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Abstract

I study the problem of a decision maker choosing a policy which allocates treatment to a heterogeneous

population on the basis of experimental data that includes only a subset of possible treatment values.

The effects of new treatments are partially identified by shape restrictions on treatment response. Policies

are compared according to the minimax regret criterion, and I show that the empirical analog of the

population decision problem has a tractable linear- and integer-programming formulation. I prove the

maximum regret of the estimated policy converges to the lowest possible maximum regret at a rate which

is the maximum of N−1/2 and the rate at which conditional average treatment effects are estimated in

the experimental data. I apply my results to design targeted subsidies for electrical grid connections in

rural Kenya, and estimate that 97% of the population should be given a treatment not implemented in

the experiment.
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1 Introduction

Heterogeneous treatment effects are often estimated with a decision problem in mind— should a particular

individual be treated? This question has fostered much research in econometrics, statistics, and machine

learning. However, relatively less attention has been given to another important margin of the decision—

should the treatment itself be adjusted? Whether the treatment is a medical treatment, subsidy, job training,

or audit probability, decision makers can usually entertain changing the treatment value that was observed in

the data. Even experiments with multivalued treatments may not implement an exhaustive list of treatment

values. This is especially true in the social sciences, where testing multiple interventions can be costly, and

in the medical sciences, where specific treatment doses are often tested in clinical trials. In this paper I

propose a method for allocating treatment to a population when the treatment values themselves can be

adjusted to values never before seen in the data. I show how combining the data on existing treatments

with economically motivated shape restrictions can be used to design policies that outperform those possible

when only previously implemented treatments are considered.

I first formulate a decision problem in which the decision maker observes experimental data on some

treatment values and seeks to construct a mapping, or policy, from the space of covariates to the space

of treatments in order to maximize some objective function. I assume all experimentation is done before

the policy is constructed. This setting, which is common in econometrics, is often referred to as treatment

choice or offline policy learning (examples include Athey and Wager (2021), Bhattacharya and Dupas (2012),

Kitagawa and Tetenov (2018) and other examples mentioned in the literature review thereof, Liu (2022),

Mbakop and Tabord-Meehan (2021), Qian and Murphy (2011), Sasaki and Ura (2020), Zhang et al. (2012),

Zhao et al. (2012)). A distinctive feature of this paper as opposed to most policy learning problems is

that the set of treatments that the decision maker can consider may be a strict superset of the support of

the treatment random variable observed in the data. This extends policy learning to practically relevant

situations in which constraints in the design and implementation of experiments or simply differences in the

objectives of the experimenter versus decision maker result in only a few treatment values being piloted in

the experiment, while the decision maker may want to consider many more.

Despite the lack of data on the impacts of these never-before-implemented treatments, I show how to

bound the response to new treatments using simple, economically interpretable restrictions on the shape of

treatment response. For example, a financial incentive may be assumed to have a positive effect, exhibit

diminishing returns, or satisfy smoothness conditions. Such shape restrictions are often exploited to partially

identify treatment effects (e.g. Manski 2009, Mogstad, Santos, and Torgovitsky 2018). The empirical analysis

of the present paper demonstrates that such bounds can be adequately informative for choosing whether and

2



how to implement new treatment values. Based on these bounds, I construct a population decision problem

to choose which treatment to assign to each covariate value. I use the minimax regret criterion to evaluate

treatment choice under partial identification following Manski (2007).

As in Manski (2004), Kitagawa and Tetenov (2018) and the subsequent literature on empirical welfare

maximization methods, I propose a decision rule based on solving the empirical analog of the decision

problem as a surrogate for the infeasible population objective. The resulting empirical minimax regret

estimator is constructed by minimizing maximum regret across an estimate of the partially identified set

of treatment response functions. In this way, the resulting policy is robust to model ambiguity induced

by introducing new treatments. Despite involving nested, non-closed form optimization problems which

characterize the identified set for treatment response, I show how the optimal policy can be computed using

the same linear and integer programming tools common in the policy learning literature. The estimator is

thus computationally feasible and can be implemented by widely available software.

I show that the proposed decision rule posesses desirable regret properties. The maximum regret obtained

under the estimated policy converges to the smallest possible maximum regret that the decision maker could

have achieved in the absence of sampling uncertainty– that is, if the population identified set were observed–

uniformly across a set of data distributions. The rate at which the regret of the estimated policy converges

to its optimum depends on the estimation rate of the response to the treatments which were observed in the

data, and hence is an asymptotic rather than finite-sample convergence guarantee. In the case of discrete

covariates, or more generally parametric rates of convergence for estimated treatment effects, the rate of

convergence of maximum regret is N−1/2. Otherwise, maximum regret converges at the nonparametric rate.

I apply the method to data from Lee, Miguel, and Wolfram (2020b), in which households in rural Kenya

were offered one of four prices in 0, 15, 25, or 35 thousand shillings to connect to the electrical grid. I

consider a decision maker able to offer prices in increments of 2.5 thousand shillings based on household size

and income. This represents a much richer set of fifteen possible treatments, allowing for finer targeting

of personalized prices to optimize the cost-effectiveness of the subsidy program. To bound the takeup at

these new prices, I assume demand is downward sloping and convex. The estimated minimax regret optimal

policy assigns prices that were not implemented in the experiment to over 97% of the population, illustrating

that constraining the decision maker to treatments that appear in the experimental pilot data can result in

suboptimal decisions.
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1.a Related Literature

This paper contributes to a growing literature on statistical treatment rules in econometrics beginning with

Manski (2004) and Kitagawa and Tetenov (2018), which introduced the now-common empirical welfare

maximization framework. I follow a similar strategy of constructing an empirical analog of the population

objective, but seek to minimize the worst-case regret that can occur within the identified set of treatment

response.

Forecasting the effects of treatments or policies never before observed in the data is a fundamental goal

of econometrics, especially when applied as a guide for public policy (see Heckman and Vytlacil (2007) and

Manski (2021) for a deep discussion, including a historical overview). Nonetheless, the recent literature on

policy learning and treatment choice has generally not considered the introduction of new treatments with

partially identified effects. A contemporaneous exception is Manski (2023), which studies policies which

change the dosage of a vaccine to levels not observed in the data, but does not consider statistical properties

of estimated decision rules.

Partial identification has appeared in policy learning and related decision problems in contexts other

than consideration of new treatments; examples include Ben-Michael et al. (2021), Christensen, Moon, and

Schorfheide (2022), D’Adamo (2021), Kallus and Zhou (2021), Manski (2006), Manski (2010), Pu and Zhang

(2021), Russell (2020), Stoye (2012), and Yata (2021), Zhang, Ben-Michael, and Imai (2022). Ben-Michael

et al. (2021) considers that the effects of new policies may be partially identified when historical data is

generated by a deterministic policy, violating the common assumption of strong overlap. Kallus and Zhou

(2021) studies policy learning when the effect of a binary treatment is partially identified due to unobserved

confounding, and proposes algorithms that aim to guarantee improvement relative to a baseline policy.

The present work differs not only in that the source of partial identification is new treatments instead of

unobserved confounding, but also in that I focus on minimax regret as opposed to regret relative to a baseline.

The policy resulting from a minimax regret approach will recommend new treatments more often since the

minimax regret criterion considers losses relative to the optimal policy in each state of the world.

D’Adamo (2021) studies policy learning with a binary treatment where the conditional average treatment

effect is identified up to a rectangular set, meaning it is characterized by bounds which depend only on the

covariate value. In contrast, shape restrictions generally yield nonrectangular identified sets. This leads to

difficulties when estimating the optimal policy in my setting because the bounds I identify do not in general

admit a closed form. However, the extra effort proves valuable in the empirical example of Section 5, where

I find that the non-closed form characterization of the identified set using shape restrictions ends up being

substantially more informative than pointwise bounds would be for calculating regret.
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Many of the previously mentioned works are concerned with binary treatments, while I am concerned

with multivalued treatments. Zhou, Athey, and Wager (2018) and Kallus and Zhou (2018) consider policy

learning with multivalued treatments and continuous treatments, respectively, but in point-identified settings

where all possible treatment values are implemented in the experiment. Yata (2021) studies a binary decision

between two policies which may not concern the assignment of a binary treatment. Additionally, the new

policy may have partially identified effects. The minimax regret rule is derived for a general class of decision

rules and applied to the problem of changing the eligibility cutoff for a treatment. The decision problem

and assumptions of Yata (2021) and the present paper differ, yet the broad goal of choosing amongst new

policies with partially identified effects make the two complimentary.

Athey and Wager (2021) extends policy learning to observational studies where exogeneity of treatment

only holds after conditioning on high-dimensional covariates. In contrast, I am motivated by settings in

which decision makers have data from a pilot experiment which tested a few treatment values. When this

is the case, estimating the effects of policies involving new treatments only requires conditioning on the set

of covariates used in the treatment rule, which is typically low-dimensional due to exogenous constraints on

the policy class (Kitagawa and Tetenov 2018). Athey and Wager (2021) also considers infinitesimal, local

changes to treatment values; however, I consider new treatments that are sufficiently far from the support

of the data as to make local approximations or parametric extrapolations unreliable, necessitating a partial

identification approach.

An alternative to the plug-in approach used in this paper and common in policy learning is to average

across the parameter space according to some distribution. Christensen, Moon, and Schorfheide (2022)

study optimal decisions in a discrete set under partial identification where Bayes rules and the bootstrap

distribution are used to average over the space of identified parameters, while a minimax approach is taken

over the partially identified parameters. An important finding is that plug-in-rules may be dominated in

the asymptotic limit experiment. See Hirano and Porter (2009) and Hirano and Porter (2020) for further

discussion of asymptotic optimality of statistical treatment rules.

The rest of the article is organized as follows: Section 2 describes the decision problem in the population

and shows how to incorporate information from shape restrictions. Section 3 describes the empirical minimax

regret problem and the algorithm for estimating the optimal policy. Section 4 describes the convergence

guarantees. Section 5 applies the method to study personalized subsidies to connect to the electrical grid in

rural Kenya.
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2 Population Decision Problem

2.a General Framework

A decision maker has access to experimental data and must choose a rule assigning individuals to treatments

based on their observable covariates. The experimental data is described by random variables (D,X, Y )

taking values in D0 × X × Y where D is a randomly assigned treatment, X are observed covariates, and Y

is an outcome of interest. Although the random variable D only takes values in D0, the decision maker can

consider assigning individuals to any treatment value d ∈ D where D is potentially larger than D0. Hence,

I assume the existence of potential outcomes Y (d) for all d ∈ D. The set D has cardinality |D| = J < ∞,

and its elements are denoted by dj for j ∈ {1, . . . , J}. The observed outcome Y is generated as Y = Y (D).

Let P denote the distribution of (D,X, (Y (d))d∈D). The decision maker seeks a policy π : X 7→ D which

assigns individuals to treatment status based on their observable covariates. The policy is chosen from some

set Π which is taken as given. The treatment assigned to an individual with covariate values X is π(X) and

the realized outcome is Y (π(X)). The decision maker has some utility function u(d, x, y) which may depend

on the treatment assigned, covariates, and the realized outcome of interest. I assume the decision maker is

utilitarian and ultimately cares about the expected utility derived from the data realized from the policy,

resulting in the following problem that the decision maker would like to solve

max
π∈Π

EP
[
u(π(X), X, Y (π(X)))

]
= max

π∈Π
EP
[
vP (π(X), X)

]

where vP (d, x) := EP [u(d,X, Y (d)) | X = x] is the conditional mean utility.

Two sources of ignorance on the decision maker’s part make this problem infeasible to solve in practice.

The first is that only a sample is observed, so the population probability distribution is unknown. The second

is that even if the population distribution of the data (D,X, Y ) were known, the effects of some treatments

are not identified because they are never observed. In particular, the function v depends on the distribution

of potential outcomes Y (d) for values of d not in D0. Since data on these potential outcomes are not observed

in the sample, the decision maker’s objective is not point identified. To deal with partial identification, I

will solve a proxy problem which is robust to partial identification in that it achieves uniformly low regret

across the identified set for v. Since only sample data is available, I solve the empirical or plug-in version of

this problem.

Following Manski (2004) and much of the econometric literature on treatment choice, policies will be
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evaluated based on their expected regret. For a chosen policy π, the regret of π is the difference in expected

utility obtained from implementing the first-best policy versus π. The first-best policy maps each covari-

ate value x to arg maxd vP (d, x). For any chosen policy π, the expected regret of implementing π versus

implementing the first-best policy is

RP (π) := EP
[

max
d

vP (d,X)− vP (π(X), X)

]

Since vP is not identified, regret is not identified either. However, letting VP be the as-of-yet-uncharacterized

identified set for vP determined by the experimental data, the maximum expected regret that can occur if

the decision maker implements policy π is given by

RP (π) := max
v∈VP

EP
[

max
d∈D

v(d,X)− v(π(X), X)

]

I use the minimax regret criterion to guide the choice of policy. This means π is chosen to minimize the

largest regret that can occur within the identified set— that is, RP (π). Therefore, the decision maker chooses

π to minimize the worst-case expected regret as follows

π∗P ∈ arg min
π∈Π

RP (π) = arg min
π∈Π

max
v∈VP

EP
[

max
d∈D

v(d,X)− v(π(X), X)

]
(1)

This ensures that the chosen policy minimizes regret uniformly across the identified set. If the minimizer is

not unique, the decision maker is indifferent among them.

The minimax regret criterion is not the only method for comparing statistical decisions with partially

identified effects. In the context of treatment choice, Manski (2011) compares the minimax regret criterion

with the maximin welfare and subjective expected welfare criteria, two common alternatives. Under the

maximin welfare criterion, the decision maker seeks to maximize the minimum possible level of the outcome

that could be attained as opposed to the minimum gap between the attained and first-best level of the

outcome. The method for construction and estimation of the optimal policy that follows can be applied

when using the maximin welfare criterion as well. Indeed, it can be obtained as a simplification of what

follows by replacing maxd∈D v(d,X) with 0 in (1). However, the resulting estimator will of course have

different behavior and regret properties.

In some settings the maximin criterion can be quite conservative (see the discussion of Wald (1950)

found in Savage (1951)). Indeed, unless a new treatment d ∈ D \ D0 can be guaranteed to outperform

the original set of treatments in every possible state of the world v ∈ VP , the maximin welfare criterion

will not implement new treatments. This is because under the maximin welfare criterion the decision is
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driven entirely by hedging against the least favorable state of the world. In contrast, the minimax regret

criterion considers the suboptimality gap in all possible states of the world. The decision maker measures

the performance of the policy in each state of the world according to the benchmark of optimality in that

state of the world. I follow Manski (2007) in applying the minimax regret criterion to treatment choice. This

represents a particular choice of loss function and in turn delivers a point estimate of an optimal policy.

When the probability of each state of the world v ∈ VP can be described by a probability distribution,

the Bayesian approach to decision making can be applied. This consists of setting a prior over states of the

world v ∈ VP , using the data to form a posterior, and selecting a treatment policy which maximizes posterior

expected welfare. One potential weakness of this approach in the context of introducing new treatments is

that the lack of identification means that even in large samples, the influence of the prior on the posterior

will be substantial. Yet another possible approach to estimate the effects of treatments that lie outside

the support of the data could be to extrapolate using a parametric model, thus circumventing entirely the

need for partial identification. However, when the new treatments are sufficiently far from the support of

the data, a parametric point-identified model substantially understates the degree of model uncertainty.

This is illustrated in Section 5 where the differences between parameter values within the identified set are

economically significant.

2.b Imposing Shape Restrictions

I now describe how a tractable characterization of the minimax regret problem (1) can be obtained using

shape restrictions on the treatment response. Assume that utility is linear in the outcome of interest so

u(d, x, y) = b(d, x)y− c(d, x) for known functions b and c. While it is often possible to avoid the assumption

of linear utility by simply redefining Y as utility, in some applications (such as in Section 5) it may be

more natural to impose shape restrictions in terms of the original outcome variable, which may relate to a

structural economic quantity such as a demand curve. In Section 5, y will be a purchase indicator, b(d, x) will

be the amount of the subsidy, and c(d, x) represents fixed costs of treatment, which I take to be 0. Note that

the assumption of linearity implies vP (d, x) = b(d, x)mP (d, x)− c(d, x) where mP (d, x) := EP [Y (d) | X = x]

is the conditional mean response function. Moreover, any alternative conditional mean response m induces an

alternative expected utility function. I therefore will also use the notation vm(d, x) := b(d, x)m(d, x)−c(d, x)

where conditional mean utilities are indexed by conditional mean response functions rather than probability

distributions. Since b and c are known functions, in order to characterize maximum regret it is sufficient to

characterize the identified set for mP .

The decision maker has experimental data on the effectiveness of some treatments. This means that
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mP (d, ·) is identified for every d ∈ D0. For this information on the effects of treatments in D0 to be

informative about the effects of treatments in D \ D0, some structure must be known about the mean

conditional response function mP . For example, the decision maker may know that demand is downward

sloping, that a particular intervention features decreasing returns to scale, or that the treatment response

exhibits some smoothness properties. By combining knowledge of mP (d, ·) for d ∈ D0 with such shape

restrictions, the effects of new treatments may be partially identified.

Let the set of shape-restricted mean conditional response functions be denoted S, so that it is assumed

ex ante that mP ∈ S. Then the sharp identified set for mP is simply

MP := S ∩ {m : m(d,X) = mP (d,X), P − a.s., ∀d ∈ D0}

which represents the set of functions which obey the shape restrictions and match identified population

means. A useful structure that S is assumed to possess is that a hypothetical conditional mean response

function m is in S if and only if m(·, X) satisfies some shape restrictions almost surely. That is, S encapsulates

assumptions about the shape of mP across d for fixed x, leaving the behavior of mP across x unrestricted

(Manski 1997, Manski 2006). This means that an individual at a particular covariate value is assumed to

have an expected treatment response that is decreasing, convex, smooth, etc. Hence, the maximization over

v (equivalently maximization over m ∈ MP ) in (1) is solved by considering each value of x in isolation

and finding the m(·, x) which maximizes regret. This allows the maximum to be interchanged with the

expectation in the minimax regret problem (1)

min
π∈Π

max
m∈MP

EP
[

max
d∈D

vm(d,X)− vm(π(X), X)

]
= min

π∈Π
EP
[

max
m∈MP

(
max
d∈D

vm(d,X)− vm(π(X), X)

)]
= min

π∈Π
EP
[ J∑
j=1

πj(X)Γj,P (X)

]
(2)

where πj(X) = 1[π(X) = dj ] and

Γj,P (X) := max
m∈MP

(
max
d∈D

vm(d,X)− vm(dj , X)

)

which can be interpreted as the contribution to maximum expected regret of assigning a person with covariate

values X to treatment dj .

The optimization problem (2) defines the policy which is optimal in terms of its population minimax
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regret. The benefit of imposing shape restrictions only on the behavior of mP across d is that the repre-

sentation (2) is an optimization problem over a population expected loss defined by Γj,P (X). This problem

possesses a form similar to decision problems presented in Athey and Wager (2021), D’Adamo (2021), and

others, with the key distinction that the covariate-level loss Γj,P (X) is itself the solution to an optimization

problem which generally will not have a closed-form solution. Nonetheless, the minimax regret problem (2)

can be cast in terms of the empirical welfare maximization framework of Kitagawa and Tetenov (2018). In

the following section, I discuss how to set up the empirical analog of the nested optimization problem (2)

and provide a computationally attractive algorithm for solving it.

3 Estimation

The optimization problem (2) is infeasible for the decision maker because in practice only a sample

{(Di, Xi, Yi)}Ni=1 is observed. Instead, I propose solving the empirical analog of (2) to obtain an estimate

of the population optimal policy. Insofar as the constraints of this problem are constructed from consistent

estimators, the optimal policy will inherit similar properties.

In this section I describe the empirical analog of (2) and provide a solution procedure. It consists of first

estimating the effects of the treatments which were implemented in the experimental data, then constructing

estimates of Γj,P (Xi) for every observation i and treatment j, and finally plugging these estimates into

the empirical analog of (2) where the sample mean is used instead of the population expectation. I show

how Γj,P (Xi) can be expressed using linear programming, resulting in a mixed integer-linear programming

formulation for (2) for many policy classes Π.

First, I estimate the mean conditional response function for every d ∈ D0, denoted m̂0(d, x). Except

for high level conditions on the accuracy of the estimate detailed in Section 4, I remain agnostic about the

how the estimate is constructed. The estimate m̂0 is used to construct an estimate of the identified set for

mP (·, Xi) for each i as a function of d in all of D, which represents covariate-level bounds on the effects of

new treatments. The empirical analog of MP is the set of functions which obey the shape restrictions and

match estimated sample means, and is denoted by M̂ := S ∩ {m : m(d,Xi) = m̂0(d,Xi) ∀i, ∀d ∈ D0}. I

assume it is nonempty. As discussed in Section 4, estimators which violate the shape restrictions and hence

yield an empty M̂ can be projected onto the set of functions which satisfy the shape restrictions. Since these

are assumed to hold in the population, imposing such shape restrictions on estimators typically improves

performance in finite samples (Chetverikov, Santos, and Shaikh 2018).

This is then used to construct estimates Γ̂j(Xi) of the covariate-level loss Γj,P (Xi), for every observation
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i and treatment j. That is,

Γ̂j(Xi) = max
m∈M̂

(
max
d∈D

vm(d,Xi)− vm(dj , Xi)

)
(3)

These estimates are then used in the program

π̂ := arg min
π∈Π

n∑
i=1

J∑
j=1

πijΓ̂j(Xi) (4)

where πij = 1[π(Xi) = dj ].

Having defined the estimator for the minimax regret optimal policy (4), I turn to computationally conve-

nient methods for estimating Γ̂j(Xi) and thereby the policy π̂. This is achieved by expressing Γ̂j(Xi) through

linear programs and considering policy classes Π which can be expressed using linear and integer constraints.

In doing so, I impose some additional structure on the set of shape restricted functions S. Specifically, I

assume the a priori knowledge on shape restrictions can be summarized through linear transformations of

the treatment response vector for almost every x.

Assumption 3.1. There exists some matrix S and some vector r such that the conditional mean re-

sponse function m(d, x) is in the set S if and only if Sm(·, X) ≤ r P−almost surely, where m(·, x) :=

(m(d1, x), . . . ,m(dJ , x))′.

This assumption is quite flexible in the class of shape restrictions it can handle. For example, restrictions

on the first, second, or higher differences of the mean conditional response can be expressed this way, allowing

for mP to be constrained to be decreasing, Lipschitz, convex, or obey higher order smoothness conditions

(Mogstad, Santos, and Torgovitsky 2018). Upper and lower bounds on mP can also be expressed through

such constraints. Appendix B describes in detail how the restrictions of decreasing demand and diminishing

returns to the subsidy are applied to the empirical example in Section 5. The following example conveys the

practical use of the assumption.

Example 3.2. Suppose D = {1, 2, 3, 4} and mP (d, x) is assumed to be increasing and concave in d. Then
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m ∈ S if and only if Sm(·, X) ≤ r P -almost surely where

S =



1 −1 0 0

0 1 −1 0

0 0 1 −1

1 −2 1 0

0 1 −2 1


r =



0

0

0

0

0


Here the first three rows of S ensure that m is increasing, and the second two rows of S ensure concavity.

To ensure that M̂ consists of functions which match sample analogs of identified means on D0, I introduce

the |D0| × J matrix F where Fkj = 1 if dj is the kth element of D0 and Fkj = 0 otherwise. Then the

identified setMP is the set of all m such that Sm(·, X) ≤ r and Fm(·, X) = m0,P (·, X) almost surely, where

m0,P (·, X) = (mP (d,X))d∈D0
. That is,

MP = {m : Sm(·, X) ≤ r, Fm(·, X) = m0,P (·, X), P − a.s.}

which allows the empirical analog M̂ to be expressed as

M̂ = {m : Sm(·, Xi) ≤ r ∀i, Fm(·, Xi) = m̂0(·, Xi) ∀i}

where m̂0(·, x)′ = (m̂0(d, x))d∈D0
. By expressing M̂ this way it is possible to express Γ̂j(Xi) as the maximum

of J linear programs. Define the estimate

Γ̂jk(Xi) := max
m∈M̂

vm(dk, Xi)− vm(dj , Xi)

which measures the contribution to expected regret of assigning an individual dj instead of assigning them

dk, conditional on Xi. For each observation i and treatments j and k, construct bjk(Xi) as a vector in RJ

with b(dk, Xi) in the kth entry and b(dj , Xi) in the jth entry, and zeros everywhere else. Construct cjk(Xi)

likewise. Then

Γ̂jk(Xi) = max
m

bjk(Xi)
′m−cjk(Xi)

s.t. Sm ≤ r

Fm = m̂0(·, Xi)

(5)
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where the choice variable m is a vector in RJ . After defining Γ̂j(Xi) = maxk Γ̂jk(Xi), these estimates can

be used in the program (4).

Despite the linear programming representation of Γ̂jk(Xi), computing Γ̂j(Xi) for all i and j appears to

require NJ2 linear programs total (one for each i, j, and k combination). However, a dual formulation

detailed in Appendix B demonstrates that maxk Γ̂jk(Xi) can be computed with a single linear program,

reducing this burden to NJ linear programs; moreover holding j fixed the linear programs for all observations

can be stacked together and solved simultaneously. This reduces the computational burden to only J

programs, one for each possible treatment in D. Additionally, in the case of discrete covariates, it is only

necessary to construct Γ̂j(Xi) for unique values of Xi, which may be substantially smaller than the sample

size N .

Having computed the covariate-level loss estimates Γ̂j(Xi) that appears in (4), optimization of the policy

π over the set Π can be performed according to established methods in policy learning. In many cases, Π can

be represented by linear and integer constraints. Examples include linear eligibility scores, decision trees, and

treatment sets with piecewise linear boundaries (Kitagawa and Tetenov 2018, Mbakop and Tabord-Meehan

2021, Zhou, Athey, and Wager 2018). When this is the case, the problem (4) is a mixed integer-linear program

for which highly optimized solvers are readily available. In Section 5, I use a class of linear eligibility score

policies, which is described using linear and integer constraints in Appendix B.

Since optimization of π using mixed integer-linear programming is standard practice in policy learning

problems, the only additional computational burden resulting from considering new treatments is the J linear

programs mentioned above. For the example in Section 5 I found the computation time for Γ̂j(Xi) to be at

most a similar order of magnitude as that of the estimation π̂ and sometimes much shorter, depending on

the complexity of the policy class. For the baseline specification in Section 5 this resulted in a total runtime

of a few hours. Constructing Γ̂j(Xi) can often benefit from parallelization so that the overall computational

burden is not much larger than the point identified case.

4 Regret Convergence

In this section I investigate theoretical guarantees on the performance of the estimated policy π̂. Following

Manski (2004), I evaluate the performance of policies in terms of their statistical regret. In particular, I

show that the regret of the estimated policy π̂ converges to the lowest possible maximum regret the decision

maker could achieve if the population identified set under distribution P were observed, uniformly across P .
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Specifically, the regret guarantees will be of the form

sup
P

(
EP [RP (π̂)]−RP (π∗P )

)
≤ O(N−1/2 ∨ ρ−1

N )

where P ranges across an appropriate set defined below, implying that

sup
P

EP [RP (π̂)] ≤ sup
P
RP (π∗P ) +O(N−1/2 ∨ ρ−1

N )

for an appropriate sequence ρ−1
N → 0. Since the estimated policy π̂ is constructed using consistent estimates

of the partially identified set, these guarantees will generally be asymptotic in nature. Above, the expectation

only averages across realizations of the estimator π̂ because RP (·) is defined using the population probability

measure P . The interpretation of this bound is that asymptotically the performance of the estimated policy

π̂ as measured by its maximum regret across distributions P (and the identified set under P ) apporaches

the performance of the population optimal policy π∗P .

Note that 0 ≤ RP (π∗P ) ≤ RP (π̂) so that, averaging across realizations of the estimate π̂, the worst-case

expected regret of π̂ is growing arbitrarily close to RP (π∗P ), the lowest possible maximum regret the decision

maker could achieve in the absence of sampling uncertainty. Moreover, in general no policy π can achieve

zero maximum regret across the entire identified set, resulting in RP (π∗P ) ≥ 0 typically holding with strict

inequality for the population optimal π∗P .

I now discuss assumptions sufficient for such guarantees. The main assumptions on the joint distribution

of the data are random assignment of treatment and boundedness of the components of utility.

Assumption 4.1. {(Yi, Di, Xi)}ni=1 are iid copies of (Y,D,X), generated by P which satisfies

1. D ⊥ Y (d) | X for all d ∈ D

2. There exists C < ∞ such that mP (d,X), b(d,X), and c(d,X) are all bounded in absolute value by C

almost surely, for each d ∈ D

Assumption 4.1.1 reflects the standard exogeneity condition that holds in the randomized experiment

settings I use as a motivating example. It may also hold in observational studies, in which case it may be

a strong assumption. In many randomized experiments the stronger condition D ⊥ (Y (d), X) is satisfied.

When this is true, it is sufficient to estimate mP (d, x) = EP [Y (d) | X̃ = x], where X̃ is a subset of covariates

X which directly enter the policy. X̃ may be of a much lower dimension than X since policies are often

restricted to be relatively simple (Kitagawa and Tetenov 2018). In Section 5, there are two covariates which

enter the policy. Henceforth, I do not distinguish between the covariates required for Assumption 4.1.1 and
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the covariates used for the policy. Assumption 4.1.2 restricts decision maker preferences and the expectation

of the random variable Y . In the example of Section 5 the outcome Y is bounded while b(d, x) is constant

in x and c(d, x) = 0, satisfying this condition trivially.

The estimate m̂ also must be sufficiently accurate in the following sense

Assumption 4.2. For some sequence ρN →∞ and some class of distributions P, the estimate m̂ satisfies

1. lim supN→∞ supP∈P ρNEP
[

1
N

∑N
i=1‖m̂0(·, Xi)−m0,P (·, Xi)‖

]
<∞

2. M̂ = {m : Sm(·, X) ≤ r, Fm(·, X) = m̂0(·, X)} is nonempty, almost surely, for all P ∈ P.

One common setting in which Assumption 4.2.1 holds with ρN = N1/2 is when the covariates are discrete

and sample averages may be used. Alternatively, mP (d, ·) may be assumed to belong to a parametric family,

for each value of d ∈ D0. Since mP (d, ·) is identified holding d ∈ D0 fixed, parametric assumptions on

the relationship between covariates and the outcome of interest conditional on treatment values observed

in the data may be weaker assumptions than the kinds of parametric assumptions that would allow one to

extrapolate to new treatments. Kitagawa and Tetenov (2018) provides more general conditions under which

Assumption 4.2.1 is satisfied when m̂ is constructed via local polynomial regression.

Assumption 4.2.2 is not a restrictive assumption. Unless mP is on the boundary of S, the estimated set M̂

will typically be nonempty with high probability as N grows even if 4.2.2 is not assumed. In finite samples,

an estimator that yields an empty M̂ can be projected onto the set of all m̂ such that M̂ is nonempty. Since

m̂0(·, X) is a vector in R|D0| and S is described by linear inequalities, this is a simple convex minimum norm

problem that can be solved by quadratic programming.

Finally, the choice set Π is assumed to satisfy a standard condition on its complexity.

Assumption 4.3. For each d ∈ D, the class of sets {x : π(x) = d, π ∈ Π} is a VC-class of sets with VC

dimension at most v <∞.

For a formal definition of the VC dimension, see van der Vaart and Wellner (1996). The assumption

of finite VC dimension limits the complexity of the class Π; specifically, Assumption 4.3 ensures that Π

cannot be so flexible as to assign any arbitrary subset of a collection of v + 1 points in X to treatment d.

This assumption is commonly invoked in offline policy learning settings as a way to express the constraints

faced by decision makers (Kitagawa and Tetenov 2018); this may be for the sake of interpretation, fairness,

ease of implementation, political constraints, etc. The types of rules discussed in Section 3 which can be

expressed using linear and integer constraints, like linear eligibility scores and decision trees, satisfy this

assumption under bounds on the number of inputs to the eligibility score or the depth of the decision tree.

The assumption of VC dimension also plays an important role in the convergence of the regret of the optimal
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policy by ensuring the policy does not overfit the sample data. This assumption can be relaxed by instead

using a holdout validation sample which acts as a regularizer in the estimation of the policy (Mbakop and

Tabord-Meehan 2021).

Under these assumptions, the following regret bound is obtained:

Theorem 4.4. Let PC be a set of distributions for which (1) Assumptions 4.1 holds with constant C and

(2) Assumption 4.2 holds. Under Assumptions 3.1 and 4.3,

sup
P∈PC

(
EP [RP (π̂)]−RP (π∗P )

)
≤ O(N−1/2 ∨ ρ−1

N )

is satisfied. As a result,

sup
P∈PC

EP [RP (π̂)] ≤ sup
P∈PC

RP (π∗P ) +O(N−1/2 ∨ ρ−1
N ) (6)

The rate of convergence of the maximum regret is the slower of two rates: N−1/2, and the estimation

rate of m̂0 in Assumption 4.2. This first rate is driven by the convergence of an empirical process uniformly

over the policy class, which is N−1/2 under Assumption 4.3 (van der Vaart and Wellner 1996). The second

rate reflects that the regret of the estimated policy depends on the behavior of the linear program (5),

the constraints of which depend on identified moments of the data and must be estimated. In turn, the

value of the linear program can be shown to converge to its population counterpart at the same rate as the

constraints (see Hoffman (2003) and Rockafellar and Wets (2009), related results in econometrics include

Fang et al. (2020), Freyberger and Horowitz (2015)). Because Assumption 4.2 is only a condition on the

rate of convergence of this estimator, the bound of Theorem 4.4 is a rate result. If non-asymptotic bounds

on the estimator m̂0 are available, for example if covariates are discrete and outcomes are bounded, then the

proof of Lemma 4.6 can be used to obtain non-asymptotic regret bounds.

I give a heuristic sketch of the proof and defer the details to Appendix A. I first define the quantities

R̃N,P (π) :=
1

N

N∑
i=1

J∑
j=1

πijΓj,P (Xi)

RN (π) :=
1

N

N∑
i=1

J∑
j=1

πijΓ̂j(Xi)

R̃N,P (π) measures the in-sample or empirical maximum regret of policy π, supposing the true mP and hence

the true Γj,P were known. RN (π) is the objective function of the empirical minimax regret problem (4).

The difference between the maximum regret of the estimated policy and that of the minimax regret optimal
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policy can then be decomposed in terms of these quantities as follows:

0 ≤ RP (π̂)−RP (π∗) = RP (π̂)− R̃N,P (π̂)

+ R̃N,P (π̂)−RN (π̂)

+RN (π̂)−RN (π∗)

+RN (π∗)− R̃N,P (π∗)

+ R̃N,P (π∗)−RP (π∗)

(7)

The first and last lines of (7) each concern the difference between a sample mean and the population

expectation, holding the policy and distribution fixed and assuming Γj,P (X) is known. They are each

bounded by

sup
π∈Π

∣∣∣∣RP (π)− R̃N,P (π)

∣∣∣∣
The second and fourth lines of (7) concern the difference between sample means of the true quantities Γj,P (Xi)

and their estimated counterparts, holding the policy and distribution fixed. They are each bounded by

sup
π∈Π

∣∣∣∣R̃N,P (π)−RN (π)

∣∣∣∣
The third line of (7) concerns the difference between the in-sample performances of π̂ and π∗. This is always

negative because π̂ is optimal for the empirical minimax regret problem (4). Hence, the decomposition (7)

yields

RP (π̂)−RP (π∗) ≤ 2 sup
π∈Π

∣∣∣∣RP (π)− R̃N,P (π)

∣∣∣∣ (8)

+ 2 sup
π∈Π

∣∣∣∣R̃N,P (π)−RN (π)

∣∣∣∣ (9)

Term (8) is the sup-Π norm of a centered empirical process. Its expectation can be shown to converge

uniformly at N−1/2 rate using techniques in empirical process theory.

Lemma 4.5. Under asumptions 4.1, 4.3, and 3.1,

EP
[

sup
π∈Π

∣∣∣∣RP (π)− R̃N,P (π)

∣∣∣∣] ≤ K√ v

N

for some constant K depending only on C and J .
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The constant K hides a dependence on the number of treatments J . This dependence represents a cost

to introducing arbitrarily large sets of new treatments. Just as Assumption 4.3 restricts the complexity of

the sets of covariate values assigned to each treatment, the assumption of a fixed J represents an exogenous

constraint on the overall complexity of the policy.

Term (9) concerns the difference between the value of the linear program defining Γ̂jk(Xi), in which

the constraints are estimated, versus the linear program defining Γjk,P (Xi), in which the true value of the

constraint vector is used. When the estimated constraints converge at N−1/2 rate, the value of the linear

program can be shown to exhibit similar convergence uniformly across Π. More generally, the value of the

linear program converges at the same rate as the estimated constraints. This is because the feasible set of a

linear program is Lipschitz in its constraints with respect to the Hausdorff metric.

Lemma 4.6. Under assumptions 4.1, 3.1, and 4.2

sup
P∈PC

EP
[

sup
π∈Π

∣∣∣∣R̃N,P (π)−RN (π)

∣∣∣∣] ≤ O(ρ−1
N )

Taking the expectation of the bound given by (8) and (9) and combining this with Lemmas 4.5 and 4.6

yields the bound of Theorem 4.4.

5 Empirical Application

Investment in energy infrastructure is an important focus of development aid and there is a large body of

research in development economics devoted to its study (reviews include Lee, Miguel, and Wolfram 2020a,

Peters and Sievert (2016), and Van de Walle et al. (2017)). Lee, Miguel, and Wolfram (2020b) examines

the relationship between the price of connections to the electrical grid and takeup in rural Kenya. This

particular setting provides a compelling use case for the procedure outlined in this paper. There are only

four prices observed in the data, leading to substantial model ambiguity in the form of partial identification

of the demand curve outside these four prices. Further, the treatments are subsidies with values between

$114 and $398, making subsequent experimentation with new treatments expensive. In this section, I take

experimental data collected to study the economics of rural electrification and illustrate how the method

outlined in the present paper can be used to design cost-effective targeted subsidy policies to maximize

household takeup.

Prices of d-thousand Kenyan shillings for d ∈ D0 = {0, 15, 25, 35} are randomly offered to households,

who have an eight-month period in which to decide whether to purchase the connection at the offered price.

After the period is over, households continue to have the option to connect at the full price of 35 thousand
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shillings. Here D is price, Y is a takeup indicator, and X is a two-dimensional random vector containing

household size and income.

Given this experimental data, I consider a decision maker able to offer subsidies to households. However,

the decision maker has no reason to restrict themselves to the four prices that appear in the data. In my

baseline analysis, I examine an expanded treatment set of D = {0, 2.5, 5, . . . , 35} thousand shillings. The

sensitivity of results to coarser and finer treatment sets is reported in Appendix C. I assume the decision

maker values each connection at α-thousand Kenyan shillings and must pay the value of the subsidy if the

recipient purchases a connection. There is no fixed cost for offering the subsidy. This means u(d, x, y) =

(α− (35− d))y so that b(d, x) = α− (35− d) and c(d, x) = 0. I take α to be the full market price of 35 and

explore policies under other valuations in Appendix C.

5.a Treatment Assignment without Covariates

Before estimating the optimal policy mapping covariate values to prices I give a general illustration of how

combining the experimental data, appropriate shape restrictions, and the minimax regret criterion drives

the choice of whether and how to implement new treatments. For the purposes of this illustration and to

make the process easy to visualize, I ignore covariates for the time being. However, the same intuition can be

understood to apply to the subsequent analysis which targets the policy based on covariates. I first estimate

the average takeup at each price. Using these first stage estimates, I construct bounds for the effects of each

new treatment and explain the difference between these pointwise bounds on outcomes and the estimated

identified set M̂. Then I consider a fixed policy which assigns a single price to the entire population and

find the regret-maximizing demand curve. I find the minimax regret optimal policy by finding the policy for

which the maximum regret is as small as possible.

For each d in the experimental data, I plot the mean takeup and utility in Figure 1. Mean takeup

m0,P (d) = EP [Y (d)] is identified from the experimental data for d ∈ D0, and estimated mean takeup m̂0(d)

is simply the sample mean at each price. Expected utility for experimental subsidy values is given by

vmP
(d) = (α− (35−d))mP (d) and is estimated for d ∈ D0 by plugging in m̂0(d). The price d = 0 represents

a fully subsidized connection, which is clearly undesireable from the decision maker’s perspective because the

decision maker will recieve 0 utility, which is the minimum possible, whether or not the household connects.

Amongst the treatment values that appear in the data, d = 15 achieves the highest utility on average. While

not shown here, this is largely true of estimated mean utility conditional on X as well. Indeed, setting

D = D0 and solving the empirical welfare maximization problem as in Kitagawa and Tetenov (2018) with a

linear eligibility score as the policy class assigns all individuals to a price of 15.
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Figure 1: Takeup and utility by price

Mean estimated takeup and utility at each price included in the experiment of Lee, Miguel, and Wolfram (2020b).
95% confidence intervals shown in bars.

Figure 2: Bounds on takeup and utility at each price

The maximal and minimal possible expected takeup at each price, and the corresponding bounds on expected
utility generated by these bounds on takeup.

A key question from the decision maker’s perspective is whether prices not in the support of D in the

data could yield higher utility, and how data from the experiment can provide information on the magnitude

of such gains. To answer this, I impose shape restrictons which imply bounds on takeup at new prices.

The shape restrictions I study here are that demand is downward sloping and the price subsidy exhibits

diminishing returns. Takeup is also bounded between zero and one. Downward sloping demand is expected

to be satisfied in all but a few exceptional markets, and represents one of the weaker assumptions a researcher

may impose. Diminishing sensitivity to treatment may be more context specific, and can be motivated by

a simple binary choice model where the density of valuations is decreasing on the support of treatments.

Another setting where such a restriction may be applied is the analysis of production functions (Manski 1997).

The shape restrictions I impose, which can be expressed as linear inequalities involving the J-dimensional

vector m as shown in Appendix B, define the constraint Sm ≤ r in the linear program (5).
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To explore the potential effects of new treatments informally in the simple case of no covariates, in

Figure 2 I plot pointwise upper and lower bounds on takeup at each possible price. These are obtained

by calculating minm∈M̂m(d) and maxm∈M̂m(d) for each d. Note that the lower bound is not convex.

This is an illustration of the non-rectangularity induced by the shape restrictions– there is no m ∈ M̂

that simultaneously minimizes takeup for all prices d. More generally, not every curve that lies within the

pointwise bounds of Figure 2 satisfies the shape restrictions. This can be expressed formally as

M̂ ⊂
{
m̃ ∈ RJ : min

m∈M̂
m ≤ m̃j ≤ max

m∈M̂
m,∀j

}

with strict containment. This difference is key for the informativeness of the linear program (5) because

regret is defined by comparing the outcomes under the chosen policy to those of the first-best policy under

the same demand curve m. If the chosen policy achieves low utility for one demand curve and the first-best

policy achieves high utility only for a different demand curve, this does not contribute to high regret.

Along with the bounds on takeup in Figure 2, I also plot the bounds on expected utility vm generated

by the bounds on takeup. These curves illustrate a range of possible outcomes that may result from imple-

menting new treatments. The upper bounds on utility illustrate the potential for much better outcomes as

a result of implementing new treatments, especially in the range of 7.5 to 12.5. The lower bounds imply the

possibility of worse outcomes as well. A maximin welfare approach to this problem would not assign a price

in D \ D0 to anyone for whom that price was not guaranteed to outperform the prices in D. This ends up

assigning a price of 15 to the entire sample, which seems excessively conservative in this example. On the

other hand, the minimax regret approach considers losses relative to the ex-post optimal decision in each

state of the world represented by m ∈ M̂.

Given the bounds in Figure 2, one could imagine naively constructing Γ̂jk by comparing the worst possible

vm(dj) to the best possible vm(dk). For example, taking dk = 7.5 and dj = 10 would result in an estimate

of about 4.5 − 3.2 = 1.3. However, recall that these bounds on vm were constructed from the bounds on

m. Observing the bounds on m, it can be seen that the demand curve m which achieves maximal takeup at

d = 7.5 and minimal takeup at d = 10 is not convex, and thus the regret estimate obtained by comparing

the pointwise bounds is unecessarily pessimistic. Likewise, taking dk = 12.5 and dj = 10 and comparing

the pointwise bounds would yield an estimate of about 4.4− 3.2 = 1.2, but a demand curve which achieves

these bounds is not decreasing. Formally, maxm[vm(dk)− vm(dj)] ≤ maxm vm(dk)−minm vm(dj). Thus, it

is necessary to construct the regret estimates by finding a demand curve m which maximizes regret while

satisfying the shape restrictions. This illustrates that the linear program (5) defining Γ̂jk, while requiring

more computations than pointwise bounds for each dj ∈ D, carries additional useful information.
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Figure 3: Regret-maximizing demand curves for alternative policies

The demand curves that maximize regret for each of three policies– assigning d = 5 to everyone, assigning d = 10 to
everyone, and assigning d = 20 to everyone. Also plotted are the utility curves generated by these
regret-maximizing demand curves. Given a policy, the regret-maximizing demand curve is chosen to achieve low
utility at the chosen price but high utility elsewhere.

To understand how maximal regret is computed for each policy, I plot regret-maximizing demand curves

for each of three different policies in Figure 3. In this case, a policy is a single value of d that will be assigned

to the entire population. The regret-maximizing demand curve is the vector m which solves (3) with no

covariates. To compute it, I solve (5) for each k and find the m corresponding to the optimal k. Supposing

the decision maker assigns a price of d = 5 to the entire population, the regret-maximizing demand curve

is chosen to yield low expected utility when d = 5 but high utility for some other price, thus incurring high

regret in the sense that the chosen policy of d = 5 was ex-post a poor policy compared to, say, a price of

d = 15. The same process is enacted for the policies which assign d = 10 to the entire population and

d = 20 to the entire population. Under the policy d = 20, regret is very high because the difference between

expected utility at d = 20 and the optimal expected utility under the regret-maximizing demand curve is

very large. Comparatively, the maximum regret incurred under the policy d = 10 is small. Importantly, the

regret-maximizing demand curves which generate these worst-case utility curves obey the shape restrictions,

as can be seen in the left hand pane of Figure 3.

Finally, I compute the optimal policy ignoring covariates. Across all policies, it turns out that the price

d = 10 has the smallest maximum regret. This means that across all demand curves m ∈ M̂, vm(10) is

uniformly as close as possible to maxd vm(d). To visualize this, in Figure 4 I overlay the regret-maximizing

demand curve for the policy d = 10 on top of the bounds on takeup and welfare plotted in Figure 2. The m

which maximizes regret is one which is maximized at d = 7.5 but performs somewhat worse when d = 10.

This difference between the best possible outcome and the outcome realized under the chosen policy is the

regret that nature seeks to maximize through the choice of m and the decision maker seeks to minimize

through the choice of π. Observe that maximum regret, given by maxm[vm(7.5)− vm(10)], is much smaller
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Figure 4: Regret-maximizing demand curves for d = 10

The demand curve that achieves maximum regret under the minimax regret-optimal price of d = 10 and the
resulting welfare curve. The curves lie between the pointwise bounds examined in Figure 2.

Table 1: Optimal policy
d 5 7.5 10 12.5 15 17.5

% Treated 16% 20% 34% 24% 2.5% 2.7%

Cutoff 0.27 0.45 0.72 1.35 1.53 2.16
(β = [0.01, 0.089])

Percent of population assigned to each treatment and eligibility score cutoff for each treatment for which a nonzero
share of the population was assigned. Households were assigned to treatment j if their score was below cutoff j and
above cutoff j − 1.

than a naive comparison of the bounds. Hence, an adversarially chosen demand curve in M̂ can make a

price of d = 10 perform only mildly suboptimally.

5.b Optimal Policy with Covariates

Having illustrated the method for estimating m̂0, constructing M̂, and constructing π̂ in the simple case

of no covariates, I now solve for the optimal policy when the decision maker can target subsidies based

on household size and income. I construct the estimate m̂0(d, x) using a logistic regression of takeup on

a second order polynomial of household size and income, for each d ∈ D0. As before, I use the shape

restrictions that demand is decreasing and convex in d, holding x fixed. For less than 5% of observations,

the estimates m̂0(d,Xi) violate these shape restrictions. For these observations, I replace the estimates with

arg minm‖m(d) − m̂0(d,Xi)‖, where the minimum is taken over all m(d) ∈ R|D0| that are decreasing and

convex in d and bounded between 0 and 1. This ensures that M̂ is nonempty. These estimates are used to

obtain Γ̂j(Xi) for each i and j.

Finally, to estimate the optimal policy, I consider a policy class of linear eligibility score rules where each
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Figure 5: Optimal prices by covariates

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicates which covariate
values are assigned to each treatment.

treatment shares the same eligibility score, but different cutoffs. The decision maker chooses a vector of

covariate weights β and a vector of increasing cutoffs c. A household with covariates Xi recieves treatment

dj if X ′iβ > cj−1 and X ′iβ ≤ cj , where c0 = −∞ and cJ = ∞. I impose that the eligibility score increases

with income, implying that poorer households recieve lower prices. Formally,

Π =

{
π : π(x) =

J−1∑
j=1

(dj+1 − dj)1[X ′iβ > cj ], cj−1 ≤ cj , β1 > 0

}
(10)

Appendix B discusses how this class can be formulated with linear and integer constraints, resulting in

a mixed integer-linear program formulation for the empirical minimax regret problem (4). The optimal

allocation is illustrated in Figure 5, and exact estimates of the optimal policy along with the fraction of

the population assigned to each treatment are presented in Table 1. The optimal allocation assigns poor,

small households the lowest prices as they have the lowest willingness to pay. Almost the entire population

is assigned a price not observed in the experimental data, with only 2.5% of the population being assigned

to the price d = 15 which was optimal among the prices that were used in the experiment. Thus, a decision

maker restricted to the support of the experimental data will achieve higher regret in this setting.
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6 Conclusion

Experiments may not pilot all possible treatments a decision maker may consider. The existing literature on

policy learning and treatment choice does not offer much guidance for how to use data on some treatment

values to design policies involving new treatment values. I use data on previously observed treatments,

partial identification, and the minimax regret criterion to extend empirical welfare maximization methods to

settings where new treatments may be considered. Since the effects of new treatments are partially identified,

a single policy is chosen to uniformly minimize regret across the identified set. The empirical minimax regret

estimator is computationally tractable and posesses favorable regret convergence properties. In the setting

of targeting subsidies to connect to the electrical grid, the estimator takes information on a small set of

treatments and provides informative bounds on the effects of a much richer set new treatments, resulting in

policies that implement new treatments which are uniformly close to optimal in every state of the world.
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A Proofs

A.a Intermediary Results

I first introduce some notation and state existing results that I will use. Given a class of functions F , the

Rademacher complexity of F is defined as

RN (F) := E
[

sup
f∈F

∣∣∣∣ 1

N

∑
i

εif(Xi)

∣∣∣∣]

where εi are i.i.d. Rademacher random variables.

We say T is a δ-cover of a metric space (F , h) if for every f ∈ F , there is some fi ∈ T such that

h(fi, f) ≤ δ. The cardinality of the smallest δ-cover of F is called the δ-covering number of F and is denoted

N(δ,F , h).

I make use of the following existing results:

Lemma A.1. (Kitagawa and Tetenov (2018) Lemma A.1) Let G be a VC-class of subsets of X with VC

dimension v <∞. Let g and h be two given functions from Y ×D × X to R. Then

F = {f : f(y, d, x) = g(y, d, x)1{x ∈ G}+ h(y, d, x)1{x 6∈ G}, G ∈ G}

is a VC-subgraph class of functions with VC dimension less than or equal to v.

Lemma A.2. (Symmetrization) (van der Vaart and Wellner (1996) Lemma 2.3.1) For a class of measurable

functions F and i.i.d random variables X1, . . . , XN ,

E
[

sup
f∈F

∣∣∣∣ 1

N

N∑
i=1

f(Xi)− E[f(Xi)]

∣∣∣∣] ≤ 2RN (F)

Lemma A.3. (Dudley’s entropy integral inequality) (van der Vaart and Wellner (1996) Corollary 2.2.8)

Let (Zf )f∈F be a separable process with sub-Gaussian increments. Then for some constant K, we have for

any f0

E[sup
f∈F
|Zf |] ≤ E[|Zf0 |] +K

∫ ∞
0

√
logN(t,F , h)dt

for some constant K.

Lemma A.4. (van der Vaart and Wellner (1996) Theorem 2.6.7) Suppose F is a VC-subgraph class with

VC dimension at most v < ∞ and suppose F has a measurable envelope function F . For q ≥ 1 let P be a
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probability measure such that ‖F‖q,P > 0. Then

N(δ‖F‖Lq(P ),F , Lq(P )) ≤ Kv(16e)v(1/δ)q(v−1)

for some constant K and 0 < δ < 1.

I now state and prove a useful result which establishes the relationship between the complexity of the

policy class Π and the complexity of the class of regret estimates. Define the following function classes:

F := {f : f(x) =

J∑
j=1

πj(x)Γj(x), π ∈ Π}

Πj := {πj : πj(x) = 1[π(x) = dj ], π ∈ Π}, ∀j ∈ {1, . . . , J}

The assumption that F is separable will be maintained.

Lemma A.5. Under Assumption 4.1.2,

N(δ,F , L2(PN )) ≤
J∏
j=1

N(ε,Πj , L2(PN ))

where ε = δ/(B
√
J) and B is the bound on v(d, x) implied by Assumption 4.1.2.

Proof. Let f ∈ F be given. From the discussion in Section 2, f can be written as

f(x) = max
k

max
m∈MP

(
vm(dk, x)−

J∑
j=1

πj(x)vm(dj , x)

)
(11)

for some π ∈ Π. For each treatment j, let Tj be a ε-cover of Πj and let π̃j be an element of Tj satisfying

EN [(πj(X)− π̃j(X))2]1/2 ≤ ε. Define the approximating function f̃ by

f̃(x) = max
k

max
m∈MP

vm(dk, x)−
J∑
j=1

π̃j(x)vm(dj , x) (12)

Finally, let k∗,m∗(x) be maximizers of (11) and let k̃, m̃(x) be maximizers of (12).
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For each x we have by the optimality of k∗ and m∗

f(x)− f̃(x) = vm∗(dk∗ , x)− vm̃(dk̃, x) +

J∑
j=1

[
π̃j(x)vm∗(dj , x)− πj(x)vm̃(dj , x)

]

≥ vm̃(dk̃, x)− vm̃(dk̃, x) +

J∑
j=1

[
π̃j(x)vm̃(dj , x)− πj(x)vm̃(dj , x)

]

=

J∑
j=1

[
(π̃j(x)− πj(x))vm̃(dj , x)

]

Likewise, optimality of m̃ and k̃ imply

f(x)− f̃(x) ≤
J∑
j=1

[
(π̃j(x)− πj(x))vm∗(dj , x)

]

Together, we have

|f(x)− f̃(x)| ≤ max

{∣∣∣∣ J∑
j=1

(π̃j(x)− πj(x))vm̃(dj , x)

∣∣∣∣, ∣∣∣∣ J∑
j=1

(π̃j(x)− πj(x))vm∗(dj , x)

∣∣∣∣}

≤ max

{
‖(π̃j(x)− πj(x))jj=1‖‖vm̃(., x)‖, ‖(π̃j(x)− πj(x))jj=1‖‖vm∗(., x)‖

}
≤ B

(∑
j

(πj(x)− π̃j(x))2

)1/2

where the second line is by the Cauchy-Schwartz inequality. Squaring and integrating over x,

EN,P [(f(X)− f̃(X))2] ≤ B2EN,P
[∑

j

(πj(X)− π̃j(X))2

]
≤ B2Jε2

≤ δ2

Taking the square root of both sides shows that ‖f − f̃‖L2(PN ) ≤ δ. Consider the set of all such functions

constructed this way,

T :=

{
f̃ : f̃(x) = max

k
max
m∈M

vm(dk, x)−
J∑
j=1

π̃j(x)vm(dj , x), π̃ = (π̃1, . . . , π̃J), π̃j ∈ Tj
}

we see that |T | =
∏
j |Tj |, and T is a δ-cover of F .

We can now prove the main results of the paper.
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A.b Proof of Lemma 4.5

Proof. To simplify notation, for now we consider P fixed and supress dependence on P . By the definition of

F , we have

E
[

sup
π∈Π

∣∣∣∣R(π)− R̃N (π)

∣∣∣∣] = E
[

sup
f∈F

∣∣∣∣ 1

N

N∑
i=1

f(Xi)− E[f(Xi)]

∣∣∣∣]
Hence, we can apply Lemma A.2 to obtain

E
[

sup
π∈Π

∣∣∣∣R(π)− R̃N (π)

∣∣∣∣] ≤ 2RN (F)

Now, define Zf = 1√
N

∑N
i=1 εif(Xi). The increments of (Zf )f∈F are given by 1√

N

∑N
i=1 εi(f(Xi) − g(Xi)).

Conditional on (Xi)
N
i=1, we can apply Hoeffding’s inequality (e.g. van der Vaart and Wellner (1996) Lemma

2.2.7) to establish that this is sub-Gaussian with parameter
(

1
N

∑N
i=1(f(Xi)− g(Xi))

2
)1/2

= ‖f −g‖L2(PN ).

We can then apply Lemma A.3 conditional on (Xi)
N
i=1 to obtain

1√
N

Eε[sup
f∈F
|Zf |] ≤

1√
N

Eε[|Zf0 |] +
K√
N

∫ ∞
0

√
logN(t,F , L2(PN ))dt

for some f0 ∈ F . Moreover, since f0 is bounded by 2B, |Zf0 | ≤ |
∑N
i=1 εi

2B√
N
|. Again by Hoeffding’s

inequality, this implies that Zf0 is sub-Gaussian with parameter K ′
(

1
N

∑N
i=1(2B)2

)1/2

= K ′2B which does

not depend on N . Basic properties of sub-Gaussian random variables (e.g. Vershynin (2018) Proposition

2.5.2) imply that Eε[|Zf0 |] ≤ K ′′ for some constant K ′′. Thus,

1√
N

Eε[sup
f∈F
|Zf |] ≤

1√
N

(
K ′′ +K

∫ ∞
0

√
logN(t,F , L2(PN ))dt

)
=

1√
N

(
K ′′ +K

∫ 4B

0

√
logN(t,F , L2(PN ))dt

)

where we have used the fact that since the diameter of F is 2B, the integrand is 0 for t > 4B. By Lemma

A.1, each class Πj is a VC-subgraph class of functions with VC dimension at most v. Then applying Lemma

A.5 and a change of variables yields

1√
N

Eε[sup
f∈F
|Zf |] ≤

1√
N

K ′′ +K

∫ 4/
√
J

0

√∑
j

logN(t,Πj , L2(PN ))B
√
Jdt


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Apply Lemma A.4 to each VC-subgraph class of functions Πj , which have envelope 1, and allow K to

subsume other constants to obtain

1√
N

Eε[sup
f∈F
|Zf |] ≤

1√
N

K ′′ +K

∫ 4/
√
J

0

√
logKv(16e)v(1/t)2(v−1)dt

 (13)

≤ 1√
N

(
K ′′ +K

√
v
)

(14)

≤ K
√

v

N
(15)

Finally, since RN (F) = E[ 1√
N
Eε[supf∈F |Zf |]], we obtain

E
[

sup
π∈Π

∣∣∣∣R(π)− R̃N (π)

∣∣∣∣] ≤ K√ v

N

Note that the constant K does depend on B and J .

A.c Proof of Lemma 4.6

Proof. To simplify notation, for now we consider P fixed and supress dependence on P . For every 1 ≤

j, k ≤ J , let γjk : RJ0 7→ 2R
J

be the identified set for covariate-level regret, viewed as a set-valued mapping

from the first stage conditional mean response vector to subsets of RJ . That is, hold x fixed and define

γjk(w) = {bjk(x)′m − cjk(x) : Fm = w, Sm ≤ r}. For this proof, we view Γjk as a function of the

first stage conditional mean response m0 to consider how Γjk changes with perturbations to m0. Thus,

Γjk(m0(·, Xi)) = max{γjk(m0(·, Xi))}.

For any matrix A, let A† : null(A)⊥ 7→ range(A) denote the Moore-Penrose pseudoinverse operator,

where null(A) and range(A) denote the nullspace and range of A, respectively. For any w ∈ RJ0 ,

{m : Fm = w} = {m : m = F †w + y, y ∈ null(F )}

Let w̃ ∈ RJ0 be given. For any J , let BJ be the unit ball in R
J , BJ := {w ∈ RJ : ‖w‖ ≤ 1}. Since

w̃ ∈ w + ‖w − w̃‖BJ0 ,

{m : m = F †w̃ + y, y ∈ null(F )} ⊆ {m : m = F †z + y, y ∈ null(F ), z ∈ w + ‖w − w̃‖BJ0}

⊆ {m : m = F †w + y, y ∈ null(F )}+ ‖F †‖‖w̃ − w‖BJ}
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where ‖F †‖ denotes the operator norm of F †. This implies

{m : Fm = w̃} ∩ {m : Sm ≤ r} ⊆
(
{m : m = F †w + y, y ∈ null(F )}+ ‖F †‖‖w̃ − w‖BJ

)
∩ {m : Sm ≤ r}

and since γjk(w̃) consists of scalars of the form bjk(x)′m− cjk(x) for m in this set, we have

γjk(w̃) ⊆ γjk(w) + ‖bjk(x)‖‖F †‖‖w̃ − w‖B1

and likewise

γjk(w) ⊆ γjk(w̃) + ‖bjk(x)‖‖F †‖‖w̃ − w‖B1

Therefore, the correspondence γjk is Lipschitz with respect to the Hausdorff distance, with Lipschitz constant

supx‖bjk(x)‖‖F †‖ := κ < ∞ (Rockafellar and Wets 2005). Importantly, this implies |Γjk(m̂0(·, Xi) −

Γjk(m0(·, Xi))| ≤ κ‖m̂0(·, Xi) − m0(·, Xi)‖. While not essential to our analysis, we note that in our case

‖F †‖ = 1.

We can now prove the main claim of the lemma.

E
[

sup
π∈Π

∣∣∣∣R̃N (π)−RN (π)

∣∣∣∣]
= E

[
sup
π∈Π

∣∣∣∣ 1

N

N∑
i=1

J∑
j=1

πij(max
k

Γjk(m̂0(·, Xi))−max
k

Γjk(m0(·, Xi)))

∣∣∣∣]

≤ E
[

1

N

N∑
i=1

max
j,k

∣∣∣∣Γjk(m̂0(·, Xi))− Γjk(m0(·, Xi))

∣∣∣∣]

≤ E
[

1

N

N∑
i=1

κ‖m̂0(·, Xi)−m0(·, Xi)‖
]

Finally, we bound this uniformly in P by Assumption 4.2. We conclude that

sup
P∈PC

EP
[

sup
π∈Π

∣∣∣∣R̃N,P (π)−RN (π)

∣∣∣∣] ≤ O(ρ−1
N )
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B Computational Details

B.a Shape Constraints

Mean takeup as a function of price, holding covariates fixed, is bounded between 0 and 1. It is assumed to

be downward sloping and the subsidy is assumed to exhibit decreasing returns to scale, so that takeup is

convex. These constraints can be expressed as Sm̃(., X) ≤ r where

S1 =



−1
d2−d1

1
d2−d1 0 . . .

0 −1
d3−d2

1
d3−d2 0 . . .

...

. . . 0 −1
dJ−dJ−1

1
dJ−dJ−1



S2 =



−1
d2−d1

1
d2−d1 + 1

d3−d2
−1

d3−d2 0 . . .

0 −1
d3−d2

1
d3−d2 + 1

d4−d3
−1

d4−d3 0 . . .

...

. . . 0 −1
dJ−1−dJ−2

1
dJ−1−dJ−2

+ 1
dJ−dJ−1

−1
dJ−dJ−1



S =



−I

I

S1

S2


r =



0J

−1J

0J−1

0J−2


B.b Dual Representaion of Maximum Regret

For each individual i, the maximum regret is obtained by

Γ̂j(Xi) = max
k,m

bjk(Xi)
′m− cjk(Xi) s.t. Sm ≤ r, Fm = m̂(., Xi)

For now, supress the dependence on Xi and j. Let λ be the vector of Lagrange dual variables associated

with the inequality constraint, and let η be the vector of Lagrange dual variables associated with the equality
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constraint. We can rewrite the linear program as

min
µ
µ s.t. µ+ ck ≥ max

m
{b′km s.t. Sm ≤ r, Fm = m̂0} ∀k

min
µ
µ s.t. µ+ ck ≥ min

λ,η
{λ′r + η′m̂0 s.t. λ′S + η′F ≥ bk, λ ≥ 0}∀k

min
µ,λ,η

µ s.t. µ+ ck ≥ λ′r + η′m̂0, λ′S + η′F ≥ bk, λ ≥ 0 ∀k

Thus, computing each Γ̂j(Xi) is a single linear program. Since the programs are independent across i, they

can be solved simultaneously by summing the objective across individuals.

This strategy can be extended to compute all Γ̂j(Xi) across i and j simultaneously, and even in the same

mixed integer-linear program that chooses the optimal policy π. However, this did not decrease computation

time in the application of Section 5.

B.c MILP Formulation of MMR Problem

Consider the set of policies given by (10) and the problem (4). To express this as a mixed integer-linear

program, introduce the binary variables gij for i = 1, . . . , N and j = 1, . . . , J − 1 to indicate whether X ′iβ is

above cutoff j. For notational convenience, set gi0 = 1 and giJ = 0

min
g,β,c

N∑
i=1

J∑
j=1

(gij − gi,j−1)Γ̂j(Xi)

s.t. c1 ≤ c2 ≤ · · · ≤ cJ−1

gij ≥ X ′iβ − cj + ε, i = 1, . . . , N, j = 1, . . . , J − 1

gij ≤ 1 +X ′iβ − cj , i = 1, . . . , N, j = 1, . . . , J − 1

β1 ≥ 0

where ε is a sufficiently small numerical error term. To help with numerical stability, β1 can be fixed to be

a constant, resulting in a rescaling of cj and β2.

C Robustness

In these section I present the optimal policy under different specifications of D and α. I examine a “Coarse”

treatment set D = {0, 5, 10, . . . , 35}, the “Baseline” treatment set D = {0, 2.5, 5, . . . , 35}, and a “Fine”

treatment set D = {0, 1, 2, . . . , 35}. For each treatment set I consider α ∈ {25, 35, 45}, except for α = 35

36



Figure 6: Coarse D, α = 25

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicates which covariate
values are assigned to each treatment.

under the Baseline treatment set, which is identical to the main text. The results are plotted in Figures

6-13.
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Figure 7: Baseline D, α = 25

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicates which covariate
values are assigned to each treatment.

Figure 8: Fine D, α = 25

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicates which covariate
values are assigned to each treatment.
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Figure 9: Coarse D, α = 35

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicates which covariate
values are assigned to each treatment.

Figure 10: Fine D, α = 35

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicates which covariate
values are assigned to each treatment.
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Figure 11: Coarse D, α = 45

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicates which covariate
values are assigned to each treatment.

Figure 12: Baseline D, α = 45

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicates which covariate
values are assigned to each treatment.
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Figure 13: Fine D, α = 45

The estimated optimal treatment allocation as a function of household size and earnings. The size of the dots is
proportional to the number of people at each value of covariates. The shaded regions indicates which covariate
values are assigned to each treatment.
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