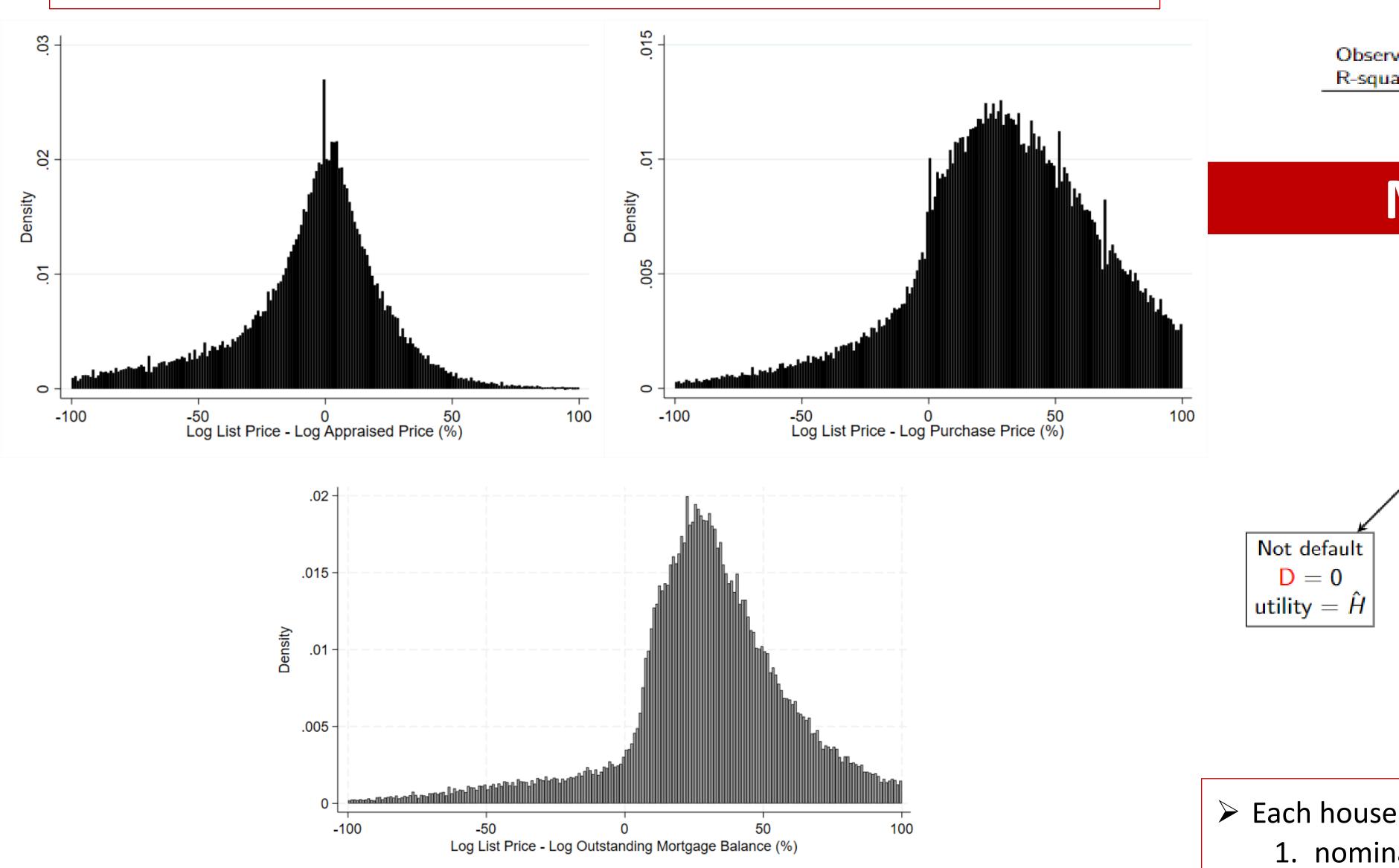
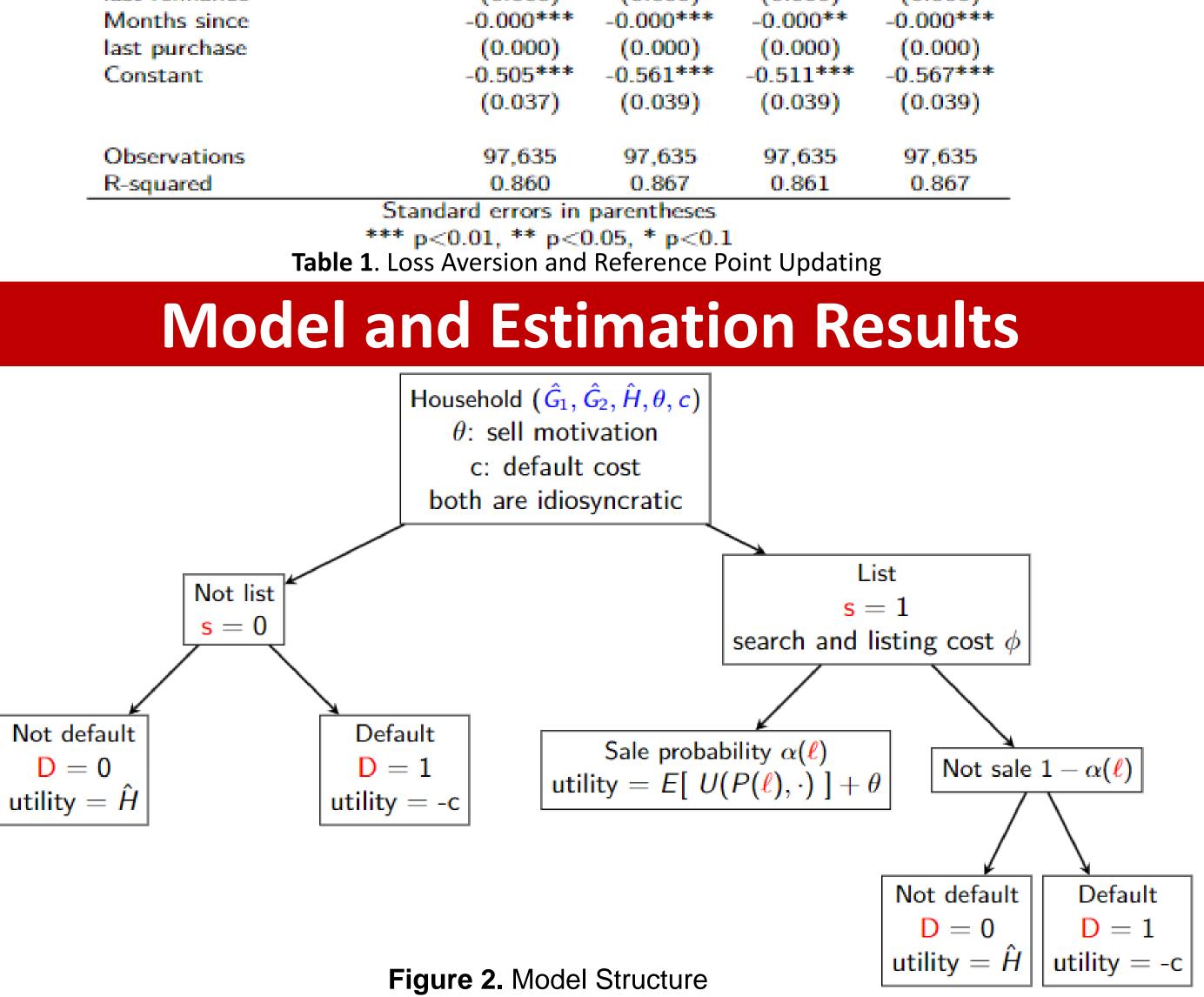


Reference Price Updating in the Housing Market


Shengwei Guo University of Wisconsin - Madison


Introduction

- > This paper is the first to examine the dynamics of reference points in the housing markets.
- > The convention is to use the original purchase price as the reference point, which explains sellers' listing behavior by loss aversion (Genesove and Mayer 2001).
- > I build a model of seller listing behavior that includes:
 - 1. reference points;
 - 2. down-payment constraints (Stein 1995);
 - 3. mortgage default option (Head, Sun, and Zhou 2023).
- > Main Result: an observed "historical peak", measured by the appraisal price from a refinance mortgage, serves as an updated reference point.

	(1)	(2)	(3)	(4)			
VARIABLES	L	Log (Original Listing Price)					
Loss: Appraised Price	0.444***	0.435***	0.565***	0.525***			
	(0.006)	(0.006)	(0.013)	(0.014)			
Loss-squared: Appraised Price			-0.124***	-0.088***			
			(0.015)	(0.015)			
Loss: Purchase Price	0.095***	-0.007	0.150***	0.009			
	(0.008)	(0.010)	(0.015)	(0.015)			
Loss-squared: Purchase Price			-0.011	0.012			
			(0.010)	(0.012)			
LTV if $\geq 80\%$	0.001***	0.001***	0.001***	0.001***			
	(0.000)	(0.000)	(0.000)	(0.000)			
Estimated Value	1.046***	1.053^{***}	1.045***	1.052***			
	(0.003)	(0.003)	(0.003)	(0.003)			
Estimated Price Index	1.025***	1.008***	1.025***	1.008***			
	(0.002)	(0.002)	(0.002)	(0.002)			
Residuals	-	0.276***		0.269***			
		(0.006)		(0.005)			
Months since	-0.001***	-0.001***	-0.001***	-0.001***			
last refinance	(0.000)	(0.000)	(0.000)	(0.000)			

> To achieve this, I construct a novel dataset that tracks the transaction, financing, and listing history of over 97,000 U.S. residential properties.

Each household is characterized by:

Figure 1. Listing Price Density

Data and Reduced-Form Model

- > Data: CoreLogic and Moody's BlackBox Logic datasets.
- Final Sample: property listings between 2007 and 2015, initial home purchases between 1998 and 2007, and refinances between 2004 and 2007.
- Reduced-Form Model: List price for property i in census tract n, purchased at month s, refinanced at month m, and listed at month t (s < m < t) is modeled as:

 $\log(Y_{insmt})$

- $= \Lambda_1 Loss_PurchasePrice_{inst} + \Lambda_2 Loss_AppraisedPrice_{inmt}$ + δLTV_{int} + $\tau_1 Log \widehat{Price}_{int}$ + τ_0 + ε_{insmt}
- > Loss: the greater value between the difference of the log of the reference price and the hedonic predicted price, and zero.
- > LTV: the greater value between the difference of the Loan-to-Value ratio and 0.8, and zero.
- \succ Log $\widehat{Price_{int}}$: hedonic predicted price.

Reduced-Form Evidence

- - 1. nominal gains to reference price (\widehat{G}_i) , i = 1 or 2 (i.e., original purchase price and refinancing appraised price, respectively);
 - 2. home equity position (\hat{H}) ;
 - 3. random values capture seller motivation (θ) and default cost (c).
- \succ Households make three decisions: (1) listing decision (s), (2) listing premium (ℓ), (3) default decision (D).
- > The utility upon sale: $U(p(\ell), \cdot) = P(\ell) + \lambda_1 \eta_1 G_1(\ell) + \lambda_2 \eta_2 G_2(\ell) \kappa(P(\ell))$.
 - 1. η_i : the degree of reference dependent;
 - 2. λ_i : the degree of loss aversion;
 - 3. $\kappa(P(\ell))$: the down-payment penalty function.
- \succ Trade-off: a higher listing premium (ℓ) increases utility upon sale but decreases the probability of a sale $(\alpha(\ell))$.
- > Main Takeaway: sellers exhibit 2.5 higher degree of loss aversion to an observed "historical peak", compared to the original purchase price. (Table 2)

	Reference Dependence	Reference Dependence	Loss Aversion	Loss Aversion	Financial Constraints	Average Motivation Shock	St. dev. of Motivation Shock	Average Default Cost		Search and Listing Cost
	η_1	η_2	λ_1	λ_2	μ	θ_m	σ_m	θ_c	σ_c	φ
Parameter Estimates	0.012	0.344	1.450	3.660	1.230	3.825	1.182	0.124	0.389	1.025

Table 2. Structural Parameter Estimates

- \geq A 10% increase in expected nominal loss to the refinancing appraised price leads a seller to set a 4.4% higher listing price.
- \geq In contrast, a 10% increase in expected nominal loss to the purchase price results in a 0-1% higher listing price.
- > Main Takeaway: The observed "historical peak" during sellers' homeownership period serves as an updated reference point influencing their pricing strategy.
- > This paper provides both empirical and quantitative evidence that an observed "historical peak", measured by the appraisal price from a refinance mortgage, serves as an updated reference point.
- I extend Genesove and Mayer 2001 and find sellers are also loss averse in a housing boom period because reference price is adaptive.
- \blacktriangleright Model decomposition shows that loss aversion with reference price updating helps explain the price-volume correlation to a greater extent.

Contact

Shengwei Guo University of Wisconsin - Madison Email: sguo88@wisc.edu Website: https://sites.google.com/view/shengweiguo Phone: +1 (608) 698-6155

References

- Andersen, Steffen, Cristian Badarinza, Lu Liu, Julie Marx, and Tarun Ramadorai. 2022. "Reference dependence in the housing market." American Economic Review 112 (10): 3398–3440.
- Genesove, David, and Christopher Mayer. 2001. "Loss aversion and seller behavior: Evidence from the housing market." The quarterly journal of economics 116 (4): 1233–1260.
- Head, Allen, Hongfei Sun, and Chenggang Zhou. 2023. "Indebted sellers, liquidity and mortgage standards." European Economic Review 151:104321.
- Koszegi, Botond, and Matthew Rabin. 2006. "A model of reference-dependent preferences." " The Quarterly Journal of Economics 121 (4): 1133– 1165.
- Stein, Jeremy C. 1995. "Prices and trading volume in the housing market: A model with downpayment effects." The Quarterly Journal of Economics 110 (2): 379–406.
- Thakral, Neil, and Linh T Tô. 2021. "Daily labor supply and adaptive reference points." American Economic Review 111 (8): 2417–2443.
- Zhou, Tingyu, John M Clapp, and Ran Lu-Andrews. 2021. "Is the behavior of sellers with expected gains and losses relevant to cycles in house prices?" Journal of Housing Economics 52:101750.