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Abstract

Recent work shows that popular partially-linear regression specifications can put neg-
ative weights on some treatment effects, potentially producing incorrectly-signed esti-
mands. We counter by showing that negative weights are no problem in design-based
specifications, in which low-dimensional controls span the conditional expectation of
the treatment. Specifically, the estimands of such specifications are convex averages of
causal effects with “ex-ante” weights that average the potentially negative “ex-post”
weights across possible treatment realizations. This result extends to design-based in-
strumental variable estimands under a first-stage monotonicity condition, and applies
to “formula” treatments and instruments such as shift-share instruments.
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1 Introduction

A recent and influential literature raises a concern with popular ordinary least squares

(OLS) and instrumental variable (IV) specifications: that they may fail to estimate convex

averages of heterogeneous treatment effects, even when they succeed at avoiding omitted

variable bias (OVB). A leading example is two-way fixed effects regressions, which address

OVB by assuming untreated potential outcomes are linear in unit and time dummies (the

popular “parallel trends” assumption). Several papers show how such specifications can

suffer from what Small et al. (2017) call sign reversals: the regression estimand can be

negative, despite all causal effects being positive, because of negative weights placed on

some or many individual effects.1 More flexible specifications have been proposed to tackle

this problem (e.g. Wooldridge, 2021; Borusyak, Jaravel and Spiess, 2023).

We show that conventional specifications avoid this concern when they are “design-

based”: i.e., when they leverage a correct model of treatment (or instrument) assignment,

rather than a model of potential outcomes. Specifically, we consider OLS and IV regres-

sions in which the controls are chosen to span the expected treatment or instrument value

given the potential outcomes (a generalization of the propensity score, outside of binary

treatments). Such specifications attach possibly negative ex-post weights—which depend

on treatment realizations—to causal effects. However, the estimands of these design-based

specifications also have an average-effect representation with ex-ante weights: the expecta-

tions of ex-post weights over the assignment distribution. The ex-ante weights are guaran-

teed to be convex in the OLS case, and this property extends to the IV case under a general

first-stage monotonicity condition. Thus, negative ex-post weights pose no problems in

design-based specifications.

This analysis makes two contributions to a classic literature on convex weights with

OLS and IV (e.g., Imbens and Angrist, 1994; Angrist, 1998; Angrist and Krueger, 1999;

Angrist, Graddy and Imbens, 2000). First, we jointly analyze ex-post and ex-ante weights

which are usually studied separately.2 This clarifies the distinction—and its implications—

between specifications justified by models for unobservables and specifications based on the

assignment process of observed shocks.

Second, we prove the convexity of ex-ante weights under a mean-independence condition

that is weaker than the typical assumption of conditional ignorability. While ignorability

may be no less plausible in settings with clear design, such as randomized trials, this dif-

ference highlights the key role of the “expected instrument” (Borusyak and Hull, 2023) to

avoid both OVB and sign reversals with simple specifications.

Our results also relate to a recent literature on design-based causal inference with “for-

1See, e.g., de Chaisemartin and D’Haultfœuille (2020), Goodman-Bacon (2021), and Borusyak, Jar-
avel and Spiess (2023). The no-sign-reversal property is what Blandhol et al. (2022) call “weakly causal”
estimands.

2Notable exceptions are Arkhangelsky et al. (2023) and Goldsmith-Pinkham, Hull and Kolesár (2022),
who provide joint analyses in certain special cases.
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mula” treatments and instruments—those constructed from a common set of exogenous

shocks and non-random measures of exposure. Our mean-independence assumption builds

on Borusyak, Hull and Jaravel (2022), who establish convex ex ante weights with shift-share

instruments; we show their result holds more generally.3

2 Ex-Post and Ex-Ante Weights

We first show the results in a simple setting. Let yi and xi be an outcome and treatment

observed in a sample of units i. We consider OLS estimation of:

yi = βxi + w′
iγ + ei, (1)

where wi is a low-dimensional vector of controls that includes a constant.

To interpret the resulting estimate of β, we suppose the outcome is generated by a causal

model with linear but heterogeneous effects βi:

yi = xiβi + εi.

Here εi is an untreated potential outcome: i.e., the outcome that unit i would see when

xi is set to zero. Effect linearity is without loss for binary xi; we consider a more general

potential outcome model in Section 3.

Suppose appropriate asymptotics apply, such that OLS consistently estimates:

β =
E[x̃iyi]

E[x̃2i ]
=
E[x̃ixiβi] + E[x̃iεi]

E[x̃2i ]

where x̃i denotes the residuals from the population projection of xi on wi.

Now consider two assumptions, either of which might motivate specification (1):

Assumption 1. E[εi | xi, wi] = w′
iγ.

Assumption 2. E[xi | εi, βi, wi] = w′
iλ.

Assumption 1 models untreated potential outcomes as being linear in the controls, given

the treatment. An example is the parallel trends assumption, where i indexes unit-period

pairs in a panel and wi includes unit and time dummies.4 In constrast, Assumption 2

specifies treatment as conditionally mean-independent of potential outcomes, with a linear

expected treatment E[xi | wi] (e.g., the propensity score, for binary xi). An example is an

experiment where dosage xi is randomly assigned but with different probabilities depending

on strata captured by a set of dummies wi.
5

3Other settings in this literature include network spillovers (Borusyak and Hull, 2023) and simulated IV
for policy eligibility (Borusyak and Hull, 2021).

4While our assumption that wi is low-dimensional is violated with unit fixed effects in short panels, the
negative ex-post weight issue discussed below extends directly to that case.

5Here Assumption 1 also holds, since wi is saturated.
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Under either assumption, OLS estimates from (1) avoid OVB: E[x̃iεi] = 0.6 Hence:

β = E[ψiβi]/E[ψi], ψi = x̃ixi,

using the fact that E[x̃ixi] = E[x̃2i ]. This shows the regression estimand can be interpreted

as a weighted average of heterogeneous effects βi, with weights ψi. We term these ex-post

weights, as they are functions of (i.e., determined after) the treatment.

Except in special cases, the ex-post weighting scheme is not convex. This is because

x̃i necessarily takes on both positive and negative values, since E[x̃i] = 0. Thus, x̃ixi

will typically also take on positive and negative values.7 Suppose, e.g., that xi is strictly

positive. Units with low xi (and thus x̃i < 0) serve as the effective control group, and

receive negative weights, but they also contribute xiβi to yi. This can lead to sign reversals

under Assumption 1.

This intuition is misleading for design-based specifications justified by Assumption 2,

however. In an experiment, it is random which units are in the effective control group: each

unit can be assigned a low xi, with ex-post weight ψi < 0, but could as well be assigned

a high xi with ψi > 0. On average, prior to treatment assignment, all units in a strata

expect the same weight. As it turns out, these expected (or ex ante) weights are always

non-negative under Assumption 2—avoiding sign reversals.

Formally, under Assumption 2 we have β = E[ϕiβi]/E[ϕi] for ex-ante weights:8

ϕi = E[ψi | wi, βi] = V ar(xi | wi, βi) ≥ 0.

Comparing Assumption 2 to different alternatives reveals that the key to convex weighting

is the design-based specification of the expected treatment. On one hand, stronger models

of unobservables may not suffice: e.g., even if Assumption 1 is enriched to include a model

of causal effects, E[βi | xi, wi] = w′
iδ, sign reversals remain possible.9 On the other hand,

stronger design assumptions like conditional unconfoundedness, xi ⊥⊥ (εi, βi) | wi (coupled

with the linearity assumption E[xi | wi] = w′
iλ), turn out to be unnecessary.10

6E[x̃iεi] = E[x̃iE[εi | xi, wi]] = E[x̃iw
′
iγ] = 0 under Assumption 1, since E[x̃iwi] = 0. Under Assump-

tion 2, E[x̃iεi] = E[E[x̃i | wi, εi]εi] = 0 since E[x̃i | wi, εi] = 0.
7One special case with no negative ex-post weights is when xi are binary wi is saturated.
8This follows since E[ψiβi] = E[E[ψi | wi, βi]βi] and E[ψi | wi, βi] = E[x̃2i | wi, β] + E[x̃i | wi, βi]w

′
iλ =

V ar(xi | wi, βi), and similarly for E[ψi]. Note the convex-average representation is non-unique: β can also
be written as averaging βi with weights E[x̃2i | βi] or x̃2i .

9However, under that additional assumption an alternative specification that includes the interaction
xi × wi is not subject to the sign-reversal problem, and in fact identifies the average effect E[βi] under an
overlap condition (c.f. Imbens and Wooldridge, 2009, Ch. 5.3).

10A benefit of unconfoundedness is that the ex-ante weights reduce to ϕi = V ar(xi | wi) (as in Angrist
and Krueger (1999)) and are thus identified. This allows for a reweighted specification identifying E[βi],
again assuming overlap (ϕi > 0).
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3 General Result

We now consider a general causal model with potential outcomes yi(x), where yi = yi(xi).

We suppose xi is continuously distributed and xi ≥ 0; analogous results apply in the discrete

case.11 Causal effects in this model are written βi(x) =
∂
∂xyi(x).

We consider IV estimation of equation (1) with xi instrumented by some zi. OLS

estimation corresponds to the case of zi = xi. We replace Assumptions 1 and 2 with their

natural generalizations:

Assumption 1′. E[yi(0) | zi, wi] = w′
iγ

Assumption 2′. E[zi | yi(·), wi] = w′
iλ.

We also introduce a stochastic first-stage monotonicity assumption, which is trivially

satisfied in the OLS case:

Assumption 3. Almost surely over (yi(·), wi), Pr(xi ≥ x | zi = z, yi(·), wi) is weakly

increasing in z for all x.

We assume the IV estimator of (1) consistently estimates β = E[z̃iyi]/E[z̃ixi], where z̃i

denotes the residuals from the population projection of zi on wi and E[z̃ixi] ̸= 0. Appendix

A then proves the general result:

Proposition 1. Under either Assumption 1′ or Assumption 2′:

β = E[∫ ψi(x)βi(x)dx]/E[∫ ψi(x)dx]

with ex-post weights ψi(x) = z̃i · 1[xi ≥ x] that may be negative. Assumption 2′, however,

further yields:

β = E[∫ ϕi(x)βi(x)dx]/E[∫ ϕi(x)dx]

with ex-ante weights ϕi(x) = E[ψi(x) | yi(·), wi] = Cov(z̃i,1[xi ≥ x] | yi(·), wi) that are

non-negative under Assumption 3.

Proposition 1 extends classic results on convex weighting in design-based OLS and IV

specifications in two ways. First, like Assumption 2, Assumption 2′ only imposes mean-

independence of the instrument from potential outcomes given the controls. Full indepen-

dence is not needed to avoid sign reversals. Second, as with the stochastic monotonicity

condition of Small et al. (2017), Assumption 3 is weaker than conventional first-stage mono-

tonicity. In particular, it does not require the first-stage relationship between zi and xi to

be causal.

Appendix B shows how Proposition 1 applies to specifications with formula instruments,

nesting existing results on their interpretation with heterogeneous effects.

11The lower bound of xi is normalized to zero without loss. Under regularity conditions, the results
extend to the trivial lower bound of −∞.
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4 Conclusion

We have shown that design-based OLS and IV specifications avoid the recent sign-reversal

concern. Four caveats to this result are worth highlighting. First, even with specifica-

tions based on outcome models with negative ex-post weights, sign reversals need not oc-

cur as effect heterogeneity can be limited or idiosyncratic (see, e.g., de Chaisemartin and

D’Haultfœuille, 2020). Second, avoiding sign reversals may not be enough to bring the

estimand close to the (unweighted) average treatment effect or to other policy-relevant av-

erages. Third, negative ex-ante weights do generally arise in design-based specifications

involving multiple treatments, including multiple bins of the same treatment (Goldsmith-

Pinkham, Hull and Kolesár, 2022). Fourth, our ex-ante weight characterization may not

apply to design-based specifications with high-dimensional fixed effects or other controls

(Freedman, 2008; Arkhangelsky et al., 2023). On the other hand, in settings with a clear

design, fixed-effect estimation may be unattractive for other reasons (see, e.g., Roth and

Sant’Anna, 2023).
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A Proof of Proposition 1

We assume that all the relevant moments exist and the conditions for Fubini’s theorem

hold. Consider first the numerator of β = E[z̃iyi]/E[z̃ixi]. Following the same steps as in

footnote 6, E[z̃iyi(0)] = 0 under either Assumption 1′ or 2′. Thus:

E[z̃iyi] = E[z̃iyi(0)] + E

[
z̃i

∫ xi

0

∂

∂x
yi(x)dx

]
= E

[∫ ∞

0
ψi(x)βi(x)dx

]
for ψi(x) ≡ z̃i1[xi ≥ x]. Similarly, for the denominator, E[z̃ixi] = E

[∫∞
0 ψi(x)dx

]
. The

ex-post ψi(x) weights can clearly be negative, since E[z̃i] = 0.
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Under Assumption 2′:

E

[∫ ∞

0
ψi(x)βi(x)dx

]
= E

[∫ ∞

0
E [ψi(x)βi(x) | yi(·), wi] dx

]
= E

[∫ ∞

0
ϕi(x)βi(x)dx

]
for ϕi(x) ≡ E[ψi(x) | yi(·), wi] = Cov(z̃i,1[xi ≥ x] | yi(·), wi). Moreover, under Assumption

3, the ex-ante ϕi(x) weights are non-negative:

Cov(z̃i,1[xi ≥ x] | yi(·), wi) = Cov(z̃i, P r(xi ≥ x | zi, yi(·), wi) | yi(·), wi) ≥ 0,

since both z̃i and Pr(xi ≥ x | zi, yi(·), wi) are non-decreasing in zi, conditional on (yi(·), wi).

Q.E.D.

B Formula Treatments and Instruments

Borusyak and Hull (2023), henceforth BH, study formula treatments and instruments of

the form zi = fi(g, s) for known fi(·), observed shocks g = (g1, . . . , gK) that potentially

vary at a different “level” k, and other observed data s of arbitrary structure. They assume

the shocks are exogenous in the sense of g ⊥⊥ y(·) | v, where y(·) is the set of potential

outcomes and v is some set of observed variables that includes s. They further assume the

shock “assignment process”—i.e., the conditional distribution of g given v—is known or

consistently estimable. Borusyak, Hull and Jaravel (2022), henceforth BHJ, study the class

of shift-share formulas zi =
∑

k sikgk under the identifying assumption closer to Assumption

2′: that E[gk | y(·), v] = q′kξ for some observed qk collected in v along with s = {sik}. This
assumption weakens the full independence condition in BH while also only specifying the

mean of shocks, rather than the full assignment process.

BH show that OVB is avoided in their setting when the controls in wi are functions of

v and linearly span µi = E[fi(g, s) | v]: the expected instrument over draws of the shocks.

Similarly, BHJ show that OVB is avoided with shift-share zi when
∑

k sikqk is controlled

for, which follows because wi spans µi = E[
∑

k sikE[gk | y(·), v] | v] =
∑

k sikq
′
kξ. While

both BH and BHJ focus on constant-effects models, where OVB is the only concern, they

also discuss identification of convex-weighted averages of heterogeneous effects.

We show Assumption 2′ is satisfied in both frameworks. Suppose wi is a function of v

and linearly spans µi: i.e., µi = w′
iλ. Then, under either the BH or BHJ assumptions:

E[zi | yi(·), wi] = E[E[fi(g, s) | v, yi(·)] | yi(·), wi]

= E[E[fi(g, s) | v] | yi(·), wi]

= E[µi | yi(·), wi]

= w′
iλ.

We also show how convexity of ex-ante weights can follow with formula instruments in a
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way similar (but not identical) to imposing Assumption 3. Specifically, we verify ϕi(x) ≥ 0

for a shift-share case where treatment is generated by the general causal model xi = h(g, ηi)

where h is monotone in g. Suppose the instrument zi =
∑

k sikgk is constructed from the

correct shocks gk but the shares sik ≥ 0 do not correctly capture the dependence of xi on g,

which can be nonlinear or linear with different shares. Thus, the first-stage is non-causal.

Assume that, conditional on (yi(·), ηi, si, wi) for si = {sik}, the gk are drawn independently

and, without loss, with zero mean (such that µi = 0, making controls unnecessary). Then,

for any x and almost-surely:

Cov

(∑
k

sikgk, 1 [h(g, ηi) ≥ x] | yi(·), ηi, si, wi

)
≥ 0

by Lemma 2 of BH, since both
∑

k sikgk and 1 [h(g, ηi) ≥ x] are non-decreasing functions

of the mutually independent gk, conditionally on (yi(·), ηi, si, wi). Hence:

ϕi(x) = E

[
Cov

(∑
k

sikgk,1 [h(g, ηi) ≥ x] | yi(·), ηi, si, wi

)
| yi(·), wi

]
≥ 0.

We finally note that both BHJ and BH do not require random or exchangeable samples,

allowing each unit to have its own data-generating process. Our results apply in that

case if moments are replaced with their full-sample versions: i.e., replacing E[z̃iyi] with
1
N

∑N
i=1E[z̃iyi] where N is the number of observations.
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