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1. INTRODUCTION

Payment arrangements vary widely across different economic situations. The typical

payment for the purchase of a home follows complex procedures to ensure a secure simul-

taneous transfer in ownership of both the funds and the home. This stands in stark contrast

with the payment for a newspaper subscription at the same address, which is likely to occur

at a completely different frequency from that with which the newspaper is delivered. While

the rationale behind different payment arrangements usually attracts little thought from par-

ticipants, payments arrangements evolve both from the constraints of available technology

and from (at times, expensive) economic experience.

Proponents have argued that payment arrangements may change substantially with the

widespread availability of new technologies that enable low-cost “programmable pay-

ments.” Programmable payments are transfers of funds that are automatically executed

conditional upon preset objective criteria that are agreed upon by the payer and payee.1

For some, programmability is one of the features driving the enthusiasm for private digi-

tal currencies. Programmability has also been raised as a potentially desirable feature for

central bank digital currencies.2 Programmable payments can provide assurance to both

1There is no single accepted definition of programmable payments. Our description captures the main ele-

ments of the definitions of Bullock (2018, p. 4), the Deutsche Bundesbank (2020a, p. 4), Arner et al. (2020,

footnote 5), Bechtel et al. (2020), and European Commission (2023). Programmable payments may be enabled by

programmable money, but they do not necessarily require programmable money (Deutsche Bundesbank, 2020a,

Bechtel et al., 2020, Eurogroup, 2023). Programmable money may also be used for other purposes such as limiting

the purposes on which funds can be spent (e.g., food stamps) or implementing an expiry date on money (Kahn

et al., 2021). The present paper focuses on the demand for programmable payments, and the alternative purposes

of programmable money are outside the scope.
2Central bank reports that have looked at programmability include those of the Deutsche Bundesbank (2020b),

Bank of England (2020), European Central Bank (2020), Wong and Maniff (2020), Usher et al. (2021), Hojo and

Hatogai (2022). The legislative proposal for the digital euro facilitates explicitly the provision of functionality for

programmable payments: “To ensure that payment service providers and digital euro users can use conditional
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the payee and the payer: They essentially automate the process of committing funds for

a given period of time and then releasing those funds to the payee conditional upon the

delivery of services or goods. The recent launch of the payment solution called “Yuan

Steward” for China’s digital yuan added such functionality to consumer wallets by em-

ploying smart contracts (Zhou, 2022). Often-raised use cases of programmable payments

are enabling micropayments for pay-per-use concepts, “atomic” settlement and clearing for

securities, currencies and derivatives, and automated escrow services. Although many have

documented the wide range of technical possibilities, much less is known about the po-

tential demand for these features. Could programmable payments become the new default

mode of making payments?

The purpose of this paper is to study, in a formal economic framework, the desirability

of programmable payments for a set of situations requiring a payment arrangement be-

tween two counterparties. A seller provides a service for a period of time to a buyer in

a continuous-time framework. The framework stacks the cards in favor of programmable

payments by considering an environment where counterparties do not have any legal re-

course in the event where either the buyer or the seller does not deliver upon their promises.

This environment favours the potential value-added of the assurance that programmable

payments can provide to both the payer and payee. Moreover, we study the extreme case

where the degree of automation has evolved to the point where the cost of a programmable

payment has fallen to a level comparable to that of a simple direct payment.3 We use

this framework to study the optimal payment arrangement and assess the conditions under

which the optimal payment arrangement requires programmability. En passant, the frame-

work provides insight into the rationale for some existing institutional payment arrange-

digital euro payment transactions, the European Central Bank may provide the functionalities in the digital euro

settlement infrastructure necessary for the execution of conditional digital euro payment transactions, including

for the reservation of funds” (European Commission, 2023, Article 24.1.b).
3A simple direct payment is always implementable as a programmable payment where the funds committed

by the payer are immediately and unconditionally released to the payee. Hence, it is reasonable to assume that a

simple direct payment can always be implemented at the same cost as a programmable payment or less.
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ments as well as the relationship between transaction costs and the demand for payments

more generally.

We start by analyzing an environment where a buyer can make a single payment with the

purpose of purchasing a service from a seller. Without legal enforcement, programmable

payments will be the only viable payment arrangement. A direct payment cannot result in a

viable trading relationship: Once the seller has received the funds, she has no incentives to

continue providing the service. Similarly, the buyer has no incentives to pay using a direct

payment knowing that the seller will stop providing the service as soon as she receives the

funds. A programmable payment allows for a viable payment arrangement by temporarily

locking-up the funds between the moment that funds are committed by the buyer and the

moment they are received by the seller, while conditioning the release upon delivery of the

service (akin to a traditional escrow account). Such an arrangement is feasible as long as

the transaction cost is sufficiently low (Theorem 1).

Although a programmable payment enables a viable relationship, the maximum length of

the arrangement between a payer and payee that can be supported by a single programmable

payment is limited (Theorem 2). One might conjecture that one could always increase

the amount of funds that will be released to the seller at the end of the arrangement in

exchange for receiving services for a longer period of time. Even though this may be viable

technically, economically it is not. The issue is that, at some point, the additional liquidity

cost of locking up both more funds and for a longer period starts to exceed the additional

surplus generated from extending the length of the arrangement. At this point, it is no longer

economically beneficial to extend the length of the relationship. A single programmable

payment can be an optimal arrangement when a buyer needs to purchase a service for a

limited period of time.

Given the limited duration of relationships that can be supported by a single pro-

grammable payment, we continue by analyzing the optimal payment arrangement between
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a buyer and a seller when allowing for a chain of payments. The analysis of optimal chain-

of-payments arrangements shows that, even though our framework treats programmable

payments relatively favourably, there are many economic situations where the optimal pay-

ment arrangement consists predominantly of simple direct payments. The value of contin-

uing a long-term economic relationship can be sufficient to establish incentives for both

counterparties to deliver on their promises even without assurance of the payment and

delivery by means of a programmable payment. The inefficiency of using programmable

payments in such a context is the liquidity cost of locking up the funds, reducing the total

surplus from the economic relationship between the two counterparties. With long-term

relationships, it is therefore better to use direct payments.

The economics of finite chain-of-payments arrangements are well-illustrated by consid-

ering a two-payment arrangement. The last payment within a two-payment arrangement

must be a programmable payment as before: Locking-up the funds of the last payment pre-

vents the arrangement from unraveling as a finitely-repeated sequential-move game in a

similar way as a single-payment arrangement with a direct payment would unravel. Things

are different for the first of the two payments. The risk of losing the surplus of continu-

ing the relationship after the release of the first payment helps to better align incentives.

There are two possible cases for the optimal two-payment arrangement. In the first case,

the first payment is also a programmable payment, but the surplus generated after the first

payment allows delaying the moment the buyer is required to submit the first payment. This

reduces the time the funds are locked-up and, hence, reduces the liquidity cost of the first

payment (Theorem 4). The second case is that where the amount of surplus generated after

the release of the first payment is large enough that the buyer can delay making the first

payment up till the point where the money will be released to the seller. In this situation,

the first payment would be released immediately so the it would simply be a direct payment

(Theorem 5).
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The tendency towards direct payments for earlier payments generalizes to all finite chain-

of-payments arrangements. Sufficiently long optimal chain-of-payments arrangements al-

ways start with direct payments because of the lower liquidity costs (Theorem 7). Only

towards the end of a relationship do the parties prefer to use programmable payments.

Moreover, the optimum for infinitely long payment arrangements is achieved by a chain

of payments that consists of direct payments only (Theorem 8). These results suggest that

programmable payments are unlikely to become the new “standard” for all payment ar-

rangements due to the liquidity-savings offered by direct payments.

Our model also provides some important insights in the demand for payments more

generally. Some have expressed the expectation that a strong reduction in transactions costs

enabled by technological developments in the payment space could lead to an explosion in

the number of payments, e.g., through so-called micro-payments in decentralized finance

that could be used to approximate “streaming money”.4 The study of optimal payment

arrangements suggests that the relationship between the transaction cost and the number

of payments is more complex than that. In particular, we find different relationships for

the extensive and the intensive margins. Lower transaction costs increase the number of

payments for the extensive margin in the sense that the set of potential buyer-seller pairs

where transaction costs are no longer prohibitively expensive increases as transaction costs

drop (Corollary 1). For the intensive margin, that is, within buyer-seller pairs, we find

the opposite effect: lower transaction costs are associated with fewer payments. Lower

transaction costs increase in the surplus in any existing trading relationship between buyers

and sellers. The higher surplus provides the buyer stronger incentives to pay when the time

comes. These stronger incentives allow the seller to require the buyer to settle the bill by

paying larger amounts at a lower frequency (Corollary 2). Whether lower transaction costs

4Platforms that aim to provide the experience of nearly continuous payment streams in decentralized fi-

nance include Sablier (https://sablier.finance/), Superfluid (https://www.superfluid.finance/) and LlamaPay (https:

//llamapay.io/).

https://sablier.finance/
https://www.superfluid.finance/
https://llamapay.io/
https://llamapay.io/
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will lead to an increase or decrease in the number of payments depends on the balance of

the effects for new and existing relationships.

2. RELATED LITERATURE

Our paper relates to several strands of literature. First, our paper contributes to the new

literature on the economics of smart contracts. An important feature of smart contracts

analyzed is the ability to commit funds that may be released based on preset conditions.

Several papers study the importance of the ability to commit funds in a context of a non-

repeat transaction.5 Gans (2019) suggests a smart contract can implement a truth-revealing

mechanism where the buyer correctly confirms the quality of the goods before the funds

are released to a seller. Bakos and Hałaburda (2019) show how this feature allows con-

tracting parties to commit not to hold-up. They demonstrate how algorithmic execution

of programmable payments in combination with digital inputs from “Internet of Things”

(IoT) sensors can enable an efficient trading arrangement that neither of the two technolo-

gies can achieve individually. Cong and He (2019) study how non-repeat transactions can

be facilitated by smart contracts that execute payments based on consensus by third parties

on whether goods are delivered. Chiu and Koeppl (2019) study non-repeat transactions in

an environment where smart contracts achieve delivery-versus-payments in assets markets

where the ownership of both the asset and the means of payment are recorded on the ledger.

Lee et al. (2021) study the welfare impact of assuring settlement with a smart contract in

the setting of a non-repeat transaction in securities trading. Different from those studies,

we explore the benefits of programmable payments in a continuous-time environment that

generalizes to lasting relationships with repeated and endogenously timed payments.

5There are parallels with the computer science literature that develops protocols to achieve fair exchange for

non-repeat transactions; see, e.g., Pagnia et al. (2003).
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Second, our work relates to the growing literature on the economics of central bank

digital currency (CBDC) (Andolfatto, 2021, Brunnermeier and Niepelt, 2019, Fernández-

Villaverde et al., 2021, Schilling et al., 2020, Williamson, 2022). The surveys by Kiff et al.

(2020) and Chapman et al. (2023) highlight important considerations and design choices.

Many of these aspects have been studied using the lens of formal economic models, in-

cluding policies around interest rates (Barrdear and Kumhof, 2022, Chiu et al., 2023, Jiang

and Zhu, 2021, Garratt and Zhu, 2021, Keister and Sanches, 2023, Whited et al., 2022);

privacy (Ahnert et al., 2022, Garratt and Van Oordt, 2021, Lee and Garratt, 2021, Tinn

and Dubach, 2021); security and loss prevention (Kahn et al., 2020, 2021); holding limits

(Assenmacher et al., 2021); and whether CBDC would take a form that would be more

cash-like or more deposit-like (Agur et al., 2022, Li, 2023). Programmability is also raised

as an important design choice in the literature reviews by Kiff et al. (2020) and Chapman

et al. (2023). However, to the best of our knowledge, no formal theoretical analysis exists

that incorporates the—according to our results crucial—aspect of repeat interactions on

this design aspect. This paper aims to fill that gap.

Third, our paper relates to the growing literature on the economics of cryptocurrencies.

The discussion around programmable payments has been ignited by the technology intro-

duced in the realm of cryptocurrencies. The appearance of private digital currencies has

stimulated the development of new theoretical models to study their exchange rates (Athey

et al., 2016, Biais et al., 2023, Bolt and Van Oordt, 2020, Chiu and Koeppl, 2023, Cong

et al., 2021, Garratt and Wallace, 2018, Goldstein et al., 2023, Hałaburda et al., 2022,

Schilling and Uhlig, 2019) as well as the implications of platforms issuing their own pay-

ment tokens (Chiu and Wong, 2022, Brunnermeier and Payne, 2023). Others have looked

at empirical smart contract applications in decentralized finance that go beyond the nar-

rower scope of a programmable payments, including, for example, decentralized exchanges

(Lehar and Parlour, 2021, Makarov and Schoar, 2022, Malinova and Park, 2023). Popular

cryptocurrencies have been subject to transaction fees and confirmation times that render

them impractical to stand on their own as a retail payment system (Divakaruni and Zim-
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merman, 2023, Huberman et al., 2021, Hinzen et al., 2022). A fascinating development is

the payment protocol that operates on top of the Bitcoin blockchain known as the “light-

ning network” (Poon and Dryja, 2016). This protocol effectively allows participants to use

a single operation on the Bitcoin blockchain to reserve funds for multiple future payments

in a so-called bilateral payment channel. A payment channel allows for low cost and almost

instant payments by simply changing the allocation of funds in the channel among the two

counterparties. Guasoni et al. (forthcoming) study the optimal allocation of funds to pay-

ment channels for exogenous payment patterns to save on transaction costs. Our analysis

identifies the theoretical relationship between the transaction cost and the number and size

of payments. Hence, a potentially interesting future avenue of research would be the study

of optimal payment channels when payments are endogenous.

3. MODEL

Time is continuous. There are two risk-neutral agents, a “buyer” (he) and a “seller” (she)

both with discount rate ρ > 0. The seller can provide a continuous flow of non-storable

service to the buyer at a flow cost c > 0 per unit time. The buyer’s flow utility from re-

ceiving the service is b(t)≥ 0. There is no asymmetric information and there are no legal

enforcement powers. We assume that a counterparty will stop dealing with an agent if the

agent does not stick to an arrangement. Buyer and seller have available to themselves a

sophisticated payment system which imposes a fixed cost K > 0 on the buyer each time

he submits funds to the seller. This fixed cost captures both transaction fees and potential

administrative costs.

We are interested in finding optimal payment arrangements. Payments in the system

work as follows. The buyer submits payment i by sending funds Di at time Ti. The initia-

tion of the payment is observable to the seller, although the seller may not have immediate

access to the funds. Instead, the system allows the release of funds to the seller to be pro-

grammed to occur at Si ≥ Ti, and to be conditional upon whether the seller has provided
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the service over the period [Ti, Si). This arrangement covers a broad range of real-world

mechanisms, including smart contracts, where the release of funds is preprogrammed to

occur based on information recorded on a distributed ledger by IoT sensors (Bakos and

Hałaburda, 2019), a truth-revealing mechanism (Gans, 2019) or a consensus mechanism

(Cong and He, 2019). The arrangement also covers more traditional escrow arrangements,

where the release of funds occurs after a third-party verified whether the conditions have

been satisfied. If the payment is structured such that Si = Ti, then we speak of a direct

payment. We stack the cards in favor of programmable payments in that we assume that the

transaction cost of a programmable payment is not higher than that of a direct payment.

4. OPTIMAL SINGLE-PAYMENT ARRANGEMENT

We start by considering a single-payment arrangement in a non-stationary environment,

where b(t) takes the following form

b(t) =

b, if t < TM

0, otherwise

for b > c and some known TM > 0. That is, the buyer obtains a constant benefit from the

service up to some horizon date TM .

An arrangement with a simple direct payment is ineffective in this environment. Once

the payment is made, there is no incentive for the seller to honor a promise to produce, and

if payment is delayed until after production, there is no incentive for the buyer to honor a

promise to pay. Backward induction implies that neither the buyer nor the seller can commit

to pay or to produce after the other player has completed their end of the deal.

Now consider the role of a programmable payment in this situation. The buyer and seller

agree that the seller will start providing the service from t = 0. In return, the buyer will

commit an amount D1 at time T1 using a programmable payment that releases the funds
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to the seller at time S1 if she has provided the service continuously in the interim, where

T1 ≤ S1 ≤ TM . The utility of the buyer from such an arrangement would be

U(D1, T1, S1) = b

∫ S1

0
e−ρt dt− (D1 +K)e−ρT1 . (1)

The arrangement is subject to the following constraints:

b

∫ S1

T1

e−ρt dt≥ (D1 +K)e−ρT1 , (2)

D1e
−ρS1 ≥ c

∫ S1

0
e−ρt dt, (3)

0≤ T1 ≤ S1 ≤ TM , (4)

D1 ≥ 0. (5)

The first constraint requires that, at the time he needs to pay, the prospective benefits to the

buyer exceed the monetary cost of the arrangement. The second constraint requires that the

discounted monetary benefit of the arrangement to the seller exceed her cost of providing

the service.6 The third constraint says that the funds cannot be released to the seller before

they have been committed by the buyer. The last constraint requires that the payment to be

non-negative.

We call a single-payment arrangement (D1, T1, S1) self-enforcing if conditions (2)-(5)

hold true. Trading is feasible if there exists a self-enforcing single-payment arrangement.

From these constraints, the following results arises.

6The problem can be rewritten to accommodate the accumulation of interest on funds committed into a pro-

grammable payment. In particular, if the balance committed into a programmable payment were to accrue interest

at a rate ωρ for 0 ≤ ω < 1, then the left-hand-side of the second constraint would read D1e
−ρ(1−ω)S1−ρωT1

instead of D1e
−ρS1 . Evaluating the program with interest accumulation limits the analysis to numerical solutions

(except for the analysis of a stationary environment with multiple payments for which the analytical solution with

interest accumulation is identical to the one presented in Theorem 8).
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THEOREM 1: Assume TM is large.7 Trading is feasible if and only if

√
ρK +

√
c≤
√
b. (6)

Proof: Combining equations (2) and (3) to eliminate D1 shows that we can find values

(D1, T1, S1) satisfying (2) and (3) if and only if there exists (T1, S1) such that ceρS1 +

be−ρ(S1−T1) < b+c−ρK . This condition is weakest if the left-hand-side of the inequality is

minimized, that is, if T1 = 0. The left-hand-side is convex in S1, while the partial derivative

with respect to S1 for T1 = 0 is negative at S1 = 0 (since c < b) and positive for large values

of S1. Its minimum for T1 = 0 is S∗
1 = log(b/c)/(2ρ). Plugging (T1, S1) = (0, S∗

1) into the

inequality gives 2
√
bc < b+ c− ρK or equivalently

√
ρK +

√
c≤
√
b. �

Intuitively, a self-enforcing single-payment arrangement does not exist unless the benefit

of the service to the buyer exceeds the cost to the seller of providing the service, that is,

unless b > c. Theorem 1 shows that this is not sufficient, however. The difference between

the benefit and the cost should be sufficiently large to exceed the cost of payment. The cost

of payment has both a transaction cost component, K , and a liquidity cost component, ρ.

We will refer to Eq. (6) as the “feasibility-condition”; this condition will recur in different

circumstances. Note that

COROLLARY 1: Lowering the transaction cost K relaxes the feasibility-condition.

Even if there is no technical limitation to the amount committed in a programmable

payment, the maximum economically-feasible length of a single-payment arrangement is

limited. Define

x=:
1

2
(b+ c− ρK). (7)

7Lemma A1 in the appendix provides necessary and sufficient conditions for general TM .
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The following theorem provides the maximum length of a self-enforcing single-payment

arrangement.

THEOREM 2: Assume TM is large. The length of a self-enforcing single-payment ar-

rangement is limited to

Smax
1 =

1

ρ
log

(
x

c
+

√(x
c

)2
− b

c

)
. (8)

Proof: The value of Smax
1 is the maximum of the two solutions to the pair of conditions (2)

and (3) holding with equality. This solution is a function of T1 that is maximized within the

range of possible values specified in condition (4) when setting T1 = 0. �

The maximum length of a self-enforcing single-payment arrangement is limited because

the longer the agreement the greater the dissipation of the value of the payment due to

the liquidity cost of holding the funds locked up in a programmable payment. Extending

the length of the arrangement increases the liquidity cost both in the length of time the

funds will be locked up as well as the amount that will be locked up. If funds are held

for the maximum feasible time Smax
1 , then the present value of the future release of the

amount transferred with the programmable payment must just equal the present value of

the accumulated costs borne by the seller over the interval [0, Smax
1 ] while the immediate

value of the funds committed equals the present value of benefits received by the buyer,

less transaction costs. At Smax
1 , the surplus from the match is eaten up entirely by the

opportunity cost of the sequestering of the funds for the length of time.

Choosing the longest possible arrangement is in general not optimal, and for two reasons.

First, on the margin, reducing the length of the agreement slightly increases the benefits

by freeing the funds locked-up in the programmable payment more quickly. Second, the

surplus generated by the match incentivizes the buyer to pay, which enables the buyer to
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credibly delay committing the funds. This reduces the liquidity cost as well as the present

value of the transaction cost of making the payment.8

We next consider the optimal single-payment arrangement which maximizes the buyers

utility U(D1, T1, S1) in (1) subject to the constraints for a self-enforcing single-payment

arrangement in equations (2)-(5). In characterizing the optimum we make use of the pa-

rameter T where

T =
1

ρ
log

x

c
. (9)

THEOREM 3: If the time horizon TM is less than T , then the optimal single-payment

arrangement is constrained by the time horizon and equals

(D1, T1, S1) =

(
ceρTM − c

ρ
,TM −

1

ρ
log

(
b

b− ρ(D1 +K)

)
, TM

)
. (10)

Otherwise, the optimal single-payment arrangement is

(D1, T1, S1) =

(
x− c
ρ

,T − 1

ρ
log

(
b

x

)
, T

)
. (11)

Proof: See Online Appendix A.1. �

The qualitative characteristics of the optimal single-payment arrangement are graphi-

cally illustrated in Figure 1. The figure considers comparative statics of the solution as a

function of the duration of the interval [0, TM ] over which the buyer values obtaining the

service. For short horizons, the net benefit of setting up a relationship is inadequate to cover

the transaction cost. At a critical level, the surplus generated in the interval less the costs

of the payment is just enough to justify transferring the amount D1, leaving no surplus

for the buyer. As the duration of the relationship increases beyond this minimum length,

8This second manner in which costs can be reduced depends on the ability that the seller can identify the buyer.

Our framework can be adjusted to consider environments where identification is impossible by, for example,

forcing the buyer to commit funds into the programmable payments at the start of the relationship.
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the present value of the benefit exceeds the amount that must be deposited, and so the

arrangement generates a surplus for the buyer; however, the fact that the relationship does

generate a surplus enables the buyer to delay committing the funds to the point T1 where the

remaining benefit of the match just equals the necessary payment. The longer the relation-

ship is anticipated to continue, the longer the payment can be delayed. This occurs until

the critical point where the optimal arrangement switches from the “horizon-constrained

solution” in Eq. (10) to the “horizon-unconstrained solution” in Eq. (11). At this point, the

surplus no longer increases, because any further delay in releasing the funds locked up in

the programmable payment does not justify the additional benefit for the buyer. No further

extension of the relationship is desirable and the arrangement and its duration remains fixed

as TM increases.

5. OPTIMAL TWO-PAYMENT ARRANGEMENT

We have seen that there is a maximum length of time Smax
1 that service can be supported

by a single programmable payment. Beyond that limit, the immediate transactions cost plus

the liquidity cost of tying up the funds exceeds the surplus generated by the match. Once

we have found the apparent maximum possible duration for the use of the sequestered

funds, we might expect that the relationship could be extended by repeated programmable

payments at intervals of Smax
1 ; thus the relationship could be supported over an interval of

length 2Smax
1 by two programmable payments, etc. Indeed this is feasible, but it is sub-

optimal. In general, a better solution would be to set up repeated arrangements with each

programmable payment following the solution in Theorem 3. However, there are further

improvements that can be made, reducing the wastage of the liquidity costs of locking

up funds in programmable payments. To explore this, we consider the general problem of

supporting the relationship by an arrangement existing of a chain of payments.

The optimal arrangement with a chain of two payments provides important insights that

generalize to chains with multiple payments. With a two-payment arrangement, the last of
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FIGURE 1.—Optimal Single-Payment Arrangement
TM

Commit funds (T1)

Release funds (S1)

TM
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Note: The figure shows the optimal single-payment arrangement (D1, T1, S1) as a function of the point in time

until which the buyer derives utility from the service, TM . The upper panel reports the time the buyer commits

the funds, T1, and the time of the release of the funds to the seller, S1. The lower panel reports the amount paid,

D1, and the total surplus from the arrangement.

the two payments needs to be a programmable payment that delays the release of the funds

until the relationship ends. Otherwise, the seller would have incentives to stop providing

the service before the agreed-upon point in time. However, in some cases, the earlier of

the two payments may be a simple payment—that is, it can be the case that S1 = T1 in the

optimal arrangement.

The buyer needs to solve the following program

max
D1,D2,T1,T2,S1,S2

b

∫ S2

0
e−ρt dt− (D1 +K)e−ρT1 − (D2 +K)e−ρT2 , (12)
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subject to

c

∫ S2

0
e−ρt dt≤D1 e

−ρS1 +D2 e
−ρS2 ,

c

∫ S2

S1

e−ρt dt≤D2 e
−ρS2 ,

D1 +K + (D2 +K)e−ρ(T2−T1) ≤ b
∫ S2

T1

e−ρ(t−T1) dt,

D2 +K ≤ b
∫ S2

T2

e−ρ(t−T2) dt,

Di ≥ 0, Ti ≤ Si ≤ TM , i= 1,2,

0≤ T1 ≤ T2.

Note the similarity of the constraints to those in the single-payment arrangement. The first

and second constraints ensure that at every point in time, the present value of cost to the

seller of continuing to provide the services is less than or equal to the present value of the

future releases of funds. The third and fourth constraints ensure it is rational for the buyer

to pay the funds at the specified times under the arrangement. The remaining constraints

ensure, among other things, that the release of funds from a programmable payment does

not occur before the funds are committed.

The following theorems characterize the optimal two-payment arrangement. We focus on

the case with unconstrained horizon, that is, where the time horizon TM is distant enough

for the agents to take full benefit of the relationship. This is the case which is of inter-

est for generalization to multiple payments.9 The following condition is sufficient for an

unconstrained horizon in the two-payment problem (see Corollary A2 in the appendix):

TM ≥
2

ρ
log

√
2x

c
. (13)

9See Online Appendix A.2 for the solution of the horizon-constrained case.
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There are two possibilities, depending on the value of the parameter Ψ, where

Ψ =
x3

b2c
. (14)

The optimum involves either two programmable payments or a direct transfer and a subse-

quent programmable payment.

THEOREM 4: (Case I: Two programmable payments) Suppose the horizon is uncon-

strained. If Ψ< 1, then the optimal two-payment arrangement is the following: The seller

provides the service to the buyer from time 0 until time 2T . She receives compensation in

two equal amounts, one halfway through (S1 = T ) and one at the end of the arrangement

(S2 = 2T ). The amounts are

D1 =D2 =
x− c
ρ

. (15)

The buyer commits the funds using programmable payments at time T1 = 2T − 2L and

T2 = 2T −L, where

L=
1

ρ
log

b

x
. (16)

Proof: See Online Appendix A.2. �

The amount of funds transferred in each payment is equal to the amount transferred in

the optimal horizon-unconstrained single-payment arrangement. Figure 2, panel (a) shows

the timing when both payments in the optimal two-payment arrangement are programmable

payments. There is a subtle difference in the timing of the payments compared to that in the

horizon-unconstrained single-payment solution. Like in the single-payment arrangement,

the two-payment arrangement starts with the seller supplying the service for a limited pe-

riod before the buyer commits the funds for the first programmable payment. However,

the buyer is able to delay committing the funds for the first payment for a longer period

of time than in the single-payment arrangement. Hence, the funds for the first payment

are locked-up for a shorter period of time. The reason is that the buyer is better incen-
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FIGURE 2.—Timeline of the Optimal Two-Payment Arrangement

Panel (a). Case I: Two programmable payments

Delayed release at T Delayed release at 2T

Commit D1 =D2 Commit D2

0 T1 S1 T2 S2

Time

L L

Panel (b). Case II: One direct and one programmable payment

Immediate release at T + ξ Delayed release at 2T + ξ

Commit D1 >D2 Commit D2

0 T1 = S1 T2 S2

Time

L

Funds locked-up Service supplied

Note: The figure illustrates the timeline for the optimal two-payment arrangement. Panel (a) describes the optimal

timeline for parameter values where both payments are programmable payments (Theorem 4). Panel (b) describes

the optimal timeline for parameter values where the surplus generated by the last programmable payment is

sufficiently large so that the first payment can be a direct payment (Theorem 5). The ξ in panel (b) signifies a

positive constant to indicate that the time until the first payment spans a longer time interval.

tivized to pay the first payment since he risks foregoing a longer beneficial relationship if

he fails to commit funds for the first payment. There are no such additional incentives for

the second payment, because the arrangement stops anyway after the second payment. The

timing of the second payment is therefore comparable to that of the optimal payment in the
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horizon-unconstrained single-payment arrangement: The delay in committing the funds for

the second payment in the optimal two-payment arrangements is equal that in the horizon-

unconstrained single-payment arrangement, and the funds also remain locked-up for the

same amount of time.

The interval L between payins is a decreasing function of b because, the higher the

benefits enjoyed by the consumer, the stronger the incentives to pay, and the shorter the

second payment needs to remain locked-up. Note that, as panel (a) of Figure 2 illustrates, in

the optimal arrangement with two programmable payments, L is also the interval between

the second payin and the end of the agreement.

As L shrinks, eventually the moment to commit the first payment coincides with the

moment of its release, i.e., b becomes large enough that 2L= T or, equivalently, Ψ = 1. At

this point, the trust of the seller in the willingness of the buyer to make the first payment

is strong enough that there is no need to lock up the first payment, and the first payment

in the optimal arrangement becomes a direct payment. The optimal solution when the first

payment is a direct payment is summarized in Theorem 5.

THEOREM 5: (Case II: One direct payment, one programmable payment) Suppose the

horizon is unconstrained. If Ψ > 1, then the optimal arrangement is the following: The

second transfer D2 has the same formula as in the previous theorem, the formula for the

length of time the funds are locked up in the programmable payment is also unchanged.

The first transfer is a direct payment and is greater than the second payment. The seller

waits longer for the direct payment than for the subsequent payout of the programmable

payment.

Proof: See Online Appendix A.2.



20

The timeline of the arrangement when the first payment is a direct payment is illustrated

in panel (b) of Figure 2. The benefit of the first payment being a direct payment is that there

is no liquidity cost of locking up funds. The absence of the liquidity cost from locking up

funds allows the first payment to cover the bill for obtaining the service for a longer period

of time by paying a larger sum (i.e., T1 ≥ T and D1 ≥D2).

6. MULTIPLE PAYMENTS

The core insight of the example of the optimal two-payment arrangement is that, if the

continuation value of the relationship to the buyer is sufficiently high, then the seller can

trust that the buyer will make the first payment without requiring him to temporarily locking

up the funds in a programmable payment. This is beneficial due to the reduction in liquidity

costs. The insight—that earlier payments can be direct payments when the continuation

value of the relationship to the buyer is sufficiently high—generalizes to any feasible chain

of non-overlapping payments that covers a sufficiently long horizon.

One can think about the value to the buyer of continuing the relationship as generating

trust. Let W denote the continuation value of the relationship to the buyer immediately

after a payment is released to the seller. The level of W acts as a substitute for the re-

quirement to guarantee the payment by locking-up funds in a programmable payment. The

higher the level of W , the shorter the period funds need to be locked up in the next pro-

grammable payment.10 Whenever W is sufficiently high, then the trust-effect is so strong

that programmable payments—with their liquidity costs from locking up funds—become

inferior to direct payments.

10The environment we consider stacks the cards in favour of programmable payments. The value of W in our

model comes exclusively from the continuation value of the relationship with the same counterparty. One could

think of legal enforcement and reputation formation as aspects that could further contribute to the value of W .

Such aspects would make direct payments even more attractive compared to programmable payments.
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THEOREM 6: Assume the feasibility-condition holds. In an optimal chain of payments,

suppose W ≥ (b−x)/ρ immediately after some payment is released to the seller. Then any

earlier payments, including the last payment, are direct payments. Any payment that comes

after the last payment for which this holds true is a programmable payment.

Proof: See Online Appendix A.4.

The previous theorem documents the minimum continuation value of the relationship to

the buyer that is necessary in order for all earlier payments in the optimal payment chain

to be direct payments. The theorem does not report under which parameter values it would

be possible to achieve this value. Clearly the feasibility-condition for the single-payment

arrangement needs to hold true: For a multiple payments arrangement not to unravel, there

must be a net benefit for the buyer and seller to continue the relationship once they arrive

at the point where there is only one payment left. It turns out that the feasibility-condition

for the single-payment arrangement is also a sufficient condition provided that the trading

relationship covers a sufficiently long period. As the next theorem states, given the feasi-

bility condition for the single-payment arrangement, it is always possible to achieve the

necessary level of surplus for direct payments as long as enough time is available.

THEOREM 7: Assume the feasibility-condition holds true. Every optimal chain of pay-

ments will start with direct payments as long as the horizon TM is sufficiently remote.

Proof: See Online Appendix A.4.

Theorem 7 shows that sustainable trading arrangements—that is, trading arrangements

that last sufficiently long in the future—create sufficient trust in order to avoid pro-

grammable payments. However, such relationships require the use of programmable pay-

ments when they get closer to the terminal date.
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In a stationary environment, where b(t) = b for all t, programmable payments are not

required at all for the optimal payment arrangement. The following theorem establishes

how the optimum can be reached in a stationary environment with a payment arrangement

that consists of direct payments only.

THEOREM 8: If the feasibility-condition holds true and b(t) = b for all t, then the opti-

mum is reached by a payment arrangement consisting of direct payments only. The amount

of each payment equals

D =
x− c
ρ

+

√(
x− c
ρ

)2

− cK

ρ
(17)

and payments occur at a regular interval

∆T =
1

ρ
log

ρD+ c

c
. (18)

Proof: See Online Appendix A.5.

COROLLARY 2: Within a stationary environment, the size of each payment increases

and the frequency of payments decreases as the transaction cost decreases.

Proof: Recall that x= (b+ c− ρK)/2. We have ∂D/∂K < 0. Hence, ∂∆T/∂K > 0. �

Some proponents have envisaged a strong reduction in transactions costs, enabled by

technological developments in the payment space and the use of information technology to

settle payments, as leading to an explosion in the number of payments. In an extreme case,

new payment technologies could lead to the use of so-called micro-payments in decen-

tralized finance that essentially approximates “streaming money” through a constant flow

of small payments. This expectation is not affirmed by Theorem 8, which reveals a more

complex relationship between level of the transaction cost and the number of payments in

an economy.
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The impact of the transaction cost on the demand for payments in an economy differs for

the extensive and the intensive margins. The impact along the extensive margin refers to the

question as to whether a reduction in the transaction costs increases the number of buyer-

seller relationships. This effect along the extensive margin is dominated by the feasibility-

condition as expressed in Corollary 1 which can be used to assess whether the transaction

cost is prohibitively expensive. The lower the transaction cost K , the larger the set of fea-

sible buyer-seller relationships within an economy. Low-cost payments enables economic

relationships with smaller margins, which contributes positively to the total number of pay-

ments in the economy. The impact along the intensive margin refers to how a reduction in

the transaction cost impacts the total number of payments within an existing trading rela-

tionship. Corollary 2 shows that the payment frequency decreases as the transaction cost

decreases. In other words, the optimal payment pattern within an existing trading relation-

ship does not approximate “streaming money” as the transaction cost decreases. Instead,

payments become less frequent (i.e., ∆T increases) with each payment increasing in size

(i.e., D increases). The reason is that the reduction in the transaction cost increases the

surplus from the buyer-seller relationship. A higher surplus increases the trust of the seller

that the buyer pays when the time comes. As a consequence, the buyer pays the seller less

frequently when the transaction costs are lower, which contributes to a reduction in the total

number of payments in the economy.11

The total impact of a decrease in the transaction cost on the demand for payments de-

pends on the balance between the increase along the extensive margin and the decrease

along the intensive margin. Figure 3 provides an illustration of the impact of the transac-

tion cost on the number of payments along both the extensive and the intensive margins.

The figure considers the number of payments in an economy with a continuum of heteroge-

neous buyers. The buyers derive a benefit bi from consuming a service that a seller provide

11Also a change in any of the other model parameters (b, c, and ρ) has opposite effects on the number of

payments on the intensive and extensive margins. This further demonstrates the intricate relationship between

economic variables and the demand for payments.
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FIGURE 3.—Illustration of the Demand for Payments

Panel (a): Extensive Margin Panel (b) Panel (c)
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Note: The figure provides for illustrative purposes the optimal number of payments in an economy based on

Theorem 8. The figure is based on the following parameterization: c = 1; ρ = 0.2; heterogeneous consumers

derive a flow benefit bi that is drawn from a normal distribution with parameters µ = 1.15 and σ = 0.025. The

transaction cost K on the horizontal axis is in the range (0,0.05). Panel (a) reports the fraction of consumers for

which trading is feasible. Panel (b) reports the optimal number of payments for clients with various levels of bi

when trading is feasible. Panel (c) reports the total number of payments per capita.

at a cost c= 1, where bi is drawn from a normal distribution with µ= 1.15 and σ = 0.025.

The discount rate is set at ρ= 0.2. Panel (a) shows the relationship between the transaction

cost K and market penetration, defined as the fraction of all consumers for which trading

with the seller is feasible. Trading is feasible for fewer consumers when the transaction

cost is higher (the extensive margin). Panel (b) shows the optimal number of payments per

period within a trading relationship for clients with various levels of bi. Clients must pay

more often as the transaction cost increases (the intensive margin), at least, that is, until

trading becomes infeasible. Panel (c) shows the full relationship by reporting the number

of payments per capita as a function of the transaction cost. For this particular parameteri-

zation, the relationship is non-monotone. The effect along the intensive margin dominates

for low transaction costs resulting in a positive relationship with the total number of pay-

ments. The effect along the extensive margin dominates for high transaction costs resulting

in a negative relationship with the total number of payments. This parameterization is just
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one illustration of the potentially complex relationship between transaction costs and the

total number of payments. Other paramaterizations can result in relationships that are ex-

clusively positive or exclusively negative.12

7. OTHER APPLICATIONS

When new payment methods are developed, it becomes important to understand the

circumstances under which they are attractive. Our results can be thought of as illustrating

when programmable payments will be desirable and when payments arrangements without

programmable features will be successful. While our focus has been on programmable

payments, our analysis has implications for mainstream payments arrangements and helps

to understand various institutional features around payments.

7.1. Bill Payments

Bill payment refers to the process by which a purchaser extinguishes a debt established

with a vendor. Bill payments are distinct from the more-commonly studied “DVP transac-

tions” (delivery vs payment transactions)—transactions in which a spot exchange is made

of a good or service for a monetary asset. While DVP transactions have been at the cen-

ter of much of micro-founded monetary theory,13 examinations of bill payments are much

12For a simple example where the effect along the intensive margin dominates, set bi = 1.2 for all consumers

while keeping all other parameters unchanged. This parameterization switches off the effect along the extensive

margin and, hence, the number of payments per capita in such an environment will be a increasing function of the

transaction cost (that is, until the transaction cost increases so much that trading becomes infeasible, after which

the number of payments per capita drops to zero). For an example where the effect along the extensive margin

dominates, let bi ∼ U [1.0,1.2] while keeping all other parameters unchanged. This parameterization results in an

exclusively negative relationship.
13A natural and important framework for studying such transactions is the “day-night” models of Lagos and

Wright (2005) and subsequent papers.
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rarer (for some exceptions, see the references in Kahn and Roberds, 2009). Nonetheless,

bill payments are a significant portion of the total value of consumer payments.14 Relation-

ships between suppliers and producers are also dominated by bill payments.

The fundamental economic distinction between the two types of payments is the exis-

tence or non-existence of a credit relationship. In a DVP transaction, no credit relationship

need exist; indeed the individuals can be anonymous to one another with no prospect of

any subsequent relationship. Bill payment on the other hand requires that the creditor have

some prospect of a future meeting with the debtor, at least to present the bill, and some

prospect that the presented bill will be honored. Moreover, there are important institutional

differences between the two types of transactions. Different payments media are better

suited to one or the other type of transaction: for example, physical cash is relatively in-

convenient for bill payments, while online or electronic fund transfers tend to be relatively

inconvenient for point-of-sale transactions.

Our model can be thought of as a microfoundation for the act of paying bills. On the

face of it, the question “why do people pay their bills?” has an obvious answer: if buyer

and seller know each other’s identity then there is a legal threat when goods are not paid

for. However, the legal remedy when bills remain unpaid may be expensive and therefore

ineffective.15 Important cases where this may arise are small-value transactions on one ex-

treme and international trade on the other. As in our model, when repeat interactions are

14Based on diaries of consumer payment choice in the United States, Greene and Stavins (2020) find that, when

distinguishing between purchases (typically DVP) and bill payments, bill payments account for 20 percent of all

payments by number and 63 percent of all payments by value. Other empirical research into consumer payment

behavior distinguishes between point-of-sale transactions (typically DVP) and remote transactions (typically bill

payments).
15Standard advice to creditors whose accounts have been sent to a collection agency is to negotiate for a partial

payment to settle the debt rather then to repay the debt in full (Equifax, 2020). A report by the Federal Trade

Commission found that going-concern debt buyers not specialized in bankruptcy debt purchased in the period

2006-09 paid on average only 4 cents for each dollar of debt (Leibowitz et al., 2013).
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anticipated, the real threat enforcing bill payments is likely to be the loss of future value:

Bills are paid in order to continue enjoying the benefits of the relationship. Theorem 6 de-

scribes the circumstances where the future benefits are sufficient to support direct payments

of bills.

7.2. Institutional Middlemen

When the sticks of legal sanction and the carrots of continued cooperation prove inade-

quate to enforce payment, the parties can turn to a variety of third-party options, which we

can summarize by the term “escrow.” Essentially, when simultaneous payment and deliv-

ery is infeasible, the payment is made before the good or service is provided and a trusted

custodian holds on to the payment until the buyer receives delivery. Traditional examples

include real estate transactions and letters of credit where a creditworthy third-party assures

payment for goods upon the seller providing proof of shipment.16 From this point of view,

programmable payments can be considered as an automated version of escrow. Theorem

1 describes the circumstances where reductions in transactions costs make trading through

an escrow arrangement feasible.

Our model emphasizes the importance of repeated interaction in enforcing payment. An

application of our results is in the context of arrangements that redirect payment flows.

Credit cards provide an interesting example: a consumer repeatedly interacts with the card

issuer even though the consumer does not interact repeatedly with a particular retailer.

The consolidation of interactions means that it will be possible to sustain a direct payment

arrangement (Theorem 7) instead of the more costly escrow or programmable payment

arrangements that would be required in the absence of repeated interactions (Theorem

16Besides the traditional examples, a host of real-world institutions can be understood in this light, from, at

the wholesale payment extreme, the CLS bank (Kahn and Roberds, 2001), down to guarantees offered by some

payment cards when customers make purchases using the card.
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3). Moreover, the consolidation of payments makes trading feasible in situations where

the transaction costs for individual payments would be prohibitively high. When interact-

ing with n > 1 identical counterparties but making payments to a single card issuer, the

feasibility-condition generalizes to the weaker condition

√
ρK +

√
nc≤

√
nb. (19)

This gives an argument for the network benefits of a payment system, not just from the

possibility to receive payments from more individuals, but from the trust that it generates.

There is an interesting analogy of this network benefit with the results of Koeppl et al.

(2012) in the context of clearing houses.

7.3. Forex Transactions

Foreign exchange transactions differ from regular payments in that their settlement in-

volves two rather than one transfer of funds (i.e., transfers in two different currencies).

Settling a forex transaction through direct payments involves counterparty risk as long as

one of the two legs of the transaction remains uncompleted. Time zone differences can

contribute to the time lag between the two payments. The CLS settlement system became

operational in 2002 to reduce this counterparty risk and provide “payment-vs-payment"

(PvP) protection by locking funds temporarily, forwarding them only if both parties have

paid, and returning them otherwise (Kahn and Roberds, 2001). While the CLS system

has rapidly come to dominate foreign exchange transactions, settling more than $6 trillion

daily, many forex transactions are still carried out without PvP protection. Policy makers

have pointed to high transaction costs as a potential reason why many forex transactions

still avoid the CLS system (Glowka and Nilsson, 2022). Although transaction costs could

certainly play a role, our model suggests also a potential alternative explanation, which is

that direct payments could be optimal when accounting for liquidity costs in an environ-

ment with repeated interactions and where financial conditions warrant trust.
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8. CONCLUSION

The objective of this paper was to study the demand for programmable payments where

transfers are automatically executed conditional upon preset objective criteria. We did so

in a framework that allows for a wide range of economic situations. Our results show that

programmable payments may be the only viable payment arrangement in situations where

economic relationships are of a short duration. However, payment arrangements with direct

payments dominate in long-term relationships. These results call into question whether

sufficiently cheap programmable payments would replace most direct payments.

Our results also call into question the prediction that payments will be made more fre-

quently as the transaction cost drops. The model shows that there is an important distinction

between the impact of the transaction cost along the extensive and the intensive margins.

Although the number of payments increases when the transaction cost drops for situations

where the transaction cost would otherwise have stopped the buyer from making a purchase

(the extensive margin), the optimal frequency to make payments in existing long-term rela-

tionships decreases when the transaction cost decreases (the intensive margin). This effect

comes from the fact that cheaper payments increase the value of the relationship to the

buyer, so that the seller can be more confident that the buyer will continue to make pay-

ments. The total effect of cheaper payments on the demand for payments will therefore

depend on the difference between the effects along the extensive and the intensive margins.

Various interesting directions for future research exists. The current model environment

allows for programmable payments but does not incorporate information asymmetries. Ex-

isting models of self-enforcing arrangements with payments in the presence of information

asymmetries do not allow for programmable payments (Levin, 2003, Malcomson, 2016).

Exploring how programmable payments could improve outcomes while allowing for the

information asymmetries captured in those models is an exciting direction for future re-

search. Another interesting direction for future research is the possibility of competition



30

among sellers. Buyers’ ability to switch among sellers will affect the power of trust and

thus the optimal payment arrangement between buyer-seller pairs. Further research into

this area could generate interesting insights into the variation in payment behaviours across

different markets.
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— ONLINE APPENDIX —

ONLINE APPENDIX A: EXTENSION AND PROOFS

In the online appendix, we will use the following shorthand in order to simplify presen-

tation of calculations:

B =
b

ρ
, C =

c

ρ
, τi = e−ρTi , νi = e−ρSi

Recall we assume B, C and K to be positive. We assume B ≥ C +K, otherwise autarky

would be optimal. We also define

X =
1

2
(B +C −K)

so that

X −C ≥ 0

We let W denote the value received by the buyer upon a satisfactory end to the rela-

tionship. We assume B > W ≥ 0. (Otherwise the buyer places more value on the post

relationship phase than on the relationship itself.) The earlier sections of the paper con-

sider W = 0. In the latter sections W will represent the continuation value from a new

arrangement anticipated at the end of the first arrangement.

Terminology A direct payment is one where τi = νi, that is, the payin and payout are

made simultaneously. A programmable payment is one which requires an escrow facil-

ity: τi > νi. In all arrangements νi ≥ τM , that is, payouts must be made before the termi-
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nal date. When this constraint binds for the final payout, we will refer to the contract as

horizon-constrained. An arrangement is individually rational if the payoff to the buyer is

greater than 0. It meets the seller’s participation constraint at νi, where νi = e−ρSi , if the

arrangement going forward from Si (and ignoring payout received at Si) has non negative

NPV.

A.1. Solution for Nonstationary Environment with One Payment

The single-payment problem is

max
D1,τ1,ν1

B(1− ν1) +Wν1 − (D1 +K)τ1

subject to

C(1− ν1)≤D1ν1, (20)

(D1 +K)τ1 ≤B(τ1 − ν1) +Wν1, (21)

τM ≤ ν1 ≤ τ1 ≤ 1, (22)

0≤D1. (23)

When W = 0 the program reduces to the maximization of U(D1, T1, S1) in (1) and condi-

tions (2)-(5) in the main text.

LEMMA A1: The following are necessary and sufficient conditions for the existence of

a solution to the single-payment problem:

X2 ≥ (B −W )C (24)

and

τM ≤
1

B −W
(X +

√
X2 − (B −W )C). (25)
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PROOF: By condition (21), a triple (D1, τ1, ν1) is infeasible unless D1 <B −K (since

B >W ). From (21) and τ1 ≤ 1, a feasible triple (D1, τ1, ν1) exists if and only if the triple

(D1,1, ν1) is feasible, that is, if and only if

1≥ ν1 ≥ τM

and

B −K −D1

B −W
≥ ν1 ≥

C

C +D1
.

See Figure A.1. The feasible set of pairs (D1, ν1) is non-empty if and only if 1) the curve

C/(C+D1) intersects the line (B−K−D)/(B−W ), 2) the lower intersection lies below

the line ν1 = 1 (equivalently, that the lower intersection lies to the right of the vertical axis)

and 3) the upper intersection lies above the line ν1 = τM . These requirements are equivalent

to the two conditions of the lemma. (To see this, solve

B −K −D1

B −W
=

C

C +D1

for D1:

D1 =X −C ±
√
X2 −C(B −W ).

The intersection occurs if and only if the discriminant is non-negative; this is condition (24).

Since the larger root is positive, the second requirement is automatically satisfied. The third

requirement is precisely condition (25).) With the feasible set non-empty, existence follows

by continuity and compactness. Q.E.D.

In particular, note that if τM ≤ X/(B −W ), (24) implies (25) so that (24) by itself is

necessary and sufficient. When W = 0, condition (24) can be restated as

√
B ≥
√
C +
√
K.

Thus this lemma generalizes Theorem 1.
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FIGURE A.1.—Feasible Set of (D1, ν1) for the Single-Payment Arrangement

Note: The green area indicates the feasible set of values of (D1, ν1) for the single-payment arrangement.

The objective in the single-payment problem is decreasing in all arguments; reducing

D1 demonstrates that either (20) binds or D1 = 0. In the latter case, (20) implies ν1 = 1, so

(20) binds anyway. Hence, we must have

ν1 =
C

C +D1
. (26)

Reducing τ1 demonstrates that either τ1 = ν1 (so that the payment is a simple direct pay-

ment) or (21) binds. Thus

COROLLARY A1: If W < K then a solution to the single-payment problem must be

programmable.

PROOF: If τ1 = ν1 then (21) is violated when W <K. Q.E.D.

On the other hand, whenW −K ≥ 0 a feasible solution always exists (cf. Figure A.1); in

particular the direct payment (D1, τ1, ν1) = (0,1,1) is feasible and provides non-negative

payoff to the buyer.
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Next we characterize the solution when it is programmable, and provide a necessary

condition for a solution to be programmable.

LEMMA A2: If the optimal single-payment arrangement is programmable, then

D1 = min
{
C(τ−1

M − 1),X −C
}
, (27)

ν1 = max

{
τM ,

C

X

}
, (28)

τ1 =
(B −W )ν1
B −D1 −K

. (29)

Furthermore,

D1 >W −K. (30)

PROOF: If τ1 > ν1 then (21) binds. Together these imply conditions (29)-(30). Using

(26) and (29) to define ν1 and τ1, the problem can be rewritten as follows:

max
D1

B

(
1− (B −W )C

(C +D1)(B −D1 −K)

)
subject to

D1 ≤Cτ−1
M −C (31)

W −K ≤D1 (32)

(B −W )C ≤ (B −D1 −K)(D1 +C) (33)

0≤D1. (34)

The unrestricted maximum occurs at

D1 =
1

2
(B −K −C) =X −C.

Restriction (34) does not bind, nor, assuming (30), does (32). Restriction (33) is satisfied

iff the objective is non-negative; therefore it affects whether or not the problem is feasible,
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but it does not affect the choice of D1 given that the problem is feasible. The remaining

restriction (31) may bind; since the objective is quasiconcave, (27) says that the optimal D1

is either the unrestricted optimizer or the binding value from (31). Finally, (28) is obtained

from plugging the solution for D1 into (26). Q.E.D.

An optimum must be a programmable payment if a simple direct payment is infeasible—

for example, if W = 0. This fact and the above characterization prove Theorem 3.

Now we characterize the optimal simple direct payment contract, by substituting (20)

and τ1 = ν1 into the single-payment problem, which becomes:

max
D1

B − C(B −W +D1 +K)

D1 +C

subject to

D1 ≤W −K, (35)

τM ≤
C

D1 +C
, (36)

0≤D1. (37)

From this we deduce the following

LEMMA A3: Suppose W −K ≥ 0.

1) If W −K <B −C then the optimum among direct payment contracts is

D1 = min{W −K,C(τ−1
M − 1)}

τ1 = ν1 = max

{
C

C +W −K
,τM

}
.
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The payoff is

(1− τM )(B −C) + τM (W −K)

if τ1 = τM and

B(W −K)

C +W −K
(38)

otherwise.

2) IfW−K >B−C , then the optimum among direct payment contracts is (D1, τ1, ν1) =

(0,1,1) and the payoff is W −K .

In the borderline case, the buyer is indifferent between the two direct payment contracts

described in the lemma (as well as among all intermediate contracts).

When W −K < 0 a simple direct payment contract is infeasible, and the optimal con-

tract, if it exists, must be programmable. If W −K ≥ 0 a simple direct payment contract is

always feasible. In this case, it remains to determine whether there exists a programmable

contract which dominates simple payment contracts. For our purposes it suffices to focus

on the situation where the problem is not horizon-constrained, that is τM ≤ ν1 does not

bind. A sufficient condition for this is

τM ≤min

{
C

X
,

C

C +W −K

}
.

LEMMA A4: Suppose W −K ≥ 0 and the horizon-constraint does not bind. Then the

optimal contract is a programmable payment if and only if

W −K <X −C (39)

Otherwise the optimal contract is a direct payment.
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PROOF: Lemma A2 implies that in any optimal programmable payment arrangement

X −C ≥D1 >W −K.

Conversely, given (39), a direct calculation shows that the contract in Lemma A2 when

the solution is not horizon-constrained is feasible and that the payoff from the optimal

programmable payment is

B

(
1− (B −W )C

X2

)
. (40)

Condition (39) implies W −K <B −C so that the payoff in the optimal simple payment

contract is (38). But then the difference between the two payoffs is

B

(
1− (B −W )C

X2

)
− B(W −K)

C +W −K

=B

(
C

C +W −K
− (B −W )C

X2

)

=
BC

X2(C +W −K)
(X2 − (B −W )(C +W −K))

=
BC

X2(C +W −K)
(X2 − (B −W )(2X −B +W ))

=
BC

X2(C +W −K)
(B −X −W )2

=
BC

X2(C +W −K)
((X −C)− (W −K))2 > 0

In other words under (39) a programmable payment dominates. Q.E.D.

In short, the following is a complete characterization of the single-payment problem

when the situation is not horizon-constrained: IfX2 < (B−W )C the problem is infeasible.

If X2 ≥ (B −W )C and W −K < X − C the solution is a programmable payment. If

B − C > W − K ≥ X − C then the solution is a simple direct payment of a positive
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amount. If W −K ≥B −C then the solution is a simple direct payment of 0 (immediate

move to the post-contract relationship). When a solution with non-zero payment exists,

then

(D1, ν1, τ1) =

(
max{X −C,W −K}, C

C +D1
,

(B −W )ν1
B −D1 −K

)
.

A.2. Solution for Non-Stationary Environment with Two Payments

Assuming

ν1 ≥ ν2 (41)

the two-payment problem is

max
D1,D2,τ1,τ2,ν1,ν2

B(1− ν2) +Wν2 − (D1 +K)τ1 − (D2 +K)τ2

subject to

C(1− ν2)≤D1ν1 +D2ν2 (42)

C(ν1 − ν2)≤D2ν2 (43)

(D1 +K)τ1 + (D2 +K)τ2 ≤B(τ1 − ν2) +Wν2 (44)

(D2 +K)τ2 ≤B(τ2 − ν2) +Wν2 (45)

Di ≥ 0, i= 1,2 (46)

νi ≤ τi, i= 1,2 (47)

τM ≤ ν2 (48)

τ2 ≤ τ1 ≤ 1 (49)

(We will add (41) to the set of requirements. After solving we can verify (41) does not

bind.) The following lemma relates the feasibility of the single-payment problem and the

feasibility of the two-payment problem:
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LEMMA A5: If there exists a (individually-rational) solution to the two-payment prob-

lem either with τ2 ≤ ν1 or with conditions (43) and (45) binding, then there exists a

(individually-rational) solution to the single-payment problem.

PROOF: Suppose (D∗
1,D

∗
2, τ

∗
1 , τ

∗
2 , ν

∗
1 , ν

∗
2) satisfies the two-payment problem restrictions

(41-49). If τ∗2 ≤ ν∗1 then the triple

D1 =D∗
2, τ1 =

τ∗2
ν∗1
, ν1 =

ν∗2
ν∗1

satisfies the single-payment problem restrictions (20-23). (Verification: (20) follows from

(43), (21) follows from (45),

ν1 =
ν∗2
ν∗1
≥ ν∗2 ≥ τM

and the rest of the conditions are immediate.) Furthermore, non-negativity of the single-

payment objective follows from (45), which implies (21), and τ∗2 ≤ ν∗1 , which implies τ1 ≤
1. Otherwise, if (43) and (45) bind, then (D∗

1, τ
∗
1 , ν

∗
1) directly satisfies the single-payment

problem restrictions. (Subtracting (45) from (44), we have

(D1 +K)τ1 ≤B(τ1 − τ2)

which in turn is less than the right hand side of (21). Similarly, (20) follows from (43) and

(42). The other conditions are immediate.) Furthermore, when (45) binds, the objective in

the two-payment problem can be rewritten as

B(1− τ2)− (D1 +K)τ1.

As long as τ2 > ν1, then the payoff in the single-payment problem is non-negative whenever

the payoff in the two-payment problem is non-negative. Q.E.D.

In this subsection we will find the optimum for the two-payment problem for the case

where W = 0. In the following subsection we will solve the problem for W > 0 and τM

sufficiently small.
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Restriction (45) demonstrates that feasibility requires τ2 > ν2. Considering the effect of

reducing τ2 demonstrates that either τ2 = ν2 or (45) binds. We conclude that (45) must

bind. Restriction (45) (or individual rationality) also guarantees that D2 <B −K .

Considering the effect of reducing D1 demonstrates that either D1 = 0 or (42) binds. We

will allow a single-payment arrangement as an alternative, in which case a two-payment

arrangement with either D1 = 0 or D2 = 0 is dominated by a single-payment arrangement.

Thus we can drop restrictions (46), and conclude that (42) binds in a two-payment optimal

arrangement.

Considering the effect of reducing τ1 demonstrates that either (44) binds or τ1 = ν1 or

τ1 = τ2. However substituting (45) as equality into (44) yields the following condition:

(D1 +K)τ1 ≤B(τ1 − τ2)

from which we conclude τ1 > τ2 so that only the two remaining alternatives are possible:

(44) binds or τ1 = ν1 (we also conclude D1 < B −K). Furthermore 1≥ τ1 will not bind

(although the condition does have to be checked for feasibility in any proposed solution).

For future reference we also record the following lemma:

LEMMA A6: In an optimum with τ1 = ν1 and D2 strictly positive, (43) binds.

Constraint (43) is the seller’s participation constraint at ν1.

PROOF: Suppose (43) does not bind. Decrease D2 by a small amount ∆ while increas-

ing D1 by ∆ν2/ν1. Constraint (42) is unaffected. Constraint (45) is relaxed. The quantity

D1τ1 +D2τ2 changes by the amount

∆
ν2
ν1
τ1 −∆τ2 < 0
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relaxing (44) and improving the objective. Contradiction. Q.E.D.

Of the various conditions in (41), (47)-(49), the following remain as potentially binding:

τ1 ≥ ν1 ≥ ν2 ≥ τM .

Using the binding constraints (42) and (45) to define ν1 and τ2 we simplify the problem:

max
D1,D2,τ1,ν2

B − (D1 +K)τ1 −
B2ν2

B −D2 −K

subject to

C2 ≤ (C +D2)(C +D1)ν2 (50)

B2ν2 ≤ (B −D1 −K)(B −D2 −K)τ1 (51)

C ≤D1 τ1 + (C +D2)ν2 (52)

(C +D1 +D2)ν2 ≤C (53)

τM ≤ ν2 (54)

The objective is decreasing in all four variables. Thus (53) does not bind and can be omitted

until the check for feasibility at the end. Reducing τ1 demonstrates (51) or (52) binds.

Suppose (52) binds; use it to substitute for τ1 :

max
D1,D2,ν2

B − (D1 +K)
C − (C +D2)ν2

D1
− B2ν2
B −D2 −K

subject to

C2 ≤ (C +D2)(C +D1)ν2 (55)

B2ν2 ≤ (B −D1 −K)(B −D2 −K)
C − (C +D2)ν2

D1
(56)

τM ≤ ν2 (57)
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Now the objective increases with D1, demonstrating that (56) (equivalently, (51)) binds.

Therefore return to the previous version of the problem and use (51) as an equality. Sub-

stituting it into the objective function we see that the objective equals B(1 − τ1) so that

maximizing the objective is the same as minimizing τ1 (and the result is individually ratio-

nal for the buyer iff τ1 ≤ 1.) Using (51) to eliminate τ1 from the problem we have

min
D1,D2,ν2

B2ν2
(B −D1 −K)(B −D2 −K)

(58)

subject to

C2 ≤ (C +D2)(C +D1)ν2 (59)

C − (C +D2)ν2 ≤D1
B2ν2

(B −D1 −K)(B −D2 −K)
(60)

τM ≤ ν2 (61)

where either (59) or (60) binds.

Constraint (59) is a disguised version of the supplier’s participation constraint at ν1.

Constraint (60) says a payout cannot precede the payin. If it binds, the first payment is a

direct payment. However, if the first payment is a direct payment, then by the preceding

lemma, the supplier’s participation constraints bind. We conclude

LEMMA A7: In an optimal two payment arrangement, the supplier’s participation con-

straints bind.

We use the binding constraint to eliminate ν2. The problem becomes

min
D1,D2

B2C2

(B −D1 −K)(B −D2 −K)(C +D1)(C +D2)

subject to

C − C2

C +D1
≤ D1B

2C2

(B −D1 −K)(B −D2 −K)(C +D1)(C +D2)
(62)
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τM ≤
C2

(C +D1)(C +D2)
(63)

Constraint (63) is the horizon-constraint. The problem can be restated more simply as

max
D1,D2

(2X −C −D1)(2X −C −D2)(C +D1)(C +D2)

subject to

(2X −C −D1)(2X −C −D2)(C +D2)≤B2C (64)

(C +D1)(C +D2)≤C2τ−1
M (65)

Depending on the values of the three key parameters X , C2τ−1
M , and B2C, there are four

possibilities, illustrated in Figure A.2. If neither constraint binds, the optimum is achieved

by D1 = D2 = X − C (top-left). If only the horizon-constraint (65) binds (bottom-left),

then D1 =D2 =Cτ
−1/2
M −C <X −C . If only the prepayment-constraint (64) binds (top-

right), then D1 >D2 = X − C. If constraints (64) and (65) both bind, then D2 <X − C
as shown in the bottom-right panel of Figure A.2. (If the optimal values of D1 or D2

are not positive, that indicates that a single-payment arrangement or autarky automatically

dominates all two-payment arrangements).

More specifically, the results so far in effect have demonstrated that in the original prob-

lem, the constraints (42)-(45) are all binding. Constraints (42)-(45) can be solved simulta-

neously to find formulas for τ1, τ2, ν1, ν2 as functions of D1,D2:

ν1 =
C

D1 +C
,

ν2 =
C2

(D1 +C)(D2 +C)
,

τ2 =
BC2

(B −D2 −K)(D1 +C)(D2 +C)
,
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FIGURE A.2.—Possible Cases for the Two-Payment Solution

Note: The top-left panel illustrate the values of (D1,D2) where neither the prepayment-constraint in (64) nor

the horizon-constraint in (65) bind (Theorem 4). The top-right panel illustrates the situation where only the

prepayment-constraint binds so that the first payment is a direct payment (Theorem 5). The remaining panels

illustrate the horizon-constrained solutions where the prepayment-constraint does not bind (bottom-left) or where

it binds (bottom-right).

τ1 =
B2C2

(B −D1 −K)(B −D2 −K)(D1 +C)(D2 +C)
.

It remains to specify when each of the four possibilities in Figure A.2 arises, and when

the two-payment solutions are feasible and dominate the single-payment solution.
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1) The unconstrained optimum has

D1 =D2 =X −C.

The top-left solution applies if both constraints (64) and (65) are satisfied when these values

of D1,D2 are substituted. These conditions reduce to

X3 ≤B2C,

X2 ≤C2τ−1
M .

2) Ignoring the prepayment-constraint, the optimum occurs when

D1 =D2 = min{C(τ
−1/2
M − 1),X −C}

or equivalently, when D1 =D2 =C(ν
−1/2
2 − 1) and

ν2 = max

{
C2

X2 , τM

}
.

The prepayment-condition is satisfied when

B(1− ν1/42 )<C(ν
−1/2
2 − 1) +K

Therefore, necessary and sufficient conditions for the solution to be in the bottom-left cor-

ner are

X2 >C2τ−1
M ,

2X ≤Bτ1/4M +Cτ
−1/2
M .

These first two cases arise when both payments are programmable. The remaining two

cases arise when the first payment is direct and the second is programmable.

3) Ignoring the horizon-constraint, the optimum occurs when D2 =X −C and

D1 = max{X −C,2X −C − B2C

X2 }. (66)
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Plugging this into the horizon-constraint, the top right solution applies if the top left condi-

tions are violated and

max{X2,2X2 − B2C

X
} ≤C2τ−1

M .

Therefore necessary and sufficient conditions for the solution to be in the top right corner

are

X3 >B2C

2X2 − B2C

X
≤C2τ−1

M .

Note therefore, that in this case, the payments are not equal. The second payment is the

optimal payment in the single-payment problem, and the first payment is greater:

D1 >D2

⇔B −K − B2C

X2 >
1

2
(B −C −K),

⇔−B
2C

X2 >−X

⇔B2C <X3

which is the binding prepayment-constraint.

4) Finally, if none of these possibilities hold, then the bottom right solution applies.

Necessary and sufficient conditions are therefore

2X >Bτ
1/4
M +Cτ

−1/2
M

2X2 − B2C

X
>C2τ−1

M

Table A.I provides the formulas for the optimal choice variables in each of these four cases

and, for comparison, in the single-payment case. Note that the payoff is B(1− τ1).
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TABLE A.I

SOLUTIONS OF THE ONE-PAYMENT AND TWO-PAYMENT PROBLEM FOR W = 0

One payment One payment Two payments Two payments Two payments Two payments

Choice (constrained) (unconstrained) (constrained) (unconstrained) (constrained) (unconstrained)

variable None direct None direct Once direct Once direct

ν1 τM
C
X τ

1/2
M

C
X

C
D1+C

CX2

2X3−B2C

τ1
τMB

B−D1−K
BC
X2 τM

(
B

B−D2−K

)2
B2C2

X4
C

D1+C
CX2

2X3−B2C

D1 C(τ−1
M − 1) X −C C(τ

−1/2
M − 1) X −C C2

τM (D2+C) −C 2X −C − B2C
X2

ν2 τM
C2

X2 τM
XC2

2X3−B2C

τ2 τM
B

B−D2−K
BC2

X3 τM
B

B−D2−K
BC2

2X3−B2C

D2 C(τ
−1/2
M − 1) X −C X −C −M X −C

Note: “Constrained” refers to the horizon-constrained case. “None direct” means two programmable

payments, “once direct” means that only the last payment is programmable. The M in the solu-

tion to the horizon-constrained two-payment solution with one direct payment is defined as M =:(√
16X4 +C4τ−2

M − 8B2CX − 8C2X2τ−1
M −C2τ−1

M

)
/(4X).

COROLLARY A2: The solution for the optimal two-payment arrangement is horizon

unconstrained iff

C2τ−1
M ≥max{X2,2X2 − B2C

X
}.

PROOF: The horizon-constraint does not bind iff the solution belongs to Case 1 or Case

3 above. Q.E.D.

The condition (13) in the main text reduces to C2τ−1
M ≥ 2X2 implying the condition

in Corollary A2 holds true. The formulas in Table A.I in the “unconstrained” columns for

Cases 1 (“none direct”) and 3 (“once direct”) prove Theorems 4 and 5, respectively.
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A.3. Two Payments with W Positive and τM Small

In this subsection, we suppose that an optimal solution exists and that it has two payments

(so that D1,D2 are positive) and that ν2 > τM .

Since the objective is decreasing in τ2, either (45) binds, or τ2 = ν2. It follows that

COROLLARY A3: The second payment is a programmable payment iff D2 >W −K (it

is a simple direct payment iff D2 ≤W −K).

PROOF: If τ2 = ν2 then from (45) B −W ≤ B −D2 −K . If τ2 > ν2 then (45) binds

and (B −W )ν2 = (B −D2 −K)τ2, so that B −W >B −D2 −K . Q.E.D.

LEMMA A8: Constraint (42) binds. If there is no optimum in which constraint (43)

binds then in any optimum, constraint (45) binds;

PROOF: The objective is decreasing inD1 andD2. Figure A.3 shows the restrictions that

affect the choice of D1 and D2. The horizontal lines reflect, respectively, constraints (43)

and (45) binding. The diagonal line reflects constraint (42) binding and has slope −ν1/ν2.

(The remaining constraint involving D1 and D2 is (44). But as this constraint lies on an

isoprofit line, it affects feasibility but not the choice of D1,D2.) The slope of the isoprofit

lines when rewriting in terms of the value of D2 as a function of D1 is −τ1/τ2. If τ1/τ2 ≤
ν1/ν2 then Point 2 is an optimum, and constraints (42) and (43) bind]. If τ1/τ2 > ν1/ν2

then Point 1 is the only optimum, and constraints (42) and (45) bind. Q.E.D.

LEMMA A9: τ1 > τ2.



A-20

FIGURE A.3.—Feasible Set of (D1,D2) for the Two-Payment Arrangement

Note: The unshaded area indicates the feasible set of values of (D1,D2) for the two-payment arrangement in

a scenario where the continuation value can be positive (W ≥ 0) and the horizon-constraint does not bind (τM

small).

PROOF: Suppose instead τ1 = τ2. Then (45) cannot bind, otherwise (44) is violated. But

if (45) does not bind, then τ2 = ν2 as mentioned before. Since τ1 ≥ ν1 ≥ ν2, they all must

be equal. But a single payment is better than two simultaneous direct payments. Q.E.D.

Since the objective is decreasing in τ1, either (44) binds, or τ1 = ν1 (the previous lemma

rules out τ1 = τ2). If (44) binds the objective can be rewritten as B(1− τ1) so that maxi-

mizing it is the same as minimizing τ1.

Next we demonstrate that in fact

LEMMA A10: Constraint (43) always binds.

PROOF: If there is an optimum where (44) does not bind, then τ1 = ν1 and by an ar-

gument identical to that in the proof of Lemma A6, constraint (43) binds. The remainder

will be proven by contradiction. Suppose there is an optimum where constraint (44) binds

but constraint (43) does not; in this optimum constraints (42) and (45) would be binding
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(Lemma A8). We can use (42),(44),(45) as definitions of ν1, τ1, τ2. We would have

τ1 =
B

B −D1 −K
τ2

τ2 =
B −W

B −D2 −K
ν2

ν1 =
C − (C +D2)ν2

D1

and dropping the constraints assumed to be non-binding, the only ones remaining would be

ν2 ≤ τ2, ν2 ≤ ν1, and τ1 ≤ 1. Substituting the above definitions, the problem would become

max
D1,D2,ν2

B

(
1− B(B −W )ν2

(B −D1 −K)(B −D2 −K)

)
subject to

D2 ≥W −K

1≥ B(B −W )ν2
(B −D1 −K)(B −D2 −K)

ν2 ≤
C

C +D1 +D2

The objective would be declining in ν2 with ν2 unconstrained from below unless (43) binds.

Q.E.D.

In summary, we have established

ν1 =
C

C +D1
, (67)

ν2 = ν1
C

C +D2
, (68)

τ2 = max

{
ν2,

(B −W )ν2
B −D2 −K

}
, (69)

τ1 = max

{
ν1,

(D2 +K)τ2 + (B −W )ν2
B −D1 −K

}
. (70)
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Furthermore, the conditions of Lemma A5 are satisfied (if τ2 = ν2, (68) implies ν1 ≥ τ2;

otherwise (45) binds, as well as (43)). Thus a solution to the single-payment problem is

feasible whenever a solution to the two-payment problem is feasible, as long as τM is

small.

COROLLARY A4: If X2 < (B −W )C a solution to the two-payment problem is infea-

sible.

PROOF: When τM is small, the result follows directly from the necessary condition in

Lemma A1. But as τM increases, the feasible set shrinks, so the result holds, a fortiori.

Q.E.D.

A.3.1. Both Payments Programmable

If τ1 > ν1 and τ2 > ν2 we use (67-70) to define τi, νi and, recalling that when (44) binds

the objective is equivalent to minimizing τ1, the problem can be reformulated as

min
D1,D2

B(B −W )C2

(B −D1 −K)(B −D2 −K)(C +D1)(C +D2)

The unconstrained minimum occurs at

D1 =D2 =X −C.

Payouts occur at

ν1 =
C

X
,ν2 =

C2

X2 .

Payins occur at

τ1 =
B(B −W )C2

X4 , τ2 =
(B −W )C2

X3 .
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Assuming that τM is small and given the hypothesis τi > νi, i= 1,2, these formulas satisfy

all the conditions (41-49). As noted before, the second payment is a programmable payment

(that is, τ2 > ν2) iff D2 >W −K which, in this case translates to W <B −X . Given this

condition, the first payment is programmable iff

W <B −X X2

BC
.

The buyer’s payoff from this solution is

B(1− τ1) =B − B2C2

X4 (B −W ).

A.3.2. First Payment Direct, Second Programmable

Assume τ1 = ν1 while τ2 > ν2. In this situation, condition (45) will be binding and the

objective can be rewritten as

max
D1,D2,τ1,τ2,ν1,ν2

B

(
1− B −W

B −D2 −K
C

C +D2

C

C +D1

)
− C(D1 +K)

C +D1

subject to (41-49). The optimal value for D2 is

D2 =X −C

independent of D1.

Substituting D2 =X−C into the objective function yields an expression that is increas-

ing in D1 provided that CB(B −W )/X2 +K ≥ C (if this condition does not hold true,

it would be optimal to set D1 = 0 and a two-payment solution where the first payment is

direct and the second payment is programmable would be suboptimal). Plugging the solu-

tions for the other choice variables into constraint (44) and increasing D1 until (44) binds

gives

D1 = 2X −C − (B −W )
BC

X2 .
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Substituting into the constraints gives

τ1 = ν1 =
CX2

2X3 − (B −W )BC

and

ν2 = ν1
C

X
and τ2 = ν1

C(B −W )

X2 .

Substituting the solutions for ν2 and τ2 into (70) gives us the following condition for when

the first payment must be a direct payment (i.e., τ1 = ν1): BC(B −W ) ≤ X3, which is

the converse of the condition obtained in the previous subsection, assuming the second

payment is programmable. Altogether, with the conditions for a nonzero D1 and τ2 > ν2,

the condition on W that results in a direct first payment is

B −X X2

BC
≤W <B −max

{
X, (C −K)

X2

BC

}
.

We have X > (C −K)X2/(BC)⇔ B(C +K) > (C −K)2, so the condition on W can

be summarized as

B −X X2

BC
≤W <B −X.

Combining this with the results from the previous subsection we have

COROLLARY A5: The second payment is a programmable payment iff W <B −X . If

the second payment is programmable, D2 =X −C.

A.3.3. Second Payment a Direct Payment

Now assume τ2 = ν2. Using conditions (67-70), the two-payment problem can be rewrit-

ten as

max
D1,D2,τ1

B − C2(B −W +D2 +K)

(C +D1)(C +D2)
− (D1 +K)τ1
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subject to

C2(B −W +D2 +K)

(C +D1)(C +D2)
≤ (B −D1 −K)τ1 (71)

D2 ≤W −K (72)

Di ≥ 0, i= 1,2 (73)

C

C +D1
≤ τ1, (74)

τ1 ≤ 1, (75)

where (71) and (74) are derived from conditions (69) and (70), respectively, and (72) from

condition (45). Holding the other variables constant for the moment, notice that when we

move D2 so as to improve the objective, we also relax constraint (71). The objective is

monotonic for D2 in the permitted range [0,W −K]; if it is monotonically increasing then

the optimal D2 = W −K . (If it is monotonically decreasing, then D2 = 0, in which case

the second payment is suboptimal). We conclude that a necessary condition for a solution

of the form where D2 =W −K is

B −C ≥W −K ≥ 0 (76)

in which case

τ1 = max

{
C

C +D1
,

BC2

(W +C −K)(B −D1 −K)(C +D1)

}
. (77)

Suppose τ1 > ν1. Then condition (71) would bind, and the objective would be equivalent to

minimizing τ1, which would equal the second term in the above expression. The minimum

occurs at D1 =X −C , which would give

τ1 =
BC2

X2(W +C −K)
; ν1 =

C

X
.

However, it turns out that for the parameter values that are relevant for us, this outcome is

not possible:
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LEMMA A11: If X2 > (B − W )C , then a two-payment arrangement where a pro-

grammable payment is followed by a direct payment is not optimal.

PROOF: Consider the case X2 ≥BC . Suppose a programmable payment is followed by

a direct payment is optimal.

τ1 = ν1
BC

X(W +C −K)
≤ ν1

BC

X(B −X +C −K)
= ν1

BC

X2 ≤ ν1

contradicting τ1 > ν1 (the first inequality holds by Corollary A5).

Consider the case (B −W )C <X2 <BC . In this case, the payoff of the two-payment

arrangement where a programmable payment followed by a direct payment is strictly dom-

inated by a direct single-payment arrangement. The arrangement with the smallest value

for τ1 has the highest payoff. So, a direct single-payment arrangement strictly dominates a

programmable payments followed by a direct payment iff

C

W +C −K
<

BC2

X2(W +C −K)
⇔X2 <BC.

Combining the two cases proves that a two-payment arrangement where a programmable

payments is followed by a direct payment is not optimal if (B −W )C <X2. Q.E.D.

On the other hand, if τ1 = ν1, the objective reduces to

max
D1

B − BC2

(C +D1)(C +W −K)
− C(D1 +K)

C +D1

or

max
D1

B − C

C +D1

(
BC

C +W −K
+K +D1

)
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subject to

BC

C +W −K
+K +D1 ≤B

D1 ≥ 0.

The objective is increasing in D1 provided

BC

C +W −K
≥C −K

which follows from (76) (since BC/(C +W −K)≥BC/(C +B −C) =C ≥C −K).

Thus the solution is

D1 =B −K − BC

C +W −K
provided (76) holds. (The value of D1 is positive provided that X2 ≥BC:

BC

C +W −K
≤ BC

C +B −X −K
=
BC

X

≤X =
1

2
(B −K +C)

≤B −K

where the first inequality follows from Corollary A5).

A.4. Multiple Payments

To analyze the general case of multiple payments, we use the following insight: Suppose

that TM is so large as to pose no restriction on the calculations–that is, the problem is not

horizon-constrained. Look for the optimal arrangement that uses N payments, and suppose

the first payment in the arrangement occurs at T and withdrawal from escrow occurs at

S. Then the arrangement starting at S is an optimal arrangement with N − 1 payments.

Therefore, summarize the N − 1 payment optimum by the payoff it yields to the buyer.

We treat this payoff as the value the buyer would receive at the end of a single-payment
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arrangement, thereby deriving the optimal terms for the first payment in an N -payment

arrangement.

For this intuition to apply, it must be the case that there is no “overlap” between individ-

ual payments (hence, a chain of payments): each payout occurs before the next payin. We

begin by verifying there is no overlap in the two-payment case and that the second payment

indeed mimics the optimal single-payment solution.

LEMMA A12: Suppose X2 ≥ BC. In an optimal two-payment arrangement without

horizon-constraint, τ2 ≤ ν1.

PROOF: From the preceding subsection, there are two cases to consider:

1. If the first payment is programmable then the second payment is as well and

τ2 =
(B −W )C2

X3 ≤ C

X
= ν1

2. If the first payment is direct then ν1 = τ1 > τ2.

Q.E.D.

The reason we are restricting attention to the case X2 ≥BC is that this condition is nec-

essary for a single-payment arrangement to be feasible in the final round as the continuation

value W reaches zero in the final round.

LEMMA A13: Suppose X2 ≥ BC. Then in an optimal horizon-unconstrained two-

payment arrangement, the second payment constitutes an optimal horizon-unconstrained

single-payment arrangement starting from time S1
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PROOF: From the preceding subsection, we have that in an optimal two-payment ar-

rangement D2 = X − C iff W < B −X and D2 = W −K otherwise. (Since B −X =

X −C +K , this can also be written as D2 = max{X −C,W −K}.) This is identical to

the optimal value for D1 in the horizon-unconstrained single-payment arrangement in all

cases where an optimal two-payment arrangement exists (i.e., for W −K <B −C; when

W −K >B −C a two-payment arrangement is inferior to paying 0 immediately to move

to the post-arrangement payoff). Since there is no overlap in all cases, dividing τ2 and ν2

by ν1 in the solution for the optimal two-payment arrangement yields the optimal values

for τ1 and ν1 for the horizon-unconstrained optimal single-payment arrangement. Q.E.D.

Now we can put these single-payment arrangements together. A chain of payments is a

non-overlapping sequence of triples (Dn, νn, τn), n= 1, . . . ,N, where the subscript n now

represents the nth payment from the end. Let WN be the maximum buyer payoff in an

N -payment chain, with W0 = 0. Define

δn = νn/νn+1 (< 1)

εn = τn/νn (≥ 1)

With W0 = 0, the last payment must be programmable. The preceding lemma implies

that (Dn, δn, δnεn) is the optimal single-payment arrangement with terminal payoff Wn−1.

Thus, by Lemma A2, as long as we are in the programmable payment case (and given that

the problem is assumed horizon-unconstrained), we have

Dn =X −C

δn =
C

X

εn =
B −Wn−1

X
.
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The formula for the buyer’s payoff (40) for the optimal horizon-unconstrained single-

payment arrangement implies

Wn =B

(
1− (B −Wn−1)C

X2

)
where the last equation can also usefully be written as

B −Wn = (B −Wn−1)
BC

X2 = (B −W0)

(
BC

X2

)n
. (78)

So long as we are in the programmable payment region, Dn is constant. Moreover, δn

is constant as well, meaning that the interval Sn − Sn−1 between payouts to the seller is

constant. In this region,

εn+1

εn
=

B −Wn

B −Wn−1
=
BC

X2 ,

which has the interpretation that payins by the buyer are also made at constant frequency

(although a different frequency from the payouts). Iterating this condition yields

εn =
B

X

(
BC

X2

)n−1

.

The feasibility condition in the single-payment case is necessary for ε1 ≥ 1; otherwise

this sequence could not get started. But if payment n = 1 (the final payment) is feasible,

then this arrangement can be repeated backwards in time until the prepayment-constraint is

violated. The process forWn in (78) is monotonic; therefore extending the relationship with

additional rounds of payments is always welfare-improving. Since the difference equation

for Wn starts at 0 for n = 1 and asymptotes to B as n increases, the necessary condition

for programmable payments in Lemma A4 will be violated in finite time. Suppose the

condition is violated for n + 1 but not for smaller (i.e. later) n, so that n + 1 is the last

direct payment. Then

εn =
B

X

(
BC

X2

)n−1

> 1

but

B

X

(
BC

X2

)n
≤ 1.
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Thus this critical value of n satisfies(
BC

X2

)n
≤ X

B
<

(
BC

X2

)n−1

.

In the region with simple direct payments,

Dn =Wn−1 −K

δn =
C

C +Wn−1 −K

εn = 1.

In this region, the dynamics are determined by the non-linear difference equation derived

from (38):

Wn =B

(
Wn−1 −K

C +Wn−1 −K

)
.

FIGURE A.4.—The Difference Equation for Chains of Multiple Payments
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The value of W as the length of the optimal arrangement increases to infinity so that the

number of payments in the chain tends to infinity converges to

W = (X −C +K) +
√

(X −C +K)2 −BK. (79)

A.5. Direct payments in a stationary environment

To prove that the optimum in a stationary environment is reached with the direct pay-

ment arrangement in the theorem, we first rewrite the model. Suppose the consumer makes

regular payments ofD at interval τ , with the first payment occurring at τ1. Then the general

model with multiple payments can be rewritten as

max
D,τ,τ1

B − τ1((D+K) + τ(D+K) + τ2(D+K) + ...) = max
D,τ,τ1

B − τ1
D+K

1− τ

subject to

B(1− τ)≥D+K (80)

Dτ ≥C(1− τ) (81)

τ ≤ τ1 ≤ 1 (82)

τ1
D

1− τ
−C ≥Π (83)

Minimizing τ in second constraint gives

τ =
C

D+C
.

Substituting this into the first constraint gives a quadratic equation BD ≥ (D+K)(C+D)

or −D2 + (B −C −K)D−KC ≥ 0. Solving with the quadratic rule gives

D =
1

2

(
B −C −K ±

√
(B −C −K)2 − 4KC

)
.
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Solving with the quadratic rule requires the discriminant to be positive, or

(B −C −K)2 − 4KC ≥ 0,

(B +C −K)2 − 4BC ≥ 0,

B +C −K ≥ 2
√
BC.

In other words, the feasibility constraint must hold true. If the feasibility constraint holds

true, then there are two potential solutions and we will evaluate later which one maximizes

the objective. Moreover, using the expression for τ∗ in the last constraint and minimizing

τ1 gives that

τ1 =
Π +C

D+C

for 0≤ Π≤D (since τ ≤ τ1 ≤ 1). So, expression of solution for τ1 is independent of the

solution for (D,τ). Finally, we have to answer which potential solution from the quadratic

rule for D maximizes the objective (with the plus- or with the minus-sign?). Rewriting the

objective with the solutions for τ and τ1 gives the objective as

B − τ1
τ

τ

1− τ
(D+K) =B − Π +C

C

(
C +

K

D

)
.

Hence, the solution from the quadratic rule that sets D at its highest level—the one with the

plus-sign—maximizes the objective function. Moreover, from the objective, it is optimal to

set Π = 0 so that τ1 = τ .

This solution for regular direct payments gives that the level of D +K—the cost of the

payment to the consumer when the time comes—can be rewritten as

1

2

(
B +K −C +

√
(B +K −C)2 − 4BK

)
,

which is the same as the expression for the continuation value immediately after the previ-

ous payment in the solution for the optimal finite arrangement as the number of payments

tends to infinity in (79), which proves that the optimum is reached with direct payments

only.
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