Index Funds, Asset Prices, and the Welfare of Investors

Martin Schmalz (U. of Oxford SBS, CEPR, ECGI, C-SEB)

William Zame (Economics, UCLA)

Motivation

Index funds were introduced to "allow middle-class investors to achieve market returns". (Jack Bogle)

Do they accomplish this goal?

Partial equilibrium analysis → yes.

But if index funds are large enough to affect prices then a partial equilibrium analysis is no lon appropriate – we need a general equilibrium analysis.

What do we do?

- Build a simple *general equilibrium* model in which heterogeneous investors hold individual stocks, index fund, risk-free bond.
- Define notion of equilibrium in the model.
- Prove existence of equilibrium.
- Provide simulations showing investor choices, asset prices, investor welfare as functions of the cost of indexing.

What do we find?

- Indexing → reduced risk of investing in stock.
- Reduced risk of investing in stock → increased demand for stock.
- Increased demand for stock → higher equilibrium asset prices.
- Net: Indexing decreases the welfare of investors

Caution: This is a model.

Model: Overview

- The model is static; represents two moments in time.
- One representative Fund.
- Many identical firms.
- Idiosyncratic and Aggregare shocks
- Heterogeneous investors characterized by risk attitude and invested wealth.
- There is no trade.
- Investors hold portfolios of stocks, fund, bonds...
- Consumption/investment choices already made.

Firms

- N identical firms (in many small industries)
- Idiosyncratic shocks; mean 0 (e.g. cost shocks)
- Market-wide shock; mean 0 (e.g. demand shock)
- Firm behavior is summarized by random profit

Single (representative) Fund

- Fund charges a fee $k \ge 0$ as fraction of AUM Fund does not maximize profit.
- Fund invests AUM uniformly across entire market

Bond

- Single riskless bond
- Return = $1 + \rho$, $\rho \ge 0$

Investors

- Non-atomic continuum of Investors [0, T]; $0 < T \le \infty$
- Investor t characterized by
 - Choice set $X_t = \mathbb{R}^3_+$
 - ★ shares in a single firm (proxy for costly diversification)
 - * shares in Fund
 - ★ bonds
 - ▶ Invested wealth w_t
 - Utility U_t for random consumption
- Distribution ϕ , total mass M

Equilibrium

Equilibrium Quantities

- Price for firms p
- Investor choices x_t

Equilibrium Conditions

- Investors maximize (random) utility subject to budget constraint
- Demand for stock in firms = Supply of stock in firms

Theorem Equilibrium Exists.

Simulations: Questions

How do

- investor choices
- asset price
- investor welfare

Depend on

- distribution of wealth & risk aversion
- absence/presence of Fund
- fee charged by of Fund

Simulations: Parameters, Guideline ~ 1980

- Number of publicly traded US firms: $\sim 5,000$
- Market capitalization \sim \$1 Trillion
- Value of bond market: $\sim \$0.5 1.5$ Trillion
- Simulation: total invested wealth W = 2 Trillion
- ullet Number of investors ~ 100 Million

Simulations: Investors

Investors maximize expected CARA utility:

$$u_t(y) = (1 - e^{-ty})/(1 - e^{-t})$$

Scaling: y = terminal wealth/10,000

Distributions

- Distribution of wealth w_t is exponential
- Distribution of risk aversion t is uniform on [0,5]
- Wealth is concentrated:
 - ▶ top 20% of investors have 62% of wealth
 - bottom 20% of investors have 2% of wealth
- Richest investors are least risk averse
- Poorest investors are most risk averse

Simulations: Firms

- Expected profit of each firm: $\pi = 500 Million
- Idiosyncratic risk: $\epsilon = \pm 50\%$, equal probabilities
- Market risk: $\Delta = \pm 50\%$, equal probabilities

Remaining Parameters

- Interest rate = 50% $\rho = 0.5$
- Fund fee(s) $k = 0, 0.01, ...1.00; \infty$
- k = 0: limiting benchmark
- $k = \infty$: no fund

Portfolio Choices: $k = \infty$

Asset Price and Cost of Indexing

Total Wealth = 2 Trillion Firm Profit = 0.5 Billion

Welfare Relative to $k = \infty$ (no Fund)

Summary Conclusion

- Index Funds benefit the marginal investor.
- Index Funds harm investors as a whole.
- Tragedy of the Commons.

Caution We make many simplifying assumptions. *It's a model*.

More to Come

Extension: Fund ownership affects the behavior of firms.

- The Fund controls votes → changes in oversight and governance → changed firm costs and industry outcomes (e.g. Anton et al. 2022)
- Higher asset prices → lower cost of capital → lower firm costs.
- Common ownership (Rotemberg 1984),

Changes in firm behavior →

- changes in equilibrium asset prices
- changes in investor welfare
- changes in consumer welfare