Finding Out Who You Are

A self-exploration view of education

The Ohio State University

What I do

My question How useful is it to view education as a statistical experiment about oneself?

• People often say that education is not just for gaining knowledge or a diploma, but to "find out who you are"

It is pretty useful, in studying the value My answer and design of education

- Main result: An optimal educational structure encourages a field in which its participating students on average have comparative advntage
- Application: Advanced science classes in U.S. high schools are informative to students on their decisions to pursue science majors, but are too science-encouraging

Model

 $i \in I = \{1, 2, \dots, n\}$ Students

(talented in gathering or $\omega^i \in \Omega = \{\omega_g, \omega_h\}$ State or "Talent"

 $p^i = \Pr(\omega^i = \omega_h)$ Prior beliefs (public and rational)

(career in gathering or

 $a^{i} \in A = \{a_{q}, a_{h}\}$ Action or "Career" hunting)

"Productivity" $u(\omega^i, a^i)$

 $u_g = u(\omega_g, a_g) - u(\omega_g, a_h) > 0$ "Mismatch costs"

(better to choose a matching career) $u_h = u(\omega_h, a_h) - u(\omega_h, a_q) > 0$

Participation choice $d^i \in \{0, 1\}$

Cost of participation $\delta \geq 0$

Ex-post payoff $u(\omega^i, a^i) - \delta d^i$

 $s^i \in S = \{s_q, s_h\}$ Signal

(Education is receiving a signal about one's talent before choosing a career)

 $\Pr(s|\omega) = egin{bmatrix} \omega_g & \gamma & 1-\gamma \ \omega_h & 1-\eta & \eta \end{bmatrix}$

"Educational $(\gamma, \eta) \in \Theta = \{(\gamma, \eta) \in [0, 1]^2 \mid \gamma + \eta \ge 1\}$ **Structure**" $\gamma \geq \eta$ means gathering-encouraging. $\gamma \leq \eta$ means hunting-encouraging.

Feasible education $C(\gamma, \eta) \leq B$

C is continuous, differentiable, strictly increasing, strictly convex, symmetric, and well-bahaved at the boundary. B>0 is a constant.

Results

Definition. A feasible education is **optimal** if it maximizes $W(\gamma, \eta)$, the sum of expected payoffs of all students. It is nontrivial if it has at least one participant.

Theorem 1 (Characterization).

Suppose (γ^*, η^*) is feasible and nontrivial.

Suppose $D^* \subset I$ is the set of participants under (γ^*, η^*) .

Then (γ^*, η^*) is optimal if and only if

$$(\gamma^*, \eta^*) = F(\bar{p}_{D^*}), \text{ and}$$

$$D^* \in \underset{D \in \mathcal{P}(I)}{\operatorname{argmax}} W(F(\bar{p}_D)),$$

where \overline{p}_D is the average belief of a set D of students, and F(p) is the solution (γ, η) of the system of equations

$$\frac{\frac{\partial}{\partial \gamma}C(\gamma,\eta)}{\frac{\partial}{\partial \eta}C(\gamma,\eta)} = \frac{1-p}{p}\frac{u_g}{u_h} \quad \text{and} \quad C(\gamma,\eta) = B.$$

The optimal structure depends only on the participants' average belief

Theorem 2 (Direction of encouragement).

Suppose (γ^*, η^*) is as in Theorem 1 and is optimal. Then $\overline{p}_{D^*} \le \frac{u_g}{u_g + u_h} \Rightarrow \gamma^* \ge \eta^* \quad \text{and} \quad \overline{p}_{D^*} \ge \frac{u_g}{u_g + u_h} \Rightarrow \gamma^* \le \eta^*$

The optimal structure encourages gathering if participants are on average more confident in gathering, and the same goes for hunting

Empirical Application

Advanced science classes in U.S. high schools

I estimate the model parameters using data of 6,638 U.S. high school students who were in 9th grade in 2009

• HSLS (High School Longitudinal Study) contains the data on their initial self-confidence in sciences, participation in AP science classes, and decisions to pursue science majors in college

The classes are science-encouraging and is not optimal Students' prior beliefs in science talent are ranged 10-30%. The estimated structure is $(0.7_{\text{non-science}}, 0.9_{\text{science}})$

• The value of these classes are 5% increase on future income. Under the opposite structure (0.9, 0.7), it would be 12%

Estimated Priors and the Value of Education