VALUING FINANCIAL DATA

Maryam Farboodi MIT

> Dhruv Singal Columbia

Laura Veldkamp Columbia

Venky Venkateswaran NYU

Value of Financial Data to Investors

- Data is a valuable asset for investors. How valuable? What is an investor's willingness to pay? This is a demand, not an equilibrium transactions price.
- ► Data valuation is not easy
 - How much you can profit from data depends on who else knows that data, who knows similar data, and how aggressively they will trade on it.
 - \Rightarrow impossible data requirements: Everyone else's data sets, preferences, price impact, investment mandates \dots
- Our contribution: sufficient statistics that bypass the need to know others' information sets and characteristics.
 - \Rightarrow A tool to put a dollar value on a piece of data. It depends only on returns and *your* characteristics

FINDINGS

- Investor characteristics change the value of data by orders of magnitude Data is not a common value asset: same data valued very differently by different investors.
- Demand elasticity of data tied to asset market elasticity.
- Related work puts one value on each piece of data Manela & Kadan ('20, '21), Glode, Green, Lowrey ('12), Kacperczyk & Sundaresan ('19), Davila & Parlatore ('20), Farboodi, Matray, Veldkamp, Venkateswaran ('21)

Measuring different data values for different traders is new. It is necessary to trace out data a demand curve.

OUTLINE

A MEASUREMENT TOOL

ESTIMATION

RESULTS

A KITCHEN-SINK MODEL FOR MEASUREMENT

A noisy rational expectations model with:

- Utility with wealth effects
- Long-lived asset
- Correlated asset payoffs
- Different trading styles (mandates)
- Data correlated across assets
- Price impact
- Public and private data

We do not need these assumptions.

The point: Our sufficient static survives all these complications.

EQUILIBRIUM SOLUTION

Equilibrium

- Investors learn from prices and data. Update beliefs with Bayes' law.
- ▶ Choose portfolios q_{it} to max EU, accounting for price impact dp/dq_i .
- ightharpoonup Price p_t equates demand and supply.
- A second-order approximation to expected utility.
- lacktriangle Profits $(\Pi_t) o$ excess returns (R_t) for measurement
- Substitute optimal portfolio q_{it}, equilibrium price, price information and take expectations over realization of random outcomes and signals

$$\tilde{U}(\mathcal{I}_{it}) \approx \underbrace{\mathbb{E}\left[R_{t}\right]' \, \hat{V}_{it}^{-1} \mathbb{E}\left[R_{t}\right]}_{(\mathsf{Sharpe ratio})^{2}} + \mathsf{Tr} \left[\underbrace{\left(\mathbb{V}[R_{t}] - \mathbb{V}[R_{t} \mid \mathcal{I}_{it}]\right)}_{\mathsf{variance reduction}} \hat{V}_{it}^{-1}\right] + r \rho_{i} \bar{w}_{it}$$

- $ightharpoonup R_t$: returns for i's investable assets based on his investment style
- \hat{V}_{it} : conditional variance of this return, adj for price impact $rac{dp}{dq_i}$

THE INSIGHT: OTHERS' INFO DISAPPEARED!

Dollar value of data: investor indifferent between having the data ≡ no data+ additional riskless wealth

$$Value of Data_i = rac{1}{r
ho_i}\left(ilde{U}(\mathcal{I}_{it} + \mathsf{data}) - ilde{U}(\mathcal{I}_{it})
ight)$$

We can estimate this with your info and public info!

Whether data is public, private or correlated with what others know is crucial, but it matters through conditional variances

- ▶ Utility looks like in many REE models. What's new?
 - Mapping many models into these sufficient stats is new! Models with: heterogeneous investors, style constraints, investment in many assets, data that is private, partially public or correlated with what others know . . .
 - Return-based sufficient stats are a crucial recent step forward for NREE.

OUTLINE

A MEASUREMENT TOOL

ESTIMATION

RESULTS

ESTIMATING CONDITIONAL VARIANCES

- ▶ Small insight: For linear normals, Bayes law and OLS coincide. $\mathbb{V}[R_{t+1} \mid \mathcal{I}_{it}]$ is the expected squared residual from OLS regression.
- ▶ Data to be valued X_t , and existing data Z_t

$$R_{t+1} = \gamma_2 Z_t + \varepsilon_t^Z$$

$$R_{t+1} = \beta_1 X_t + \beta_2 Z_t + \varepsilon_t^{XZ}$$

► Conditional variance without data we're valuing

$$\mathbb{V}[R_{t+1} \mid \mathcal{I}_{it}] \approx \widehat{\mathsf{Cov}}[\varepsilon_t^{\mathsf{Z}}] = \frac{1}{T - |\mathcal{Z}|} \sum_{t=1}^{I} \varepsilon_t^{\mathsf{Z}} \varepsilon_t^{\mathsf{Z}'}$$

Conditional variance with data

$$\mathbb{V}[R_{t+1} \mid \mathcal{I}_{it} + \mathsf{data}] \approx \widehat{\mathsf{Cov}}[\varepsilon_t^{XZ}] = \frac{1}{T - |Z| - |X|} \sum_{t=1}^{I} \varepsilon_t^{XZ} \varepsilon_t^{XZ}'$$

Plug these in equilibrium expected utility to get data value.

ESTIMATION: DATA SOURCES

- A proof of concept: Value the same data for many different investors.
- ► The data we value: Institutional Brokers Estimate System (I/B/E/S) earnings forecasts, 1985-2015
- ▶ Problem: There are too many covariances to estimate.
 - 1. Group assets into portfolios,
 - 2. Use value-weighted means.
- Key: methodology can be easily adapted.

OUTLINE

A MEASUREMENT TOOL

ESTIMATION

RESULTS

DIFFERENT VALUES FOR THE SAME DATA

How much are this year's IBES forecasts worth, to an investor who only knows D_t/P_t (learning from prices)? A take-it-or-leave-it offer.

	Investment Style				
	Small	Large	Growth	Value	All
Perfect Competition					
Investor with \$500,000 Wealth	0.00	\$1.7k	\$2.5k	\$490	\$3.5k
Investor with \$250m Wealth	0.00	\$566k	\$844k	\$164k	\$1.2m
With Price Impact					
Investor with \$500,000 Wealth Investor with \$250m Wealth	0.00	\$1.6k \$24k	\$2.5k \$57k	\$410 \$1.5k	\$1.4k \$253k

Purple: Richer investors value data much more than poorer ones.

Yellow: Investment style matters enormously.

Red: Price impact reduces the value of data - a little or a lot.

The dispersion of valuations for the same data is immense!

EFFECTS OF INVESTOR HETEROGENEITY

	Effect on Data Value	
More wealth	†	
Price impact	\downarrow	
Investment style	it matters	
Previously purchased data	\downarrow modestly	in the paper
Trading horizon	modest effect that varies	in the paper

Directional effects intuitive but effects often compete. Magnitudes would be tough to guess without our tool.

Conclusion

- ▶ Data is one of the most valuable assets in the modern economy.
- Data has enormously variable private values.
 The same data is worth vastly different amounts to investors with different wealth and style, with and without price impacts, . . .
- Next steps to understand data markets:
 - Estimate distributions of investor characteristics to produce a demand curve.
 - Understand the data supply side.

Then we can do asset pricing theory ... for data!