȳ +QN + op(1),

which takes us to (17). We are done.
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C Matlab code for CVP

%% CVP Matlab code, JW, March 2, 2022

%% Input:

%% - r: Per period discount rate

%% - rt: Per period returns

%% - sigT: Per period volatility

%% - ybar: Maximum average yield

%% - alpha: Weight in optimization

%% Output:

%% -Lhat: Upper survival probability

%% -Lcheck: Lower survival probability

%% -lambdaMean: Mean of lambda

%% -yMean: Mean y

function [Lhat,Lcheck,lambdaMean,yMean] = CVP(r,rt,sigT,ybar,alpha)

if size(rt,1)>1 %Want row vector

rt=rt’;

end

if size(sigT,1)>1 %Want row vector

sigT=sigT’;

end

T = length(rt);

ER=rt-r; %Excess return

XI=ER./sigT; %Normalized excess returns

G=norminv(1/(T+1)*(1:T)); % Inverse normal vector

%Cost function

C=zeros(T,T);

p=1; %Which norm (1 in paper)

for k=1:T

for j =1:T

z0=alpha*(ER(k)-sigT(k)*G(j)>0)+(1-alpha)*((ER(k)-sigT(k)*G(j)<0));

C(k,j)=z0*abs(ER(k)-sigT(k)*G(j))∧p;

end;

end;

a=matchpairs(C,100);a=a(:,1); %First column is permutation map

b=zeros(T,1);for nn=1:T b(a(nn))=nn;end %Inverse permutation

DLOpt=(XI-G(b)).*sigT; %Minimized realizations

Lambda=DLOpt.*(DLOpt>0);

lambdaMean = sum(Lambda)/T;

Y=-DLOpt.*(DLOpt<0);

yMean = sum(Y)/T;

Lhat = exp(-lambdaMean*T);

QN=sum(sigT.*G(b))/T;

Lcheck = exp(-(lambdaMean+yMean+ybar+QN)*T);
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Figure 2: Benchmark problems in panels 1,3, and 5, are consistent with fundamental prices.

Benchmark problems in panels 2, 4 and 6 not consistent.
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Figure 3: Actual and estimated λ in simulations, on x-axis and y-axis, respectively. Of 1000

simulations, 613 correctly classified as consistent with fundamental value pricing (λ < 0.30), 258

correctly classified as inconsistent (λ ≥ 0.30), 120 are incorrectly classified as consistent, and 9

are incorrectly classified as inconsistent. Parameters: r = 0.1, average volatility 0.28.

39



2016 2017 2018 2019 2020 2021 2022

Year

0

1

2

3

4

5

6

7

P
ri
c
e

10
4 BTC

2017 2017.5 2018 2018.5 2019 2019.5 2020 2020.5 2021 2021.5 2022

Year

0

20

40

60

80

100

120

140

P
ri
c
e

ETC

2017.5 2018 2018.5 2019 2019.5 2020 2020.5 2021 2021.5 2022

Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ri
c
e

DOGE

2017.5 2018 2018.5 2019 2019.5 2020 2020.5 2021 2021.5 2022

Year

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ri
c
e

XLM

Figure 4: Price dynamics and volatility of Bitcoin (BTC), Ethereum Classic (ETC), Dogecoin

(DOGE), and Stellar (XLM).

40



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

0.1

0.2

0.3

0.4

0.5

0.6
BTC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

0

0.02

0.04

0.06

0.08

0.1

0.12

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

r

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

L

Figure 5: Bitcoin (BTC) estimation: Fundamental value pricing consistent at survival probability

L = 5%, with r ≥ 0.18 and yield y ≥ 0.005 per year.
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Figure 6: Ethereum Classic (ETC) estimation: Dynamics consistent with fundamental value

pricing at survival probability L = 5%, with r ≥ 0.0.72, and yield y ≥ 0.35 per year.
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Figure 7: Dogecoin (DOGE) estimation: Fundamental value pricing consistent at survival prob-

ability L = 5%, with r ≥ 0 and yield y ≥ 0.21 per year.
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Figure 8: Stellar (XLM) estimation: Fundamental value pricing not consistent at survival proba-

bility L = 5%, for any r ≤ 1.
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