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Abstract

Reallocating patents to firms more proficient in their utilization can improve welfare. More-
over, the timing of such trades significantly impacts innovation outcomes. I construct a unique
dataset that captures interactions between patent trades and the drug development within the
U.S. pharmaceutical sector, and find that 82% of patents are traded before the associated drug
hits the market. Drugs involved in patent trades are also more likely to advance to the launch
stage compared to those without patent trades. I construct a dynamic structural model for the
development process of a new drug, taking into account crucial factors such as trade dynamics,
firms’ comparative advantages, transaction costs, and search frictions at various stages of the de-
velopment process, encompassing discovery, clinical trials, FDA approval, and product launch.
The estimation of this model reveals that (i) firms with greater stage-specific experience enjoy
reduced development costs at the corresponding stage; (ii) transferring patents to firms with lower
development costs enhances the likelihood of a drug advancing to subsequent stages; and (iii)
market frictions in patent trading exhibit significant variation across different phases of drug de-
velopment, with transaction costs reaching their peak before New Drug Application with FDA.
Counterfactual analyses show that reducing transaction costs within the patent market at pivotal
stages significantly increases the likelihood of drug success and the market value of the drug.
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1 Introduction

Companies often possess distinct comparative advantages at different stages of the innovation and
product development process. Some companies excel at generating novel ideas, while others specialize
in developing these ideas into market-ready products. This inherent disparity in expertise has made
patent trading a pervasive tool for greasing the wheels of innovation, decreasing production costs and
increasing the probability of successfully bringing the product to the market. While existing literature
attests to inherent frictions within the patent market with substantial welfare implications (Akcigit,
Celik, and Greenwood (2016) and Serrano (2018)), it remains unclear how these frictions vary across
different stages of development due to a lack of disaggregated data on patent trade timing. As an
example, subsidizing patent trades increases patent trade volume, but how much it can improve the
likelihood of a successful product launch depends on when the patent trading happens in the product
development process.

This paper sheds light on the pivotal role of patent trade timing at different stages of the drug
development process and its critical influence on a drug’s successful market launch. To align the timing
of patent trade with the corresponding stage of drug development, I leverage the unique characteristics
of the pharmaceutical industry. Due to regulatory requirements, pharmaceutical firms must report each
phase of drug development to the FDA. This mandatory reporting allows for the mapping of patent
trade events within the drug development timeline. This is the first paper to systematically combine
data on landmark events during drug development with information on the trade of patents linked to
the drug. The new dataset not only enriches our analysis but also provides a valuable resource for
broader research, including the study of how patent trading interacts with innovation direction, among
others.

My analysis of the data reveals that only 18% of patents are traded after the corresponding drugs reach
the market. A majority (over 58%) of patents are traded during clinical trial stages (Phases I, II, and
III), with the new patent holder subsequently taking over the development process. When examining
the relationship between patent trade and a drug’s successful launch, I discover that drugs with patent
trades have a higher chance of advancing to the next stage, especially past Phase II. At the extensive
margin, drugs associated with patent trades are about 8% more likely to make it to market than those
without patent trades.

These findings raise compelling economic questions. First, what factors contribute to the varying
distribution of patent trades across stages? Certain stages witness fewer trades, possibly because
companies possess similar expertise and skills, reducing the incentive for trade. Alternatively, increased
market friction in these stages—due to factors like information disclosure or market thickness—might
make trades challenging. Second, there is a notable positive correlation between patent trade and a
drug’s success rate. This observed increase in success rates might stem from trades ensuring a more
suitable pairing of patents with adept developers. Or, it could be the result of selection bias, where
superior patents are likely to be traded more often.
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To understand how patent market friction changes across the drug development stages and to ascertain
the causal effects of patent trading on drug development outcomes, I propose a dynamic structural
model. This model endogenizes the decisions of drug development and patent trading, which collec-
tively influence the likelihood of a drug’s success and its final value. The model is a dynamic game,
with pharmaceutical firms as participants who are eligible to become owners of the drug. Each of
these firms is endowed with a vector of experiences, one for each stage in the development of a drug.
Stage-specific experience reduces development costs in the corresponding stage and helps in advancing
the development of the drug. This disparity in expertise creates significant comparative advantages,
creating opportunities for trades. Without a market for patented drug projects, drugs would exclu-
sively be developed by their original patent holders. If development costs at a certain stage become
excessive, the company might choose to stop the project. The patent trade market offers an alternative:
Firms can sell the drug project to another entity with lower subsequent development costs, boosting
the drug’s odds of advancing.

Approaching this process as a finite horizon game, with the endpoint being the drug’s introduction
to the market, I segment the drug development process into distinct stages: discovery, clinical trials
(Phase I - small scale; Phase II - medium scale; Phase III - large scale), FDA approval, and market
launch. At every stage, firms face a decision: proceed with development, trade the patent, or exit
the market. Their choices depend on development costs and returns from patent sales. In an ideal
frictionless market, firms would always meet the most compatible buyer who attributes the highest
value to the drug. As a result, drugs with promising potential would consistently traded to the best-
suited developer for further development. However, market frictions imply that firms do not always
encounter the most suitable buyer. And even when they do, the associated transaction costs may deter
the transaction from taking place.

When a drug is successfully developed and introduced to the market, it competes with other drugs in
the same therapeutic category. At this terminal stage, our model incorporates a demand system for
differentiated products. Here, consumer demand is influenced not solely by the drug’s characteristics,
but also by its final owner. The demand system takes into account both the competitive landscape
and the structure of the drug market, aiding in forecasting the value of drugs under development upon
their market entry.

The success probability and final value of the drug depends on the owner, or more accurately the
sequence of owners. The frictions in the patent trade market are pivotal in this model, affecting
whether a beneficial transfer can take place, and consequently whether a drug can eventually progress
to the launch stage. The objective of the structural model is twofold: first, to identify where the
key frictions sit in the patent market along the development process, and second, to assess how these
frictions impact a drug’s likelihood of market launch, and its final market value.

My empirical analysis combines several sources of data. The first source records drug development
milestones (e.g., discovery, preclinical, Phase I/II/III clinical trails, registration, approval, launch). I
focus on small molecule drugs linked to at least one patent granted by the United States Patent and
Trade Office (USPTO) between 1980 and 2016, their detailed patent information, including applications
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and reassignments if any. From these, I construct an analytical dataset. I first link the drugs to their
respective patents and then identify each drug’s primary patent based on patent type and application
date. The resulting matched dataset encompasses 1,005 small molecule drugs protected by a primary
US patent from 1980 to 2016. The final dataset is a longitudinal record of household drug expenditures
sourced from the Medical Expenditure Panel Survey (MEPS) spanning 1996 to 2020. I employ this
data to assess the market size and value of drugs in their respective therapeutic areas. Using these
sources, I construct a unique and comprehensive dataset for the study of drug/patent trade during the
drug development process.

The structural model estimation proceeds in three main steps. First, the annual drug expenditure
data allows me to estimate a demand model that determines the value of the drug or patent, using the
subsample of drugs that are successfully launched in the market. Second, I use a discrete-choice model
to estimate the probability distribution of potential buyers, drawing on observed patent transactions
and the drug’s expected value derived from the demand system. Finally, incorporating drug value
and potential buyer estimates, I solve the dynamic game of drug development, trade, and market
exit decisions. Through backward induction, I estimate key parameters, such as the patent market’s
transaction costs and firm-specific development costs at each development stage.

Estimating the structural model yields several key results. First, transaction costs vary across stages,
peaking notably prior to FDA registration, and then Phase I clinical and III trail stage . This variation
of transaction costs across stages can be attributed to different factors. For instance, pre-Phase I costs
are largely influenced by the valuation of the drug’s potential and associated risks, given the scant
information available. In contrast, the increased cost before Phase III and (later stages) may stem from
negotiation complexities related to due diligence processes and agreements concerning trial data and
other rights transfers. Second, development cost decreases with the owner’s stage-specific experience
at critical stages, this finding is consistant with the conjecture that firms are heterogenous in their
product development capacities, which affect their decisions. Third, engaging in patent trade such that
the buyer’s stage-specific experience considerably lowers development costs enhances the chance that
the drug moves to subsequent stages. The results support the hypothesis that transferring patents to
firms more adept at their development enhances the likelihood of the drug’s market launch.

Although patent trades correlate with higher drug launch rates, this relationship is not necessarily
causal. For example, it is possible that superior drugs are simply traded more often. To test this hy-
pothesis, I conduct a counterfactual experiment that eliminates patent trades at all stages. Compared
to the empirical success rate of 34.6% for drugs without associated patent trades in data that does
not account for endogenous selection, a counterfactual estimation considering endogenous selection
results in a 38.4% success rate when patent trades are eliminated. The 3.8 percentage point difference
reflects the presence of positive selection in the patent market. Nevertheless, even after eliminating
the selection effects, we still observe a positive effect of patent trade on the drug’s success for most
stages.

For policy implications, I explore various hypothetical scenarios to understand the impact of a more
efficient market on drug development outcomes. While subsidizing patent trade increases the proba-
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bility of patents being traded; its effect on whether the drug successfully launches is stage-dependent.
A reduction in transaction costs most notably influences trades occurring prior to FDA registration,
which marks a shift from drug development to commercialization and manufacturing. Reducing trans-
action costs during this phase could boost success rate by 16.6% percentage potentially leading to
12 more drugs entering the market each year. Similar benefits are observed at other pivotal stages,
particularly where a transition requires different resources and specializations—like Phase I clinical
trial, which marks a transition from lab testing to clinical trials. Facilitating patent trades at these
critical stages significantly increases the probability of drugs reaching the market.

Furthermore, enhancing the likelihood of sellers meeting buyers who place a higher value on the drug
marginally increases the rate of successful drug development. However, this effect is not as significant
as when addressing transaction costs at specific development stages. This suggests that the main
friction in the pharmaceutical sector is not the challenge of identifying the optimal buyer, but rather
the negotiation frictions that arise after potential buyers are found. Even if sellers encounter the ideal
buyer, the complexity and uncertainty inherent in drug patents lead to unavoidable transaction costs
during the valuation and negotiation process. Therefore, solely enhancing the search and matching
process between sellers and buyers is insufficient.

The rest of the paper is organized as follows. Section 2 provides a review of the relevant literature and
outlines my contributions to the field. Section 3 provides institutional details related to the pharma-
ceutical industry and patent lifecycle. Section 4 describes the data and descriptive evidences. Section
5 develops the theoretical model. Section 6 describes the empirical results and counterfactual exercise.
Section 7 concludes and explores at prospective avenues of research. Supplementary estimation checks
and data construction details can be found in the Appendix.

2 Literature Review

This paper contributes most directly to the literature on the market for technology and its economic
implications. Over recent decades, the market for technology has become a focal point of academic
scrutiny. Some key channels are widely studied such as technology licensing (Agrawal, I. Cockburn,
and L. Zhang (2015), Arora, Fosfuri, and Gambardella (2001), Gans and Stern (2000), and Cassiman
and Veugelers (2006)), technology acquisition via M&A deals (Ahuja and Katila (2001) and Haucap,
Rasch, and Stiebale (2019)), and research cooperation(Banerjee and Siebert (2017) ). The research on
the market for patent and patent trade has surged more recently, since a more research-friendly patent
assignment data is released by the USPTO in 2015 and further curated inSerrano (2010).

The economic impact of this market is significant. Researchers have established that the patent market
facilitates the reallocation of patents from the original inventors to entities that are better suited to use
them (Serrano (2018)), leverage the strategic enforcement right of patents (Galasso, Schankerman, and
Serrano (2013), Chien (2011), and Serrano, Chondrakis, and R. Ziedonis (2023)) and more importantly,
develop and explore comparative advantages in developing and commercializing an invention (Arora,
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Fosfuri, and Gambardella (2001), Gans and Stern (2003), and Arora and Ceccagnoli (2006)). A more
efficient market for patent contributes to both higher private and social welfare, and drives economic
growth (Akcigit, Celik, and Greenwood (2016) and Arque-Castells and Spulber (2019)) Meanwhile, the
literature also documents the inefficiencies and failures in the current patent market (Serrano (2018)
and Hagiu and Yoffie (2013)) which is attributed by multiple factors, such as information friction,
market thickness, mismatching concern, illiquidity and hold-up issues (Chondrakis, Serrano, and R. H.
Ziedonis (2021) and Arora, Fosfuri, and Gambardella (2001)).

While most literature in this topic have centered around the benefits and implications of patent trading
in itself, this paper pivots towards a relatively less-explored dimension: the timing of patent trades and
their consequent impact on innovation outcomes. The timing of patent trades has been given scant
attention. For instance, Serrano, Chondrakis, and R. Ziedonis (2023) delved into the lag between
the execution and record date of patent reassignments at the USPTO, investigating the interplay
between strategic patent acquisition disclosures, the reputation of enforcers, and imitation costs. This
paper, however, approaches the topic from a distinct perspective. It seeks to unpack when, within the
product development lifecycle, patents are most frequently traded, and how such timings influence the
innovation’s trajectory.

The contribution of this paper is twofold. Using the specific setting of pharmaceutical industry, first,
I provide the first evidence of when patents are traded in relation to the specific stages of the product
development process and how the market friction varies at different stages. Second, I evaluate the
direct contribution of patent trade to the project transition across stages and thus shed lights on
how reductions in the transaction costs during vairous phases of patent market impact innovation
performance and social welfare.

This paper also relates to research on the intellectual property right and innovation in the pharma-
ceutical sector. Drug development decisions are affected by many factors, such as market competition
(Khmelnitskaya (2021), Howard et al. (2015), Filson (2012), Reiffen and Ward (2005), H. G. Grabowski
and Vernon (1992), and Caves et al. (1991)), demand shock (Acemoglu and Linn (2004), Blume-Kohout
and Sood (2013), and Dranove, Garthwaite, and Hermosilla (2014)), supply side factors (Majewska
(2022)), merger and acquisition (H. Grabowski and Kyle (2008), Cunningham, Ederer, and Ma (2021),
Letina, Schmutzler, and Seibel (2021), and Ornaghi (2009)) and learning from competitors’ failure news
(J. L. Krieger (2021)), R&D alliances (Banerjee and Siebert (2017) and Lerner and Merges (1998)),
investment type and financial constraints (Budish, Roin, and Williams (2015) and J. Krieger, Li, and
Papanikolaou (2022)). Moreover, in the pharmaceutical sector, most research on patents emphasizes
strategic patenting by branded companies (H. Grabowski, Brain, et al. (2017), Hemphill and B. N.
Sampat (2012), and H. G. Grabowski and Kyle (2007)) and the consequences of imperfect intellec-
tual property rights (Budish, Roin, and Williams (2016), Gaessler and Wagner (2022), Branstetter,
Chatterjee, and Higgins (2016), Gilchrist (2016), Y. Zhang (2020), and Gupta (2023)). My project
complements this literature by introducing a new model of the drug development process, emphasizing
the pivotal role of patent transaction timing. It highlights how patent market frictions impact the
probability of new drug introductions.
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3 Industry Background

To empirically identify the timing of patent trade and its impact on the innovation outcome, I use
the setting of drug development. While scholars have documented that differences in firms’ invention
and commercialization capabilities drive patent trades (Arora, Fosfuri, and Gambardella (2001) and
Arora and Ceccagnoli (2006)), direct evidence on how this directly contributes to project development
outcome is still limited. To make valid inferences about this relation requires correct link between a
patent and its associated product. Additionally, we should be able to monitor the progression of project
development, align the moment of patent trade within this timeline, and follow up on subsequent
project choices. The unique features of pharmaceutical drug development makes it a well suit to this
context because of its regulatory structure and disclosure requirements. Moreover, the pharmaceutical
industry represents an actively innovative industry with significant economic and social impact. This
industry’s unique characteristics, also leveraged in studies like J. L. Krieger (2021) and Cunningham,
Ederer, and Ma (2021), are invaluable for analyses requiring granular project-level data.

This section provides brief industrial background and highlights the key features of drug patent, sup-
plemented with examples that combine both aspects.

3.1 Pharmaceutical Industry

The development of a branded drug (or patented drug) involves a standard set of structured milestones
starting with the discovery or design of potential compounds or molecules. Then, the promising
candidates of compounds proceed to preclinical tests, which assess efficacy and toxicity, either in vitro
or in vivo. After these preclinical evaluations, successful drug candidates then move to clinical trails
on human volunteers after an Investigational New Drug (IND) application filed and approved by FDA.
Clinical trials usually consist of three phases. In Phase I, the drug is tested on a small group of
healthy volunteers to test safety and dosage. Phase I evaluates the drug’s safety and appropriate
dosage on a small group of healthy individuals. Phase II tests efficacy and side effects on patients
with the targeted disease. This stage spans several months to years. In Phase III, the most large-scale
study, enrolls hundreds to thousands of participants to further validate efficacy and monitor adverse
reactions, which often lasts several years. The cost and time required for the drug development process
are increasing as three clinical phases progress, with a dramatically decreasing pass rate. The overall
development for a new molecule drug can take 10 years on average (DiMasi, H. G. Grabowski, and
Hansen (2016)). After completing clinical trials, firms can submit a New Drug Application (NDA) to
the FDA. This application is meticulously reviewed by both internal and external experts at the FDA,
who assess clinical trial results and the firm’s manufacturing capabilities. The FDA then decides
whether to approve, deny, or request further studies. This review can span several months to two
years. Upon FDA approval, the drug hits the market. The development cost for new drugs varies but
is substantial, with estimates ranging from $340 million to $2 billion, depending on the type of therapy,
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the manufacturing firm, and the methods of estimation.1 Overall, the drug development process is
lengthy, costly and risky. Alongside the clinical trials, pharmaceutical companies also have to engage
in additional development activities. These include patent filing (typically during the discovery or
preclinical phase),2 regulatory submissions to the FDA, manufacturing site inspections, and eventually,
marketing and advertising as the drug nears or enters the market.

3.2 Drug Patents

The typical intellectual property protection received by a branded drug is either a patent granted
by USPTO or regulatory exclusivity granted by the FDA. The two forms of protection operate in-
dependently as backups for each other. Patent terms and exclusivity periods may or may not run
concurrently, depending on the type of exclusivity at issue (FDA, 2018).3 Exclusivities offer branded
drugs protection from generic competition, either through data exclusivity or marketing exclusivity.

1After accounting for costs of failed trials, the most cited studies of drug development cost reported the average cost
of getting a new drug into the market was about $1.1 billion in 2003, increasing to $2.8 billion in 2013(DiMasi, H. G.
Grabowski, and Hansen (2016) and Adams and Brantner (2006)). A recent study updated the cost in 2018 around $1.3
billion. (Wouters, Mckee, and Luyten, 2009)

2There has been a discussion on strategic delay of drug patent application. Given the lengthy development process
before FDA approval and marketing, many patented drugs enjoy only a few years of monopoly profits after approval
and before patent expiration, paving the way for generic competitors. Delaying the patent application can extend this
profitable window. However, if the patent application is postponed too long, the inventor risks losing patent rights either
because someone else files first or due to the disclosure of the invention to the public, which has a grace period of only
12 months. For these reasons, patent owners have strong incentives to file patents as early as possible.

3https://www.fda.gov/drugs/development-approval-process-drugs/frequently-asked-questions-patents-and-
exclusivity
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This form of protection is especially vital for drugs that don’t qualify for patents. Exclusivities are
granted upon marketing approval, hence they don’t involve any technology transfers and don’t influ-
ence decisions or outcomes during the drug development phase. In this paper, given that my objective
is to analyze how the timing of technology trade affect innovation outcome, the analysis is confined to
branded drugs that are patent-protected.

Drug patents are similar to other types of patents, providing 20 years of protection from the date of
USPTO application.4 The patent application process typically takes on average 24.6 months from
the date of the unprovisional application.5 The patent application process typically takes around
24.6 months from the date of the unprovisional application. It’s worth noting that patents can be
reassigned even during this pending period, before official patent grant. After a patent has been
granted, to maintain its validity, maintenance fees are due at intervals of 3 to 3.5 years, 7 to 7.5 years,
and 11 to 11.5 years after the date of issue.

Drug patents typically cover one of the following four aspects: (1) the drug’s active ingredient or drug
substance; (2) its specific use for treating a certain indication6; (3) its formulation, which includes its
physical form (e.g. liquid or capsule) and the method of administration (e.g. by mouth or injection);
and (4) the production method employed to manufacture the drug (Angell and Reading (2005) and
Gupta (2023)). In industries like software, semiconductors, and mobile communications, products
and services are complex, integrating numerous patentable interconnected processes and components.
For instance, an integrated circuit might involve hundreds of patents. Contrast this situation with
the pharmaceutical industry, a patent on a new molecular entity for a specific drug is clear-cut and
separate from patents on molecules for other drugs. In the pharmaceutical context, the average drug is
protected by approximately 3.4 to 4 patents as listed in the Orange Book. (Gupta (2023) and Ouellette
(2010)). Once a molecule or compound is developed, the firm will patent its active ingredient, this
patent is considered primary patent that offers the strongest form of protection and contains the key
knowledge capital used in the drug development process. Secondary patents, covering one of the other
three characteristics, are filed over the course of a drug’s development and even after its launch. These
patents are mostly filed for the purpose of extending the drug’s monopolist position in the market.
The clear boundaries between drug patents associated with their use in the specific treatment make it
feasible to identify patent-drug links and determine which patent is crucial for the development of a
specific drug.

Patent trade plays an important role in the drug development process. For example, Avycaz (ceftazidime-
avibactam) was an antibiotic approved by the U.S. Food and Drug Administration (FDA) in February
2015. This prescribed medicine used to treat the symptoms of intra-abdominal infections, urinary
tract infections and bacterial pneumonia was protected by seven patent. The primary patent US-
8178554 (Heterocyclic compounds, their preparation and their use as medicaments, in particular as

4Effective on June 8, 1995, the term of a patent is 20 years from the date on which the application for the patent was
filed in the United States. Patents filed before that date has a term of 17 years after the grant date of the patent.

5https://www.uspto.gov/help/patent-help#type-application-processes_1208
6In the context of drug development, the condition or disease for which a drug is being tested to treat, prevent, or

diagnose. It is the specific therapeutic use for which a drug is studied and for which the drug company will later seek
approval by regulatory agencies, such as U.S. Food and Drug Administration (FDA).
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anti-bacterial agents) was originally invented and owned by Novexel S.A..7 However, the complexities
and high costs associated with drug development and commercialization often lead smaller companies
or inventors to transfer their patents to larger firms with the necessary resources. Novexel S.A started
the drug development process from discovery in 2004 till Phase II clinical trial in 2008. The patent
was then traded to Forest Laboratories Holdings Limited in 2011. Forest Laboratories having the
capacity for advanced clinical trials, funding, and infrastructure, took over the development process
and conducted Phase III clinical between 2012 to 2014. In 2015, the drug was approved by FDA and
launched by Allergan Pharmaceuticals International Limited, which is the parent company of Forest
Laboratories.8 This journey of AVYCAZ, from its inception at Novexel to its final approval under
Actavis, highlights the dynamic nature of patent trading in the pharmaceutical industry. The transfer
of patents can enable resources and expertise to be optimally utilized, ultimately benefiting patients
with the timely introduction of innovative therapies.

Figure 1: Development Milestones of Avycaz

4 Data and Sample Construction

The main goal of this paper is to identify the friction in patent market at different phases and the timing
effect of patent trade on the drug development outcome. For this purpose, I construct a comprehensive
data set with patent trade observation, drug development histories and measure of market value of
drugs. This section provides brief industrial background and describes the various datasets and data
construction for the empirical work. More detailed discussion of data construction is documented in
Appendix B.

4.1 Data Sources

Patent Application & Trade

7Patent US-8178554B2 unprovisional application was officially filed with USPTO on May 10, 2011 under
application no.13068399. This application is a division of a serie of U.S. patent appication tracing back
to an original international PCT application filed in 2000. Detailed patent application can be found at
https://patentimages.storage.googleapis.com/ee/c3/08/204e6083c373c6/US8178554.pdf

8The patent was reassigned from Forest Laboratories to Allergan Pharmaceuticals International Limited on December
29, 2020. This is considered as an internal transfer between the subsidaries, which is not the focus on this paper.
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The patent granted by USPTO is obtained from PatentsView database. For each granted patent,
I retrieve information about the patent number, date of application filing, type of patent, assignee,
and patent category.9 Patent trade information draws from the USPTO Patent Reassignment Data.
This data provides details on which patents are being traded, and by whom. The records include a
range of patent reassignment reasons including sales, mergers, license grants, government interests, and
collateral, etc. Using this information, I am able to classify records to their respective groups. Following
the method of data construction in Serrano (2010), this study specifically focuses on standalone patent
reassignments.10 The patent sample period covers 1980 to 2016.

Drug Development Milestones

My primary dataset on drug development records comes from Cortellis, which is owned and managed by
Clarivate Analytics. The database includes information on drug candidates in the development process
worldwide, among which 48,416 observations for drugs development conducted in U.S. territory (as
of May 2023). Cortellis tracks each drug candidate’s development process by aggregating information
from different sources (e.g. clinical trial registries, patent filings, financial filings, company press
releases, academic conferences, and FDA submissions). The database contains detailed development
milestones for each drug development process at drug indication level. Notably, it records the date when
that stage of development (discovery, preclinical, Phase I/II/III clinical trails, registration, approval,
launch) was recorded, the drug’s names, the associated developer, the target indication, the country in
which that stage occurs. The database also contains pharmaceutical patent information, besides the
patent information (e.g. applicant, inventor, IPC codes, priority date, etc.) they also link the patent
to the drugs it is used. Cortellis also documents detailed company information ,such as the number of
trials the firm has been involved by phases of development. The database is regularly examined and
updated by professional analysts and curators.

Drug Market Size

A measure of a patent/drug’s potential and realized market value can shed light on the economic
implications of patent trades and the ultimate success of the drug. The expected return of the drug is
estimated based on the information from the Medical Expenditure Panel Survey’s (MEPS) Prescribed
Medicines Files and Medical Conditions Files. I obtained these annual data for the 1996-2020 period.
The first dataset is used to approximate annual revenue of each drug, while the second is used to
construct the outside option for each therapeutic market defined.

9Patentview provides multiple types of patent classification standard, namely the cooperative patent classification
(CPC), World Intellectual Property Organization (WIPO) technology classification, US patent classification (USPC)
and the National Bureau of Economic Research (NBER) technology categories (consistent with that in NBER PDP
dataset). In this paper, I use the IPC standard to conduct first round screening of pharmaceutical patent.

10A standalone patent reassignment is the reassignment with the change of ownership between distinct entities, which
drops the reassignment due to “name change” of the patentee, “security interest” for patent being used as a collateral,
the “correction” or “change of address” by patentee, or employee assignments from the inventor to the employer. I also
drop the reassignments due to “merger and acquisition”.
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4.2 Sample Construction

In constructing my final sample, I integrated multiple analytical datasets. The primary dataset focuses
on small molecule drugs, specifically those with a non-missing “SMILES” (simplified molecular-input
line-entry system) chemical structure. Since my objective is examining the impact of patent trade
on drug development outcomes, the sample focuses on these small molecule drugs that are associated
with at least one patent. A significant challenge encountered was establishing the drug-patent linkage.
My starting point was extracting US patent records and drug development data from Cortellis. Sub-
sequently, these patents were linked to drug development records using drug names. To enhance this
matching process, I also incorporated the drug-patent linkage available in the FDA’s Orange Book,
which lists all relevant patents for FDA-approved drugs.11

Regarding the relationship between patents and drugs, a straightforward one-to-one mapping isn’t
always evident. There exist instances where a singular patent is used in multiple drugs. In such
scenarios, each drug’s development is treated as an individual record. Conversely, there are situations
where multiple patents are associated with a single drug, in this case, we need to differentiate between
primary and secondary patents. Those concerning the active ingredient are deemed primary since they
shield the drug’s fundamental technological attributes. Prior studies have either classified the earliest
expiring patents on drugs as primary, given their potentially stronger property rights compared to
subsequent filings (Hemphill and B. N. Sampat (2011), Branstetter, Chatterjee, and Higgins (2016),
and Gupta (2023)), or engaged in manual patent text reviews to pinpoint active ingredient patents
and designate the primary ones, as highlighted in Kapczynski, Park, and B. Sampat (2012). For
this study, I refined the patent sample based on three criteria: (i) patents grouped in category 3
“Drugs&Medical” in NBER classification, (ii) patents whose IPC code aligns with at least one of the
“A61K/A61P/C01/C07” categories12 in the USPTO dataset, and (iii) patents whose type labeled as
either “product”, “drug combination”, “formulation”, or “new use” with non missing compound name.
Following this screening process, if a drug still correlates with several patents, the earliest filed patent
is retained.

For these primary patents in the drug sample, I linked their detailed application and reassignment
records using the patent numbers from the USPTO dataset. The next task is to pinpoint the tim-
ing of patent trades in relation to the drug development timeline.While many drugs have multiple
development pipelines for different therapeutic indications, the literature often examines projects at

11FDA’s Orange Book is widely used in the literature for the study of IP protection for approved drugs (Kapczynski,
Park, and B. Sampat (2012) and Gupta (2023)). However, it cannot be solely used in this analysis as it is a selected
sample containing only successfully launched drugs, which are not sufficient to study drug development successful rate.
Orange Book dataset was digitized by Professor Heidi Williams. Both data for years 1985-2016 and user’s guide can be
found at https://www.nber.org/research/data/orange-book-patent-and-exclusivity-data-1985-2016

12NBER classifies patents into six broad technology categories. The category “Drugs & Medical” involves phar-
maceutical products, medical equipment, and other health-related inventions. Patents under this category are very
heterogeneous covering medical compounds, medical device, methods of preparation, etc. A further refined classification
is needed. To excluding medical equipments and food related data, I restrict the patent sample using more detailed
IPC subclass. Based on patent content reviews, the following subclasses are the most relevant for the study of medical
compound and molecules: A61K “PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES”, A61P
“SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS”, C01
“INORGANIC CHEMISTRY”, C07 “ORGANIC CHEMISTRY”
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the indication level. This approach has been used to study the influence of information spillovers on
project decisions (J. L. Krieger (2021)), control for firm scale and scope, and evaluate the impact of
a firm’s experience within a specific therapeutic category on its success rate (Danzon, Nicholson, and
Pereira (2005)).

However, in this study, where I regard the drug-patent relationship as a singular entity, using the
indication level presents challenges. Firstly, firms often explore multiple indications, with many not
progressing beyond early stages, such as preclinical trials or Phase I. If we solely focus on patent
trades at the indication level, there’s a potential misinterpretation. For instance, a patent trade could
occur after a specific indication has failed, but this doesn’t necessarily denote a negative impact on the
overall drug development. When assessing the effect of patent trades on drug success rates or transition
probabilities across phases, this could introduce bias. Secondly, when evaluating a patent’s value, it
may no longer correspond with the drug’s anticipated worth. To address this, I’m focusing on the
development status that reached the furthest stage for each drug. As an example, if a drug had three
indications—with one reaching Phase I, another Phase III, and the third being launched—I would use
the launched indication as the reference point for the drug’s development timeline, regardless of the
sequence of the other two. The linked dataset contains 1,005 small molecule drugs, each protected by
at least one patent, documenting their drug development and patent activities from 1980 to 2016.

Next, I created a drug-therapy link to determine the therapeutic market that each drug targets. The
FDA-approved drugs can be categorized using the World Health Organization’s Anatomical Ther-
apeutic Chemical (ATC) classification system.13 Due to sample size constraints, I aggregated the
approved drugs into 23 therapeutic markets using their ATC2 classifications. Some drugs might fall
under multiple ATC categories. In such instances, I determined the primary ATC group based on the
technology class (TC) code from the MEPS dataset. However, a challenge arises when attempting to
define therapeutic markets for drugs still in development, as both ATC and TC codes are generally
assigned for approved drugs. For these developmental drugs, I rely on information regarding their
therapy area, indications, and technologies sourced from the Cortellis database. While Cortellis’ ther-
apy area definitions don’t align perfectly with the ATC standard themselves, we can leverage this data
to anticipate the therapeutic market as defined in our study.

To predict the therapy market for drugs still in development, I need to first merge the relevant datasets
that have been constructed. I began by connecting the approved drugs from the Cortellis drug devel-
opment database to the Orange Book data, using both patent numbers and drug names as reference
points.14 Because of discrepancies in drug naming across the two datasets, I also referenced the drug’s
key ingredient. A match is validated only when both the trade name and key ingredients align. For
unmatched entries, I manually cross-referenced them using the FDA’s official Drugs@FDA-Approved
Drugs list.15 Next, I connected the Orange Book data with the MEPS data using the NDA application

13ATC is a hierarchical classification system based on the drug’s therapeutic, pharmacological and chemical properties.
Drugs are classified in groups at five different levels. There are 14, 94, and 269 groups at ATC1 (1st level), ATC2 (2nd
level) and ATC3 (3rd level) ,respectively.

14Orange Book only documents non expired patents associated with the approved drug. Therefore, we need to have
a further match using drug names.

15https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=browseByLetter.page&productLetter=A
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Table 1: Description of Drug Development and Patent Trade Distribution

N N_with patent trade
Whole sample 1005 131
By highest-stage
Discovery&Preclinical 200 29
Phase I clinical 63 8
Phase II clinical 200 21
Phase III clinical 127 11
FDA Registration 56 6
Launch 359 56

number.16 Finally, I merged these datasets using the triplet of drug-patent number, NDA application
number, and therapy market. Then, leveraging the therapy market definitions for approved drugs and
their associated Cortellis therapy area and indication details, I predicted the therapeutic market for
drugs under development.

My final dataset covers drug development projects initiated from 1980 to 2016. It focuses on 1,005
drugs that I successfully linked to a US-granted primary patent. For each of these drugs, I tracked
ownership, developmental stages, associated dates and developers. If a drug was discontinued midway,
I recorded the highest stage reached. For drugs that reached market, I have data on their launch dates
and annual revenue up to 2020. If a patent was traded, details on the assignor, assignee, and execution
date are documented. Additionally, this dataset is enriched by integrating developer information from
the Cortellis database. Both the drug developers and patent traders in our sample are connected to
company-specific details using name matching algorithm. This includes metrics such as the number of
drugs in development, owned patents, participated deals, and trials categorized by phase.

Table 1 provides descriptive information on the main sample, which includes the entire sample, drugs
with patent trades, by highest status. (Number of patent trades by therapeutic market can be found
in Appendix) During the sample period, I observe 1,005 drug-patent pair, among which 131 of them
has been recorded with standalone patent trade for at least once. Among those traded, 29.7% observe
multiple trade, thus I have a total of 177 patent trade observations. The Table further breaks down
drugs by the highest stage attained. 35.7% of patented drugs reached launch stage over the sample
period, the number is slightly higher for drugs with patent trades, which is 42.7% (56 over 131 drugs).
Moreover, over half of the companies originate just one patented drug during this period, and 70% of
companies originate two or fewer drugs. When narrowed to drugs with patent trades, these figures are
even more pronounced: of the companies that began a drug’s development and later sold it, 85% had
initiated only one drug.

After completing the matching process, I identified 383 drugs that reached the launch stage. However,
only 141 of them had revenue/sales information available in the MEPS dataset. This discrepancy

16Note that one single NDA application number may correspond to multiple NDC (same drug, formula but with
different package). For the use of expected return of a certain drug, we should aggregate these multiple NDC into one
to account for its return.
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arises from two main reasons: first, some drugs had small market sizes, making them likely to be
overlooked in survey data; second, the MEPS dataset covers the period from 1996-2022. As a result,
drugs approved too early and discontinued before this timeframe remain unaccounted for. For the
drugs missing revenue data, I will estimate their expected returns using the same methodology applied
to drugs still in development.

4.3 Descriptive Evidence

Table 2 showcases the distribution of patent trades by various drug development stages. In subsequent
sections of this paper, I will group the drug discovery and pre-clinical phases together following papers
in this literature. Both these stages are primarily concerned with the screening, testing, refinement,
and optimization of new molecules in a laboratory setting. Collectively, they will be referred to as the
"discovery" phase.

Several insights can be drawn from the table. First, patents can be traded at any phase of the drug
development process. Looking into details, only 18% of patent trades occur after a drug has been
launched in the market. Approximately 74% of patent trades take place before the completion of
the full clinical trial. The majority of patent trades, amounting to 24.3%, are observed between the
end of early discovery phases and the start of Phase I clinical trials. When assessing the average size
of the patent seller (quantified by the number of active drugs they’re developing) across stages, it’s
evident that developers with a smaller portfolio tend to sell their patents during the preliminary stages
of drug development. This observation aligns with our hypothesis that companies have comparative
advantages at different stages of drug development, creating opportunities for patent trades. It is
also consistent with established notions and findings within the drug development literature. Often,
smaller firms pioneer innovative drug projects, many of which are later acquired and further developed
by larger pharmaceutical entities (Cunningham, Ederer, and Ma (2021) and I. M. Cockburn (2004)).

Table 2: Distribution of Patent Trade by Drug Development Stage

N Percentage Cumulative avg. size of seller
Before Discovery&Preclinical 10 5.6% 5.6% 6
After Discovery until Phase I (small-scale tests) 43 24.3% 29.9% 9
After Phase I until Phase II (medium-scale tests) 20 11.3% 41.2% 19
After Phase II until Phase III (large-scale tests) 31 17.5% 58.8% 110
After Phase III until FDA registration (final tests) 27 15.3% 74.0% 91
After FDA registration until Launching 14 7.9% 81.9% 105
Post-Launch 32 18.1% 100.0% 58
Total 177 100%

Note: The number in this table accounts for multiple trade cases. The average size of seller is measured by
the number of active drugs in the development of the developers.

Next, I examined the relationship between patent trading and drug transition probabilities in Table
3. The table presents drug transition probabilities based on their patent trade status. The left block
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lists drugs progressing to each stage, grouped by those with and without patent trades. The middle
part shows the empirical distribution of the highest stage that a drug reaches. For instance, for all
drugs with patent trade during the development process, 42.7% are eventually launched in the market.
This ratio is 8.1 percentage point higher than the 34.6% for drugs without patent trade. The right
side indicates the probability of quit at each stage. For example, of the drugs that reached Phase III
clinical trials and were traded at any stage prior, 22.3% were discontinued and thus did not succeed.
Overall, drugs with traded patents tend to have lower probabilities of quit, particularly post-Phase II.

Table 3: Percentage of Quit at Each Stage

Remaining Patent Dist. of Highest Stage Prob. of Quit
Stages no trade with trade no trade with trade no trade with trade

Before Phase I Clinical 874 131 19.6% 22.1% 19.6% 22.1%
Before Phase II Clinical 703 102 6.3% 6.1% 7.8% 7.8%
Before Phase III Clinical 648 94 20.5% 16.0% 27.6% 22.3%
Before Registration 469 73 13.3% 8.4% 24.7% 15.1%
Before Launching 353 62 5.7% 4.6% 14.2% 9.7%
Launched 303 56 34.6% 42.7%

In summary, the descriptive evidence reveals key insights. Firstly, patents are actively traded through-
out all stages of drug development, with a majority of trades happening before the completion of
clinical trials. This active trading behavior exhibits variations: the frequency differs across stages,
and smaller entities tend to sell their patents during early development stages. Furthermore, there’s a
positive correlation between the likelihood of a drug advancing to the next development stage and its
associated patent being traded, a trend which is more obvious in the later stages of development.

There is concern about a ’killer motive’ in acquiring patents to block potential competitors, especially
when the buyer already has similar drugs on the market or in development. Cunningham, Ederer, and
Ma (2021) documented this phenomenon in the pharmaceutical industry, finding that drug projects
are less likely to be developed when they overlap with the acquirer’s existing products. In my study
of 131 drug projects with traded patents, 54 were discontinued post-trade. I investigated whether
the buyers were incumbents in the therapeutic class, either with drugs launched or in development.
Initially, only 18% of these trades involved buyers with a market-launched drug in the same class. The
discontinuation rate for these incumbents was 29.2%, compared to 43.9% for non-incumbents (Table
4). When including drugs in development, the discontinuation rate was 38.8% for incumbents versus
42.7% for non-incumbents. These findings reveal lower or similar discontinuation rates for incumbents
compared to non-incumbents, suggesting that ’killer purchases’ may not be a significant concern in
this context.
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Table 4: Probability of Quit After Trade (Incumbent or Not)
Trade & Quit Trade & Cont Prob. of Quit

Drugs in Market
Incumbent 7 17 29.2%
Non Incumbent 47 60 43.9%

Drugs in market or development
Incumbent 19 30 38.8%
Non Incumbent 35 47 42.7%

The different findings between Cunningham, Ederer, and Ma (2021) and this study might stem from
the acquisition form. While they examined drug project discontinuation post-merger and acquisition
(M&A), this study focuses on standalone patent trades. Two factors may explain the variance in
results. Firstly, M&A often involves the transfer of multiple patents, where some projects might be
secondary to the acquisition’s primary goal. In this case, an overlapping project that is unfamiliar to
the acquirer is less likely to continue unless it offers significant advantages over existing ones. Secondly,
acquisitions might be more effective in fully eliminating competition than purchasing single projects.
In acquisitions, the competitor is entirely absorbed, whereas buying single projects leaves room for the
original owner to develop similar patents, posing future competition.

Table 5 presents a statistical summary of the firms’ experience at various stages, measured by the
number of trials they have conducted at each stage.17 The data reveal significant variability in firms’
experience across stages. On average, there is a trend showing that as stages progress, the number of
trials with which firms have experience tends to decrease.

Table 5: Distribution of Firm’s Experience Across Stages

Stage Obs Mean Std. Dev. Min Max
Phase I trials 120 115.9 324.4 1 2268
Phase II trials 126 131.2 347.5 1 2150
Phase III trials 120 83.5 242.8 1 1590
Phase IV trials 95 72.4 185.1 1 1282

The empirical evidence shed light on the interplay between patent trading and the drug development
process. It reveals the critical role patent trading has on drug transition decisions, with varying
likelihoods at different stages. Multiple factors may affect the likelihood of patent trade at different
stages, include company homogeneity and patent market friction. For instance, there’s a notable 24%
of patent trades observed before Phase I, compared to a mere 11% before Phase II. Two possible
forces might explain this variance. Firstly, companies might possess comparable expertise in drug
development between Phase I and Phase II, reducing the incentive for trade. Alternatively, increased

17Phase IV clinical is known as post-marketing surveillance or post-marketing studies, takes place after a drug has
been approved by FDA and is already on the market. It serves as an indicator of a firm’s expertise in launching drugs.
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patent market friction during this stage might hinder transactions, even when companies display a
strong interest in trading. To disentangle these influencing factors and understand the true impact of
patent trade on drug transition probability, and to gauge its effectiveness in mitigating market friction
across various drug development stages, a comprehensive structural model will be introduced in the
subsequent section.

The empirical evidence is informative in understanding the relationship between patent trade and
drug development process. It shows that patent trade plays an important role in the drug transition
decisions and the likelihood of patent trade varies across stages. Multiple factors affect the likelihood
of patent trade at different stages, such as homogeneity of companies and patent market friction.
For example, I observe 24% patent trade happening after discovery before Phase I, while only 11%
occurs after Phase I. The reasons behind this difference can be either that companies possess similar
skills and capabilities of drug development after Phase I before Phase II compared to discovery to
Phase I such that there’s less potential for trade, or that the patent market friction at this stage is
relatively higher than other stages such that transactions are hard to achieve. To disentangle different
factors influencing patent trade, examine its causal impact on drug transition probability and test the
efficiency of reducing market friction across drug development stages, I introduce a structural model
that incorporate these crucial features in the next section.

5 Model

To answer the empirical questions discussed above, I propose here a dynamic model of patent trading
and drug development, which determines two main outcomes: the probability of success and the final
value of a drug. Within this model, I assume that each firm initially possesses a patented drug,
along with other expertise and complementary knowledge capital essential for advancing the drug
through various development stages. It’s worth noting that this expertise and knowledge capital may
vary between stages. For example, a firm may have rich experience in Phase I clinical trial but
possess limited expertise in Phase III. The costs associated with drug development at each stage are
contingent upon the firm’s specific expertise level for that stage. Furthermore, differences in expertise
among different firms at each stage create distinct comparative advantage of firms throughout the drug
development process.

In the absence of alternative owners, if the development costs at certain stage become too high for
the owning firm, the drug development process is stopped. Now let’s consider a scenario in which
drugs, along with their patents, can be traded among potential owners (typically the pharmaceutical
companies). The existence of comparative advantage among these firms creates opportunities for
mutually beneficial trades. The market for patent trade offers the original owner the option to sell
the drug to someone with lower development cost for the subsequent stages, thereby increasing the
likelihood of the drug progressing to the next phase of development. In a frictionless market, drugs
with positive final values would either be developed by a single owner or transferred through a sequence
of owners, ultimately reaching successful development. However, in the reality, patent trade involves
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various costs, including factors like information asymmetry, and transaction cost, etc. While some
drugs may indeed progress to the next stage of development if traded, the transaction costs could
impede such trade, potentially causing the drug’s development to stall at its current stage. The
objective of this model is twofold: firstly, to identify the transaction cost associated with different
stages of the development process, and secondly, to assess how these frictions impact the probability
of success of the drug.

In this model, consider each firm is a drug that protected by a patent. The firms produces drugs
using patents (knowledge capital) and variable inputs. At each development stage, these firms have
the choices of selling their patents, investing in drug development or quitting the market. These
choices are influenced by the firm’s drug development cost and the transaction cost associated with
trade in the patent market. There are finite number of firms in the market, each has potential to
become a drug developer. These firms are heterogeneous in their drug development experience and
commercialization capacity. This difference directly affects the success rate of drug development at
each stage and ultimately determines the final value of a drug.

(a). Setup

The model follows a finite horizon t = 0, 1, 2, ..., T as illustrated in Figure 2. At period 0, a firm,
says i, owns patented drug project j.18 At this stage, the original drug project is commonly patented,
substantial development investments are required to bring the drug into the market, which is costly
and uncertain. Each firm i is endowed with a vector of experiences eit = (ei1, ei2, ..., eiT ) that are
exogenously given at the beginning and constant over time.

In period 1, the drug owner i faces three potential decisions: to invest in Phase I clinical trials, to sell
the drug , or to quit the market without any further action. If the firm i opts to quit or sell, then the
game of this drug ends for firm i at period 1. If firm i chooses to invest in its development, it receives
an associated value of developing, denoted as V di,1 . Then in period 2, the firm confronts a similar set
of choices: to invest, to sell, or to quit. If the drug is sold by firm i to another firm i ′ , then in the
succeeding period, firm i ′ will encounter the analogous decision points: whether to invest in Phase I,
to sell the drug, or to quit. This sequence of game proceeds up till the final period T , provided that
investment decisions are continually made. By the terminal period T , drug j will have passed all the
requisite development phases, reaching the commercialization and production stage. In this terminal
period, the firm must decide whether to commercialize the approved drug independently, to sell it to
another entity for production, or to abstain from any action.

In this model, the drug and its associated patent are intrinsically linked, meaning a sale of the patent
also signifies a sale of the drug. A firm’s decision depends on several factors: the anticipated value
of the drug, costs specific to the investment stage, transaction costs associated with patent trading,
and the potential value from exiting the market. For clarity in notation, I will omit the subscript j

18The assumption here is that the patents are exogenously assigned to firms, with each drug having already passed
the discovery screening which has potential to be put in clinical tests.
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when describing the model. Nonetheless, it’s crucial to remember that each observation and decision
is specific to an individual drug j level.

Figure 2: Illustration of Firm’s Decisions in the Model
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(b). Value of Choices

At the beginning of each period t, firm i observes the cost shocks τ and κd, as well as the distribution of
potential buyers. Firm i enters the market to meet the potential buyer. Firm i can meet and negotiate
with only one potential buyer per stage. The likelihood of firm i ′ be the optimal buyer b is based on its
expected value of the drug Vi′t, characteristics of firm i and i′ and market-specific features. Assuming
there is a random shock ερ associated with the search, and it it follows Type 1 EV distribution, the
probability that a firm i′ is the best buyer has the following form :

Pr(bt = i′|x) =
exp(x′i′tµ+ ρVi′t)∑
k exp(x

′
ktµ+ ρVkt)

(1)

In an ideal market with no search frictions, we would expect the buyer to always be the firm that
values the drug the most. This would mean that the model parameter ρ associated with the buyer’s
valuation is extremely high (→ ∞), and the vector of parameters µ would be 0. Any deviation from
this ideal scenario indicates the presence of market frictions, such that the optimal buyer might not
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necessarily be the firm with the highest valuation. The parameter ρ is exogenously determined in the
market, reflecting the prevailing search technology. After observing the potential buyer b and assessing
the potential surplus from a trade, firm i chooses from the discrete options represented by (d, s, q)

based on the expected outcomes.

Once the buyer and seller meet, they negotiate the price pit using the Nash bargaining framework.
The value derived from the trade for the firm i is

V sit = pit − (τt + εsit) (2)

where τt is the stage-specific transaction cost in the secondary patent market, and εsit, zero mean
shocks in the transaction costs which are independently and identically distributed over time. Suppose
the buyer’s bargainning power is ω, the price pit = (1−ω)Vbt +ω · [max{V dit , V

q
it}+ τt]. For the details

on the derivation of the price, see the appendix.

The expected value of investing in drug development at period t is the difference between the expected
continuation value and the associated investment cost for that development stage. The investment cost
follows the form κdit = κ0t − κ1t ln(eit + 1) .This equation indicates that the investment at each stage
consists of two components: the consistent stage-specific average investment cost κ0t which remains the
same for all firms, and a firm-specific cost κ1t ln(eit+1). This latter component is influenced by eti , the
number of trials firm i has conducted for t-stage trials, thus capturing the firm’s particular experience at
that stage. The parameter κ1t reflects the heterogeneity in investment cost across firms. Note that since
firm’s experience eit is exogenously given at the beginning, the stage costs κdit = (κdi1, κ

d
i2, ..., κ

d
iT ) are

also known to all the firms since period t = 0. Therefore, the value of engaging in drug development
can be written as:

V dit = βtE(Vi,t+1)−(κdit + εdit) (3)

Lastly, when the firm chooses to quit the market, it receives a value of quitting denoted as V qit. Given
that this is a finite game, the terminal value of the drug is determined by market demand. When a drug
successfully reaches the market, the revenue is derived from its sales within the respective therapeutic
market. Assuming that the value from commercialization takes the logarithmic form of the revenue
generated, it depends on the drug’s therapeutic market, and the attributes of the firm. Hence, the
terminal value of the drug can be expressed as:

V diT = ln(R(xiT )) (4)

Firm i’s value function at period t is defined as:

Vit = max
{
V dit , V

s
it, V

q
it

}
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At every stage, firms evaluate the expected terminal value of their drug, adjusting their calculation
based on a vector of discount factors βt ∈ (0, 1). They do so with rational expectations regarding
the market’s evolution and a foresighted estimation of the time it would take to launch from various
starting stages. These assumptions are strong but useful in making the model both tractable and
computationally feasible for the estimation. First, while there are lots of uncertainties inherent in
drug development, firms can draw on previous experiences and timelines of similar drugs to form
an understanding of the average time to success from their current development stage. This aids
in determining the expected discount rates βt when firms calculate their expected value at different
stages19 and anticipate the market structure at the time of entry. Furthermore, the model suggests that
firms can accurately predict future market demand early on. It’s worth noting that pharmaceutical
companies have a track record of market trends and adjusting to the demand. Researchers have
documented that firms sensitively response to competitor’s failure news, these adjustments typically
relate to factors like investment costs and success probabilities, rather than being directly influenced
by market demand.

The model incorporates two types of transaction costs related to patent trade. The first appears in
identifying a potential buyer. Ideally, in a hypothetical market without searching friction, we expect
that the buyer would be always the firm with the highest valuation of the drug. This implies that
the model parameter ρ associated with the buyer’s value converges to ∞. Any deviation from this
indicates the existence of market friction such that the buyer is not necessarily the firm with the
highest valuation. The second type of transaction cost. symbolized as τ , appears in the firm’s decision
of trade, investment and quit, after the potential buyer has been pinpointed. This is a cost at the
extensive margin in the sense that it affects the firm’s overall payoff and thus decisions, but does not
affect the quality of the match between buyer and seller (which was already determined in the first
step). Costs like administrative fees, commissions, or legal charges fall under this category. The model
will identify both these costs and investigate their roles in affecting firm’s decisions and the eventual
drug outcome.

(c). Equilibrium

This is a finite-horizon dynamic discrete game. Firms initiate with a drug protected by a patent that
has passed the discovery and preclinical stage. Every firm’s experience at each stage, denoted as et is
commonly known.

In each period, firms observe the transaction cost τt and their private cost shocks εit = (εdit, ε
s
it, ε

q
it),

and choose one of the three actions: develop, sell, or quit ait = (d, s, q) aiming to maximize their
expected profits Vit.

An equilibrium in this dynamic game can be described in terms of of N×T strategy functions Φit(xit)

, which is a mapping from the space of state variables (xit, εit) into the action space {d, s, q}. In

19Here I follows the expected discount rate at different stages estimated in Aryal et al. (2022).
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equilibrium, we have
Φ∗it = argmax

a∈{d,s,q}

{
V dit , V

s
it, V

q
it

}

In this dynamic game, the optimal strategy of a firm i at stage t depends on the optimal strategies
of other firms at stage t′ > t. This is because the value of trade for a firm i at stage t depends on
the continuation value of other firms. To make the optimal decisions in period t, firm i needs to know
not only its own expected value of the drug, but also continuation value of the drug of all other firms.
For instance, if the experience of one firm is changed, this will change the strategy functions of all the
firms.

Despite the dynamic features, this model has a unique equilibrium. This is a finite-horizon game.
Starting with the terminal stage T , given the final value of the drug of each firm, the continuation
values for every firm are uniquely defined. Consequently, the probability distribution of the optimal
buyer, the trade value, and all conditional choice values for every choice at the terminal stage T are
uniquely determined for each player. This means that each firm’s optimal strategy function Φ∗iT (xiT ) is
uniquely determined. Leveraging this result, we can use backward induction to prove that the strategy
functions for every firm at each stage are uniquely defined. Thus, the dynamic game has a unique
Markov Perfect equilibrium.

The previous proof of equilibrium has already illustrated that deriving the unique equilibrium can be
achieved through backward induction. I calculate the best response function of all firms from the last
period T all the back to period 1. That is to say, to determine firm i’s best response function at
stage t, it’s necessary to know the continuation values of all firms in the market for period t. These
continuation values are derived from the optimal strategies of every firm at stages t′ greater than t. In
this manner, we should be able to write the expected value functions from period T all the way back
to period 1 and solve for every firm’s optimal decisions at each stage.

6 Structural Estimation

In the following section, I will first describe the estimation method employed for the structural estima-
tion. Subsequently, I will present and discuss the estimation results and the implications drawn from
counterfactual analyses.

6.1 Estimation

My empirical approach takes three steps. First, I estimate the system of demand for drugs based on
their therapeutic market. Second, I calculate the expected value of the drug implied by the demand
estimates and use the terminal value in the determination of buyer to estimate the searching friction ρ.
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Third, I embed these demand estimates and searching cost into the dynamic discrete game of continue,
sell and quit, which I solve to estimate the cost of drug investment and transaction cost in patent trade.

First, for the demand estimation, the drug sample in the dynamic model is restricted to small molecule
drugs under the patent protection. This is a limited subsample of all drugs selling in the US market.
First, there are many drugs using other technologies, such as macromolecule. Second, some small
molecule drugs not eligible for patent are protected under other forms of protection, such as exclusivity
right. Third, generic drugs are not considered in our sample, but they account for substantial market
share in certain therapy market, which should not be neglected. Therefore, in the demand estimation,
we should take into account all drugs in the market. The sample covers the expenditure of US household
on drugs over 1996 to 2020 period. I first group the drugs into their main therapeutic market, and
then conduct the demand analysis at therapy-year level.

The therapy market is defined using ATC2 code and TC (therapeutic classification in MEPS, from
Multum Lexicon database), the same way as the therapy class for the working sample. When there
are multiple ATC2 class, the drug is grouped to the main therapy class using TC information.

The outside option is approximated by the drug prescription rate for each therapy. MEPS provides
Medical Condition data information from 1996-2020. This information is collected along with drug
prescription and expenditure info from the survey. In medical condition files, MEPS documents health
condition issue reported by households and coded them based on ICD-9 or ICD-10 code. These
are the detailed disease classification code used by medical system which contains more than 300
categories, then MEPS collapsed the codes into broad condition categories (e.g 56 in 1996). For
each broad health issue, it estimates the number of medical events happened, including Doctor Office
visits, ER visits, inpatient stays, outpatient events, home health events, and prescription medicines.
Any type of visits/events related to a certain medical condition can be considered as the potential
population affected by such disease. Given these information, the drug treatment rate in each therapy
is approximated by the number of prescribed medicine purchases associated with a particular condition
over the total number of medical events in that therapy area. The distribution of therapy class in the
demand system and more detailed outside option construction can be found in Appendix 8.2.4.

Demand estimation follows multinomial logit form. The market is defined at year-therapy-level. The
market share of drug j in therapy m is defined as :

sj =
exp(x′jiTα)

1 +
∑J
k=1 exp(x

′
kiTα)

(5)

Following Berry (1994), with normalization of utility function s0 = 1
1+

∑J
k=1 exp(x

′
kiTα)

, we have log(sj)−
log(s0) = x′jiTα.

Second, once the demand estimation of drugs is done, we could use the demand estimates to calculate
the expected return of any drug j for any developer i, regardless of the drug being launched or not.
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I define a drug’s expected value as the logarithm of the sum of its first five year’s revenue generated
since the date of marketing Vji = log(R(xji)),

where Here I borrowed the average time to launch from each stage as a starting point in the literatureR =∑4
y=0Revenueymarketing+y , with ymarketing is the year of marketing for the drug. This specification

is based on two considerations. First, the return of the new drug introduced in the market may not
reach the peak at the first year of launching as it may need some time to learn the market and grow.
This learning effect can be better captured when I control for the age effect of the drug and take into
account several years of revenue since the marketing date. Second, FDA granted 5 year data exclusivity
to new molecular entities (NMEs) drugs, this exclusivity rights guarantee that generic competition is
typically not possible for this type of drugs for the first five years after the drug is approved, even
absent patents or the patent expires earlier than this date.20

The determination of optimal buyer depends on the expected value of the drug owned by potential
buyers Vji′t and the buyers’ other characteristics xi′t, such as the number of drugs that have been
developed for the stage at which the drug he is going to buy. With the assumption of Type I EV
distribution of cost shock ερ, we could use the functional form defined in equation (1) to first estimate
the searching parameter ρ , and second use the estimate to predict the expected value of buyer V bji =∑
Pji′ · V̂ji′ . With Nash bargaining, the agreed price of the patent is determined as pji = ωV bji + (1−

ω)V dji.21

In the last step of estimation, I use the demand estimate and searching parameter (α, ρ) as given,
embed them into the dynamic discrete game model and solve it by backward induction. The goal of
this step is to obtain estimates for the key cost parameters (τt, κ

0
t , κ

1
t ) by maximum likelihood. The

ML estimate is the vector that maximizes the likelihood of observing the actual choice probabilities in
the data for each stage. The ML estimators for the development cost (κ0t , κ

1
t ) and transaction cost τt

for each stage t are

arg max
τt,κ0

t ,κ
1
t

ln
[
P (Nd

T,N
s
T , N

q
T )
]

P (Nd
T,N

s
T , N

q
T ) is the joint likelihood for stage T of observing data (Nd

T,N
s
T , N

q
T ), with each element

representing the number of developing, selling and quitting respectively. Note that the last stage is
post-launch, firms have completed the drug development and FDA approval process, thus at this stage,
we only have two observed choices: commercialize (develop) or sell.

Normalize the value of quit to 0, then the expected value of drug j for firm i at stage T − 1 is

V̂jiT−1 = log(exp{0}+ exp{βT−1 ∗ V̂jiT − CcT }+ exp{βT−1 ∗ V̂jbjiTT − CsjiT })

20Similar method and first time generic entry after the fifth year discussion can be found in Kapczynski, Park, and
B. Sampat (2012) and Hemphill and B. N. Sampat (2012)

21In the estimation, I assume seller and buyer have equal negotiation power with ω = 1− ω = 0.5.
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Using the calculated V̂jiT−1 for each drug, I conduct the same ML estimation for stage T − 1 and so
on.22

Sources of Identification:

Parameters to estimate in this model are θ = (α, µ, ρ, κ0t , κ
1
t , τt)

The static demand estimates α (and hence the implied expected value of drugs VjiT from the demand
estimation using MEPS data. Demand estimation follows multinomial logit form. The market is
defined at year-therapy-level. The market share of drug j in therapy m is defined as :

sj =
exp(x′jiTα)

1 +
∑J
k=1 exp(x

′
kiTα)

(6)

Following Berry (1994), with normalization of utility function s0 = 1
1+

∑J
k=1 exp(x

′
kiTα)

, we have log(si)−
log(s0) = x′jiTα.

Then, using the expected vale of drugs and the characteristics of sellers and buyers in the observed
trades, I obtain the searching parameters (µ, ρ) from the determination of buyer estimation and the
probability distribution of optimal buyer. As such, I can estimate the expected value of selling the drug
V s . These first two steps are completed outside the dynamic estimation framework. The expected
value of continuation, expected value of selling, together with the observed continue/sell/quit choices
at each stage of drug development process are used for identifying the key cost parameters (κ0t , κ

1
t , τt)

in the dynamic game.

For example, a large transaction cost τt will decrease the predicted value of selling the drug, and hence
decrease the trade probability Pt(sell) with respect to the probability of quitting Pt(quit). Similarly, a
higher fraction of firms choosing to trade at stage t will lead to a lower estimate of τ̂t. Likewise, large
development cost κ0t and κ1t will decrease Pt(develop) with respect to Pt(quit). The variance of eit
across firms help identify κot and κ1t separately. Therefore, the observed fractions of drug development
over quit and selling over quit will differently pin down κ̂dt and τ̂t in the MLEs.23

G. Ellison and S. F. Ellison (2011) also study incumbents’ strategic motives in the pharmaceutical
industry, but they focus on investment and advertising choices to deter entry. In their setting, the

22For the drugs in the development, we need to estimate its expected time of entering the market as the market
structure evolves over time. I’ve referenced the literature to use the average time to launch from each stage as a starting
point: Discovery: 10.1 years/ Phase I clinical: 8.1 year / Phase II clinical: 6.6 year / Phase III clinical: 4.1 year /
FDA application: 1.1 year(Aryal et al., 2022). For example, if we observe a drug’s latest development stage is Phase III
conducted in 2001, then the expected marketing year is 2005 and we use the whole market size in 2005 for therapy class
this drug is in. For drugs expected to enter the market after 2016 (given the 5 year revenue defined in current setting,
the latest market revenue that we could observe is 2016), I use the growth rate of market size over 2010-2015 to predict
the later year market.

23To make it more clear, taking the logarithm of division of the probabilities of two choices gives us

ln(P d
it/P

q
it) = −κot − κ1teit + V d

it − V q
t

ln(P s
it/P

q
it) = −τt + pii′t − V q

t

Normalizing V q
t = 0, the two fractions of observed choices and observables (or calculated continuation value from

previous steps used as observables here) help us identify the key parameters in the structural model.
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strategic motive is identified by the nonmonotonicity of investment with respect to market size, whereas
in ours, it is identified by the lack of development of overlapping acquired projects.

6.2 Empirical Results

6.2.1 Demand Estimation

Given the data limitation, the market size and market share are determined using annual revenue of
each drug. The set of explanatory variables xiT includes both firm and drug characteristics. This
includes the count of Phase IV clinical trials which gauges a firm’s post-launch expertise, and the
age of the drug, measured from its year of entry, helps account for any learning effects over time.24

Therapy class fixed effect is controlled.

Table 6 presents the demand estimates (detailed estimates including therapy market effect can be
found in Appendix 8.2.5). The findings highlight that a firm’s prior experience in launching drugs
favorably impacts the drug’s market share. Additionally, coefficients tied to a drug’s age reveal a
significant learning effect. As a drug enters the market, its share typically increases in the initial years,
suggesting adaptability and market understanding. However, over an extended period, its market
share may decline, possibly due to the introduction of new competitors in the market.

Table 6: Drug Demand Estimation

Variables coefficient
# Phase4 trials 0.001***
log(age) 1.60***
log(age)2 -0.46***
Constant -6.43***
Therapy FE Yes
Observations 6,701
Adjusted R2 0.22

6.2.2 Determination of Buyer

The potential buyer is determined using a discrete choice (logit) model. The model yields an estimate
of ρ = 0.75. This implies that with every one-unit rise in the drug’s valuation, the likelihood of firm
i′ becoming a potential buyer increases by a factor of 2.12 (calculated as e0.75 ). While this result
indicates that firms with higher drug valuations are more inclined to be potential buyers, it’s not a

24Firms are identified by aligning the labeler name in the MEPS data with the corresponding name in the Cortellis
database. This required a thorough cleaning process, including manual checks for any inconsistencies or misspellings. Out
of 560 labelers, we successfully matched 455. For those unmatched—primarily public institutions or smaller companies
with missing data— their shares are added to outside options.
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guarantee. This variability underscores the inherent frictions in the patent trade market, highlighting
that sellers might not always connect with the most suitable buyer for their drug.

Table 7: Discrete Choice Estimation of Buyers
Determination of buyer
ρ 0.75 (0.28)
obs 177
Prob>χ2 0.017

6.2.3 Investment and Transaction Cost

Table 8 shows the MLEs of the transaction costs τ , stage-specific development costs κo and experience-
based development cost parameter κ1. Standard errors are presented in the parentheses2526. The
estimates suggest that the transaction costs peak before FDA registration and Phase I clinical trial
stages, followed by Phase III clinical trial. The factors that drive up the transaction costs at these
stages might be different. In the early stages like Phase I, the limited available information about
a drug’s potential introduces high uncertainty. This necessitates higher valuation and investigation
efforts and often involves discussions about "risk premium", resulting in elevated negotiation and
transaction costs. On the other hand, while the drug’s potential becomes clearer by the time of trades
preceding Phase III and FDA reviews, due diligence costs soar. Firms need to review past trial data
and address any outstanding rights or agreements linked to the drug. A high-potential drug might
also attract more interested buyers, further complicating negotiations. These elements collectively
contribute to the increased transaction costs during these different phases.

Regarding development costs, the model indicates that the development costs are negative relative to
the cost of discontinuation (given value of quitting is normalized to 0) except for the FDA registration

25In the estimation process, due to the presence of measurement errors in the eit variable, and given that eit for some
large pharma companies are excessively high, I’ve adjusted the scale of the variable by using e∗it = eit/2 to ensure more
accurate data interpretation.

26In the estimation, I assume that the variance of ε is constant across stages up to T − 1, and in the last stage T . It
doesn’t impose additional assumptions with respect to the variance at the last stage. Since the shock follows iid Extreme
Value Type I distribution, for any stage up to T − 1, the variance of ε(trade)− ε(quit) and variance of ε(cont)− ε(quit)
are the same, suggesting the difference ε(cont)− ε(trade) has the same variance. The difference between the last stage
T and stages up to T − 1 is the constant term µ. For stages before last stage, we are identifying µtrade − µquit
and µcont − µquitwith µquit being normalized to 0, while at the last stage, we can only identify µcont − µtrade. This
specification will not affect the magnitude and interpretation of the parameters but will only affect how we counduct
conterfactual exercises in the next section.

In practice, I conducted a two-step estimation approach. In the first step, I estimated the parameters at each stage
via independent MLE. This yielded consistent estimates, enabling the construction of the expected continuation value of
the drugs at each stage. In the second step, I imposed the restriction that the scale parameter σ remains constant across
stages and estimated all the parameters jointly in a single MLE, which improves the efficiency of the estimates. The
estimates suggest that 1/σ is not very precisely estimated. In the robustness checks, I assessed the correlation between
the variable associated with the model (V ) and other explanatory variables. As V was not strongly correlated with
other variables, I conducted a constrained MLE by imposing the constraint 1/σ ≥ 1/σ∗ such that other parameters are
not sensitive to the change of σ. This gives the value of 1/σ∗ = 0.3. Imposing this constraint incurs minimal penalty
in terms of maximum likelihood, and the precision of other parameters is less affected. Note that the magnitude of σ
suggests the presence of other unobservable factors that could influence firms’ choices, which will be an interesting topic
for future exploration.
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stage. κ0 < 0 does not necessarily mean a negative development cost. Rather, this suggests that these
drugs demonstrate significant potential up to this stage, withdrawing from the current development is
more damaging than the costs associated with continued development. The parameter κ1 correlates
with a firm’s stage-specific experience. A negative value of κ1 denotes that a firm’s accrued experience
substantially diminishes development costs.

Table 8: Structural Estimation of Cost Parameters

Stage τ/σ κo/σ κ1/σ

Before Phase I 3.04 (0.39) -0.58 (0.26) -0.13 (0.05)
Before Phase II 1.82 (0.38) -1.83 (0.26) -0.14 (0.07)
Before Phase III 2.87 (0.29) -0.37 (0.18) -0.13 (0.04)
Before FDA Regist. 4.06 (0.87) 1.60 (0.77) -0.03 (0.05)
After launch -2.66 (0.37) -0.32 (0.18)
1/σ = 0.3(0.11)

Note*: At the terminal stage, the drug has already been approved and
launched in the market, thus there is no observation of quit any more. Since
we can only observe two choices, the transaction costs τ and stage-specific
development costs κ0 can not be separately identified. The estimates pre-
sented in the table is the stage-specific cost relative to transaction cost κ0-τ .

The cost parameters are estimated relative to the logarithm of revenue. The current functional form
of the firm’s payoff suggests that transaction costs can be interpreted as an ad valorem tax on the
expected annual return of the patent. If we consider the transaction cost proportional to the revenue
received, and define the firm’s utility as U = (p · (1 − tτ )) with the rate of transaction cost tτ ≤ 0,
then taking the logarithm of both sides gives V s = 1

σ log(U) = 1
σ log(p) + 1

σ log(1 − tτ ). This implies
that the estimated parameter can be represented as τ = 1

σ log(1 − tτ ). Rearranging the equation, we
obtain the rate of transaction cost in terms of the expected revenue: tτ = 1− exp( τ/σ1/σ ).

Given the estimates, transaction costs can be interpreted as the percentage of the expected annual
revenue of the drug across stages, as shown in Table 9. Across all stages, transaction costs are approx-
imately equal to one year’s expected revenue of the drug at that stage. Most of the revenue generated
by a novel drug comes from the period during which it enjoys monopolistic power in the market. The
actual monopoly terms can vary across drugs, influenced by the duration of drug development and
the number of secondary patents associated with them. Based on recent literature, the average actual
monopoly term of a novel NCE drug is about 13.3 years27, implying that the transaction cost of patent
trading is approximately 7.5% of its expected lifetime revenue.

27In Gupta (2022), the average initial monopoly term is 11.1 years, and the potential monopoly term is 17.9 years (if
all secondary IP were fully enforced). The actual effective monopoly life from branded launch to generic entry is 13.3
years
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Table 9: TC as ad valorem tax

Stage tτ as % of annual revenue
Before Phase I 99.99%
Before Phase II 99.76%
Before Phase III 99.99%
Before FDA Regist. 99.99%

Given the estimates, we can calculate the stage-specific probability of taking a particular action aijt
for each drug j:

P (ait = develop) =exp[V dit − κdit]/A

P (ait = trade) =exp[V sit − τst ]/A

P (ait = quit) =exp(0)/A

where

A ≡ exp[V dit − κdit] + exp[V sit − τst ] + exp(0)

Since the paper focuses on comparing the development outcomes of traded and non-traded patents, we
have abstracted from other forms of collaboration, such as licensing or joint ventures. The choice of
“develop” in the model implies development either by the original owner or through licensing or other
collaborations. Therefore, we should be careful about the interpretation. We are comparing the average
effect of developing drugs under different forms—either independently or collaborately—against the
results when patents are traded.

6.2.4 Selection Effect and Causal Effect of Patent Trade

Table 10: Analysis of Selection Effect

Drug’s Success Rate
With Trade (data) No Trade (data) No Trade (model)

42.7% 34.6% 38.4%

Based on the estimates, we can test for the impact of selection effect on the drug’s success. Table
10 shows drug’s success rate without patent trades in the data and under model prediction. In the
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data, we have an empirical success rate of 35.6% (Pr(Success) = Pr(trade) ∗ Pr(success|trade) +

Pr(no trade)∗Pr(success|no trade) = 0.13×0.427+0.97×0.346 ). Without accounting for endogenous
selection, eliminating patent trade is equivalent to setting Pr(trade) = 0, which gives us a success rate
of Pr(success) = 34.6%. This implies a reduction of 1 percentage point in Pr(success). The last
column shows the hypothetical scenario that if we increase the transaction costs such that no trade
happens at any stage. In this counterfactual scenario, I estimate the success rate accounting for the
endogenous selection into trade, resulting in Pr(success) = 38.4%. This difference of 3.8 percentage
points (0.384 − 0.346 = 0.038) in success rate between two scenarios reflects the effect of endogenous
selection into trade. Removing endogenous selection results in a higher Pr(success) for drugs without
patent trade. This result implies a positive selection of patents into trade. When investigating the
average expected value of drugs at their final development stage between traded and non-traded groups,
we observe that patents with higher expected value of the drug are more likely to be traded during the
development stages (before drug approval). While after the development process is completed, this
difference in expected value vanished. Particularly, once the drug has been launched in the market,
firms seem more inclined to retain drugs with higher value.28

Next, I simulate the development path of drugs to identify the causal effect of patent trade while
eliminating selection effects. To achieve this, I hypothesize that all drugs in the sample initially start
at stage t under their original ownership. I then simulate the success rate of these drugs when trade
is either allowed or prohibited at stage t. Table 11 presents the simulated success rates under both
the ’With Trade’ and ’No Trade’ scenarios. By starting all drugs at stage t, we eliminate the selection
into development effect. Additionally, by ensuring the drugs are developed by their original owners,
we avoid any change in ownership before stage t, thereby excluding trade effects from earlier stages.
Consequently, the difference observed in the last column between the two scenarios represents the
average treatment effect of patent trade, conditional on the drug’s ownership at stage t, after selection
bias has been removed. For instance, the direct effect of patent trade prior to FDA Registration
on the drug’s success rate, after removing the selection effect, is 1.6 ppt. This causal effect itself is
relatively small. The pass rate of the drug at each stage is quite low even when developed by the most
sophisticated developers. A 1.6 ppt increase before FDA registration stage implies approximately 8-9
additional drugs passed the approval stage during the sample period

From the analysis presented in the table, we observe that patent trade has positive effect on a drug’s
success even after removing selection effects for most stages, except for Phase II. The largest effect
occurs for trade before FDA registration, followed by a weaker positive effect before Phase I and
III clinical trials. This finding contrasts with the empirical probabilities of discontinuation observed
for drugs within patent trade and without trade groups as shown in Table 3. For instance, the
discontinuation probability for drugs without patent trade is 5.3 ppt higher than that for drugs with
patent trades at the Phase III clinical stage. However, this discrepancy is largely attributable to
selection and trade effects from earlier stages. Once the selection effect is removed, the pure effect of
patent trade before Phase III is only 0.3 ppt.

28A detailed table comparing the values of drugs between the two groups bys stage can be found in the Appendix.
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Table 11: ATE of Patent Trade on Drug’s Success Rate across Stages

Drugs starting since stage t
With Trade No Trade Trade Effect

Stage [1] [2] [1]-[2]
Before Phase I 39.6% 39.4% + 0.2 ppt
Before Phase II 46.6% 47.7% - 1.1 ppt
Before Phase III 51.0% 50.7% + 0.3 ppt
Before FDA Registration 68.6% 67.0% + 1.6 ppt

The results also suggest that patent trading before Phase II clinical trials has a negative effect on the
drug’s success. This finding suggests that a change of ownership at this stage decreases the chance of
success for the drugs. Upon examining the probability of decisions at each stage allowing and shutting
down trade, I found that trades before stage t decrease the probability of quitting at that stage, except
for Phase II. For Phase II clinical trials, the probability of quitting is higher with trade compared to
cases without trade. Detailed P(quit) for causal effect check is in the Appendix.

Several potential alternative explanations exist for the negative effect of patent trade before Phase
II clinical trials. One possible explanation is the efficacy of data and knowledge transfer. At this
stage, the new owner needs to thoroughly understand the previous work done on the drug, including
the rationale behind the drug’s development, any findings from preclinical studies, and the proposed
clinical development plan. Any incompleteness or misrepresentation during the transfer can negatively
impact the new owner’s development decisions. However, there is not yet sufficient evidence proving
that data and knowledge transfer is specifically inefficient before Phase II.

Another alternative explanation is optimal project selection. Specifically, for firms with multiple drug
development projects, the buyer might strategically and optimally compare the projects and only
continue with the most promising ones. Since our model assumes a single drug developer, we do not
take into account the drug pipeline optimization effect. A related alternative explanation is similar to
"killer acquisitions", in which acquirers have a strong incentive to acquire and terminate overlapping
innovation ex ante. Though we do not find systematic evidence of the killer purchase phenomenon by
comparing the discontinuation rate for incumbents and non-incumbents, this killer incentive might be
more evident during this specific early stage as it is not too costly to do so. This finding is consistent
with the literature, suggesting that the effect of acquiring drug projects varies across stages. For
example, Siebert and Z. Tian (2020) also documents the evidence that project transition rate from
Phase I to Phase II clinical trials is lower for merging firms comaring to non-merging firms. They argue
that M&A in the early development phases serves to replenish firms’ drug pipelines, while acquiring
drug development and technology in the late stages of the development process has a stronger effect
on pushing the drug into the market.
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6.2.5 Model Fit

Figure 3 suggests that the estimated model fits the data reasonably well, predicting the conditional
probability of trade and discontinuation across stages. While there is some discrepancy between the
observed data and predicted probabilities, the overall magnitudes and trends across stages provide a
reasonable benchmark for comparing firms’ decisions under different counterfactual scenarios in Section
6.3.

Figure 3: Probability of Choices at Different Stages (model v.s. data)
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6.3 Counterfactual

In this section, counterfactual exercise is to be conducted to see how firms’ drug development outcome
and payoffs change if the exogenous transaction cost in the patent market changes. More specifically,
this exercise explores two hypothetical scenarios: (i) reduce the transaction cost associated with patent
trades, and (ii) improve the searching quality.

6.3.1 Subsidize Patent Transactions

In this part, I will examine the impact of reducing transaction costs τ at various stages on the drug
success rate, considering the firm’s optimal decision probabilities. To do so, I hypothetically reduce
the transaction costs by different levels (50% or fully eliminated) from each stage and compare the
impacts on drug transition rates and the ultimate success rate.

Practically, I solve the model for a new MPE in each counterfactual scenario and use the equilibrium
choice probabilities to run 500 simulations for each drug. Table 12 shows the average success rate of
all drugs under different scenario. On average the model predicts that a drug beginning post-discovery
stage have a 39.6% chance of success, which is close to the empirical success rate of 35.7%.

Reducing transaction costs at specific stages significantly increases the probability of trade for that
stage, however, its impact on the final success rate varies across stages. Comparing the results in
column [2], when transaction costs are fully removed during critical moments – such as before FDA
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registration – we observe significant jumps in success rates to 56.3% , marking a 16.7 ppt improvements.
We also observe a positive effect of patent trade before Phase I and III stage, free of transaction
costs at this stage increases success rate to 40.7%. These stages share similar features that could
explain this significant improvement: the inputs and skills needed for the drug development before
and after are very different. For example, The reason why reducing transaction cost helps for trade
before FDA registration stage is that this stage marks the transition from drug clinical trial tests to
commercialization and manufacturing stages. Companies that are specialized in the drug development
may not be able to efficiently commercialize and manufacture the drug as the infrastructure, expertise
and regulatory compliance are very different. Phase I marks the transition from lab tests to clinical
trials, many original patent owners are small labs and individuals that lack resources for clinical trials.
Facilitating trades before this stage help more drugs enter the trials.

For drugs traded after launch, only the difference between development cost and transaction cost
(κ0 − τ) is identified in the model. For this stage, we cannot estimate the impact of an absolute
change in transaction cost. However, we can estimate the impact of relative change using other stages
as benchmark. For example, suppose τCFlaunch changes such that the percentage change of differences
under the counterfactual and baseline after launch is the same as the percentage change of difference
in Phase I when transaction cost before Phase I reduces by half (τCFPhaseI = 50% τPhaseI) :

κ0launch − τCFlaunch
κ0launch − τlaunch

=
κ0PhaseI − τCFPhaseI
κ0PhaseI − τPhaseI

Row [5] in Table 12 presents the counterfactual using Phase I as a benchmark. Counterfactual results
using other stages as benchmarks show similar results, indicating a positive impact of reducing trans-
action costs after launch on the drug success rate (details in the Appendix). Although firms cannot
quit after launch, reducing transaction costs at this stage still has a positive effect on the drug’s success
rate. This result suggests the forward-looking behavior of firms. By anticipating trade after launch,
which is less costly, firms increase the chance of continuation during the development stages.

Table 12: Probability of Success: Remove TC at Different Stages

CF Scenario P(success)
τ ↓ 50% τ ↓ 100%

[0] Baseline 39.6% 39.6%
[1] Before Phase I 39.9% 40.7%
[2] Before Phase II 39.2% 37.9%
[3] Before Phase III 39.9% 40.7%
[4] Before FDA registration 44.7% 56.3%
[5] After Launch> 40.1% 40.9%
[6] TC (all stage) 56.0% 56.0%

When transaction costs change at stage t, forward-looking firms adjust their decisions not only at
that stage but also at others. Tables 13 and 14 show the probabilities of trade and quitting for all
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stages under different counterfactual scenarios. Lowering transaction costs at stage t affects the trade
probability at that stage but not elsewhere. However, it decreases the quitting probability not only at
stage t (except for Phase II) but also at earlier stages. This dynamic effect suggests that when firms
anticipate lower transaction costs in the future, they may be more likely to continue development at
current stages, as selling the drug at a future stage would be easier and cheaper.

Table 13: Dynamic Effect: P(trade) by Removing TC at Different Stages

P (trade) by stage ( τ↓100%)
CF Scenario Bef Bef Bef Bef Aft

Phase I Phase II Phase III FDA Reg Launch
[1] [2] [3] [4] [5]

[0] Baseline 1.6% 1.6% 2.0% 5.4% 4.3%
[1] Before Phase I 25.0% 1.6% 2.0% 5.5% 4.4%
[2] Before Phase II 1.6% 9.0% 2.0% 5.3% 4.4%
[3] Before Phase III 1.5% 1.6% 26.8% 5.4% 4.3%
[4] Before FDA Reg. 1.6% 1.6% 2.1% 76.7% 4.3%
[5] After Launch 1.6% 1.6% 2.1% 5.7% 27.9%
[6] TC (all stage) 25.0% 8.9% 26.6% 77.2% 28.2%

Table 14: Dynamic Effect: P(quit) by Removing TC at Different Stages

P (quit) by stage ( τ↓100%)
CF Scenario Bef Bef Bef Bef Aft

Phase I Phase II Phase III FDA Reg Launch
[1] [2] [3] [4] [5]

[0] Baseline 16.5% 7.9% 26.4% 31.3% 0.0%
[1] Before Phase I 13.7% 8.0% 26.4% 31.5% 0.0%
[2] Before Phase II 16.1% 12.9% 26.2% 31.2% 0.0%
[3] Before Phase III 16.2% 7.4% 24.5% 31.5% 0.0%
[4] Before FDA Reg. 16.2% 7.4% 20.0% 10.0% 0.0%
[5] After Launch 16.4% 8.0% 26.0% 29.4% 0.0%
[6] TC (all stage) 13.1% 12.0% 19.6% 9.4% 0.0%

While reducing transaction cost for trades before Phase II clinical trials increases patent trades, it has
negative effects on drug’s successful development. This result is consistent with the negative causal
effect we found in the estimation. As the probability of quit is higher with traded patent compared
to nontraded ones at Phase II. There are two possible reasons here. One is that trade at this stage
reallocate the drugs to firms who has better capability at the current stage but not as capable in the
subsequent development stages. With more trades happening before Phase II, it may happen that
these drugs are not able to be further transferred to right hands due to the existence of transaction
cost during the later stages.
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If this assumption holds true, then allowing frictionless patent trade during the subsequent stages
should lead to a decrease in the probability of quitting before Phase II, bringing it closer to the
baseline level and resulting in an overall positive effect on the drug’s success. To test this hypothesis,
I removed transaction costs for patent trade not only before Phase II, but for all stages afterward
(scenario [2] in Table 12). First, the simulation results suggest a drug’s success rate of 53.9%, which
is higher than the baseline success rate of 39.6%. Second, the probability of quitting before Phase II
is 12%, 1 ppt lower than the cases where only transaction costs before Phase II are removed, but still
higher than the baseline probability of 7.9%. This result suggests that the conjecture that firms who
are good at conducting Phase II trials might perform worse in the later stages could only partially
explain the story. Overall, drugs are more likely to enter into Phase II trials if kept under the same
ownership as Phase I.

Table 15: Probability of Quit for Phase II clinical trial

P (quit) by stage ( τ↓100%)
CF Scenario P(success) Bef Bef Bef Bef Aft

τ ↓ 100% Phase I Phase II Phase III FDA reg Launch
[1] [2] [3] [4] [5]

[0] Baseline 39.6% 16.4% 7.9% 26.4% 31.4% 0.0%
[1] Before Phase II 37.8% 15.9% 13.0% 26.3% 31.6% 0.0%
[2] Remove TC since Phase II 53.9% 15.5% 12.0% 19.9% 10.2% 0.0%
[3] Remove TC (all stage) 56.0% 13.1% 12.0% 19.6% 9.4% 0.0%

Pushing this perspective even further, if transaction costs were eliminated across all stages, the likeli-
hood of drug development success increases to 56%. which is 0.3 percentage point lower than targeting
trade before FDA regsitration stage mainly due to the significant negative effect of patent trade before
Phase II clinical trials. Such finding suggests that for the purpose of increasing drug’s success rate, a
uniform patent trade subsidy has positive effect, but might not be very cost effective as the impact of
trade is not constant over stages.

For the cost benefit analysis, I simulated the drug development path in the sample and calculated the
predicted change of annual revenue in the drug market under different scenarios. Moreover, relying on
the number of new molecular entities (NMEs) drugs approved by the U.S. FDA since 1990 to 201529,
I approximate the number of additional new drugs introduced into the market per year under different
scenarios. Table 16 shows the results under different scenarios, with changes in revenue represented
in billion dollars. Fully subsidizing patent trade before FDA registration increases the success rate of
drug development from 39.6% to 56.3% (Table 16). Based on the number of new molecular entities
(NMEs) approved by the FDA per year, this translates to the introduction of an additional 12 new
drugs annually, generating an additional $23.5 billion in annual revenue in the drug market. It’s

29The number of new molecular entities (NMEs) approved by the U.S. Food and Drug Administration (FDA) varies
across years, over the period of 1990 to 2015, the range is between 20 to 45 , with an average of 29.5 new drugs approved
per year.
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worth noting that this figure, calculated using the simulated sample, may vary slightly from a simple
accounting method (multiplying the number of additional drugs by the average drug revenue), as the
drugs affected under different counterfactuals may have different expected values.

In the last column, I compared the average expected annual revenue of the drugs under different
scenarios. The numbers show the difference from the baseline. We can observe that the expected
value of the drugs introduced into the market due to facilitating patent trade is slightly lower than
the original cases, but the difference is less than 1% for most cases except for drugs traded before
FDA registration. The expected revenue of the drugs introduced into the market by subsidizing trade
before FDA registration is, on average, 3.6% lower than the baseline cases. This finding aligns with
the positive selection effect identified in the previous results.

Table 16: Welfare Analysis of Subsidizing Patent Trade

CF Scenario P(success) 4 drugs per year 4 revenue Change of drug value
[0] Baseline 39.6% – – –
[1] Before Phase I 40.7% 0.9 3.5 -0.23%
[2] Before Phase II 37.9% -1.2 -1.2 0.03%
[3] Before Phase III 40.7% 1.0 3.1 -0.72%
[4] Before FDA registration 56.3% 12.4 23.5 -3.60%
[5] After Launch 40.9% 1.0 2.7 -0.72%
[6] All Stages 56.0% 12.2 26.2 -4.20%

These counterfactual experiments suggest that subsidizing patent trade at critical stages can generate
significant positive social gains. The largest effect is observed for trade before FDA registration.
Fully subsidizing patent trade increases the drug’s success rate by 42.2%, generating an additional
$23.5 billion in annual revenue in the pharmaceutical market. Despite transaction costs amounting to
approximately 78% of the annual log(Rev), the potential benefits extend beyond the increase in the
firm’s payoff. We anticipate even greater social welfare effects for at least two reasons. First, firms
maximize their own expected profit when making trade and development decisions, primarily derived
from the drug’s returns during the patent protection period. However, after the drug’s patent expires
and generic alternatives enter the market, consumers could benefit further by getting access to the
drug at even lower prices. Second, successful drug development may have positive spillover effect,
stimulating knowledge sharing and facilitating subsequent drug development processes. Although a
comprehensive analysis of these factors is beyond the scope of this paper, I interpret this result as a
conservative estimate of the welfare benefits that a more efficient patent market could generate.

6.3.2 Patent Exchange

An important hindrance in patent trading is the challenge of searching and matching: sellers often
struggle to identify the ideal buyer to finalize a transaction. Currently, U.S. patent trading operates
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primarily through IP Brokerage firms, online platforms, and Patent Assertion Entities (PAEs). Some
prominent firms even have dedicated in-house IP management teams that engage direct searches and
sales. While the patent market thrives with the presence of varied private entities, these platforms,
though facilitating patent transactions, are not without their own set of issues. Hagiu and Yoffie (2013)
offers an extensive review of the challenges faced by patent marketplaces in the U.S., including those
involving patent brokers, NPEs, and patent aggregators.

Given the unique nature of patent trading—marked by high levels of uncertainty and information
asymmetry—a centralized patent exchange platform could potentially ameliorate search-related fric-
tions and address the illiquidity problems inherent in fragmented markets. For instance, China has
been progressively establishing patent exchanges across various regions since 2006. Introducing these
centralized patent exchanges has notably amplified patent trading activities and fostered specialization
among buyers and sellers based on their comparative advantages, as highlighted by Han, Liu, and X.
Tian (2022). Consequently, predicting a patent trading environment with reduced search frictions and
enhanced matching can provide insights into the potential benefits of establishing a marketplace that
efficiently connects patent buyers and sellers.

To delve into this hypothesis, I undertake a counterfactual analysis that increases the probability
of a seller encountering a potential buyer who places a higher value on the drug. In essence, if
sellers are more likely to engage with buyers who recognize and appreciate the drug’s inherent value,
transactions are poised to become more frequent and straightforward, even if transaction costs remain
unchanged. A heightened transaction rate, coupled with the increased possibility of advancing the
drug to subsequent stages of development, should, in theory, boost the overall success rate. This
counterfactual scenario provides insights into how optimizing matching mechanisms can influence drug
development trajectories.

For this purpose, I consider a counterfactual exercise that increases the the probability of a seller
encountering a potential buyer who places greater value on the drug. When sellers connect with such
buyers, the likelihood of trade becomes stronger, even if transaction costs remain unchanged. As the
transaction rate increases and the drug has a greater likelihood of progressing through the subsequent
stages of development after trade, we anticipate an increase in the overall probability of success. This
counterfactual scenario provides insights into how optimizing matching mechanisms can significantly
influence drug development outcomes.

Table 17 shows the success rate and probability of trade across stages under baseline and when ρ is
increased by 8 units . The success rate is slightly increased to 33.2% which is very negligible. The
result suggests that the difference of drug valuation between the optimal buyer and current buyer
(expected buyer from the distribution) is not large enough to overcome the TC barrier to make the
impossible transaction possible. Another possibility is that in the pharmaceutical industry, the key
friction in the patent market is not about meeting the optimal buyer. The number of players with
patented drugs that passed discovery stage is not that large such that searching or matching barrier
is not as high as we imagined. The key friction occurs during the negotiation after the meeting. Even
the seller meet the optimal buyer, due to the private information of the patent and the uncertainty

38



of the drug, the transaction costs due to the complex valuation and negotiation is inevitable. That’s
why only improving the searching and matching between seller and buyer is not enough.

Table 17: P(success) under different ρ scenario

P (trade) by stage (ρ ↑)
CF Scenario P(success) Bef Bef Bef Bef Aft

Phase I Phase II Phase III FDA Reg. Launch
[1] [2] [3] [4] [5]

Baseline ρ(= 0.75) 39.6% 1.6% 1.6% 2.0% 5.4% 4.3%
Increased ρ(= 8.75) 39.7% 1.6% 1.6% 2.1% 5.3% 4.4%

7 Conclusion

This paper sheds light on the pivotal role of patent trades during the drug development process, empha-
sizing that the timing of such trades critically influences a drug’s success rate. While the advantages
of patent trading, such as optimizing resource allocation and promoting comparative advantage-based
specialization, are well recognized, the precise implications of trade timing have remained limited due
to data constraints. By leveraging a unique dataset and solving a dynamic model capturing both drug
development and patent trading decisions, this study underscores that most patents change hands
before a drug’s full development cycle concludes. Empirical findings suggest that pharmaceutical en-
tities exhibit distinct comparative advantages at varied developmental stages. This, in turn, affects
their investment costs and thus development decisions. Moreover, market frictions are not uniformly
distributed across the development timeline, due to information asymmetry and market liquidity. The
finding suggests that transaction costs peak before New Drug Application with FDA, followed by
Phase I clinical trials. These pivotal phases demand very different areas of expertise, distinct from
prior stages.

Counterfactual analysis demonstrates considerable potential for welfare improvements through increas-
ing patent market efficiency. The findings suggest that patent searching might not be the primary
barrier in this market, and we should instead focus on the transaction costs related to negotiation
and investigation of patented drugs. Moreover, the impact of patent trade on the drug’s success rate
depends on the development stage, indicating that a uniform subsidy towards all transactions might
not be the most effective approach. A cost-effective policy would aim to reduce transaction costs
at stages that most significantly influence drug development outcomes. Remarkably, fully subsidizing
patent trades at the critical friction stages (before FDA registration stage) can enhance a drug’s success
rate by approximately 16.6 percentage, which would translate to the introduction of an additional 12
drugs per year. This observation aligns with established literature, suggesting that a smoother market
fosters patent trades among firms that can optimize their utilization, leading to better innovative re-
sults. While these insights are primarily derived from the pharmaceutical industry, the core economic
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implications examined are applicable across industries where the success of innovation is contingent
upon diverse expertise throughout the product development process, often held by distinct firms.

This paper provides compelling evidence that the timing of patent trades profoundly influences drug
development outcomes. The results indicate that a firm’s decision regarding drug development is
influenced by its specific investment costs at various stages and the prevailing frictions in the patent
market. Enhancing the efficiency of the patent market substantially increases the success rates of new
drugs.

Several interesting questions naturally arise from this paper. First, various methods exist for technology
transfer (i.e. licensing, joint venture), leading to the question of how different collaborative approaches
in drug development might coincide with patent trades, collectively shaping innovation outcomes.
Second, a prevailing debate concerns the trading of patents purely for competitive or preemptive
motives, stifling further development. Though current evidence suggests that the phenomenon of these
so-called "killer purchases" is less prevalent in standalone patent acquisitions than in full company
takeovers, it warrants closer scrutiny, especially when considering policies to subsidize patent trades.
While I am actively working on these issues, a full exploration of these topics and a more comprehensive
welfare analysis is still underway and will be detailed in my future research.
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8 Appendix A:

8.1 Derivation of Nash Bargaining Price

Upon meeting of the potential buyer, the value function of the buyer Vbt is known to the drug owner i.
Let pt be the price of the patent. Denote BS and SS as buyer’s surplus and seller’s surplus respectively.
Assume that transaction cost τ is paid by the seller, then thus the two surplus are defined as

BS = Vbt − pt
SS = pt −max{V dit , V

q
it} − τ

Total surplus can be written as

TS = Vbt −max{V dit , V
q
it} − τ

Suppose ω is the buyer’s bargaining power, seller’s surplus can be re-written as :

SS = (1− ω)(Vbt −max{V dit , V
q
it} − τ)

Thus the price of the patent can be derived as

pt = (1− ω)Vbt + ω · [max{V dit , V
q
it}+ τ ]
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8.2 Additional Empirical Results

8.2.1 Distribution of Patent trade over time

The sample spans from 1980 to 2015, and it displays temporal variation in the number of patent
trades. As illustrated in the Figure 4, there was a marked increase in patent trades post-2000, com-
prising approximately 86% of the sample. Table 18 showcases the distribution of the highest drug
development stages associated with patent trades within each period. Although there may be period-
specific variations in the highest stages achieved, the overall distribution remains relatively stable over
time.

Figure 4: Distribution of Patent Trade over Years

Table 18: Success Rate of Drugs with Patent Trade, by period
Distribution. of Highest Stage

Stages Full Sample 1980-2000 2001-2010 2011-2015

Before Phase I Clinical 22.1% 17.4% 27.5% 20.9%
Before Phase II Clinical 6.1% 8.7% 9.8% 0.0%
Before Phase III Clinical 16.0% 17.4% 7.8% 20.9%
Before Registration 8.4% 4.4% 9.8% 9.3%
Before Launching 4.6% 0.0% 7.8% 4.7%
Launched 42.7% 52.2% 37.3% 44.2%
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8.2.2 RF Evidence of Patent Selection into Trade

Regarding the selection of patent into trade. The model prediction suggests an success rate of 32.3%
, even lower than the empirical success rate of 34.6% for drugs without patent trade.

Table 19 below shows the reduced form regression of success dummy on trade dummy. The first column
shows the basic regression. The probability of reaching launch stage is 8.1 percentage points higher for
drugs with patent trade than for those without trade, holding other factors constant. Column (2) and
(3) added the control #indications (number of indications the drug’s development is involved, more
indications show higher potential of the drug), therapy_prescription rate (the drug prescription rate
of that therapy, which I used to control therapeutic class), and the #indication_launch (number of
indications that reached launch stage). Comparing the parameter associated with trade dummy, after
controlling for observables, the effect becomes even larger and more significant, which is consistent
with the finding from model prediction. So the higher success rate of the drugs with patent trade has
little to do with the selection issue.

Table 19: RF Evidence of patent selection

Dummy_success (1) (2) (3)
Dummy_trade 0.081* 0.091** 0.095**

(0.04) (0.04) (0.04)
#Indications 0.022*** 0.027***

(0.00) (0.00)
therapy_prescription rate 0.78***

(0.09)
#indications (launch)

Constant 0.35*** 0.26*** -0.24***
(0.02) (0.02) (0.06)

N 1005 1005 1004
R2 0.003 0.053 0.125

Standard errors in parentheses * p<0.1, ** p<0.05, *** p<0.01
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8.2.3 Statistic summary

Table 20: Description of Drug Development and Patent Trade Distribution, by Therapy Market
N N_with patent trade

Whole sample 1005 131
By therapeutic market
Gastrointestinal 92 9
Diabetes 24 2
Hematologic 34 3
Cardiovascular 42 7
Hypertension 10 0
Hyperlipidemia 3 0
Dermatological 12 3
Acne 6 0
Genitourinary 57 5
Urological 7 0
Endocrine/Metabolic 27 2
Infection 137 26
Cancer 264 34
Musculoskeletal 11 2
Gout 2 1
Analesics/Anesthetics 32 4
Epilepsy 15 4
Parkinson 11 2
Psycholeptic-related 17 2
Psychoanaleptics 20 1
Other Nervous system drugs 137 18
Respiratory 30 4
Ophthalmic 15 2

8.2.4 Construction of Outside Option, by therapy market

To approximate the treatment rate with prescribed medications for specific conditions, I look at the
frequency of prescribed drug purchases linked to each condition. This approach helps us estimate
the treatment rate within each therapeutic area, offering insight into alternative treatment options.
Nevertheless, the health conditions recorded in the MEPS database do not align perfectly with the
therapeutic markets delineated in our study. To address this discrepancy, I referenced the health
condition events from 1996 within MEPS, aligning them with our defined therapeutic markets through
a manual mapping process. We then estimated the rate of drug use by dividing the total number of
prescriptions by all recorded medical events associated with a particular disease. The outside option
for a certain therapy market is (1−drug prescription rate), that is, the proportion of individuals with
the potential for the disease who did not have a prescription drug purchase. Table 21 presents the
finally estimated rate. The first column lists the therapeutic markets as established in our study, the
second column displays the estimated drug prescription rate.
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Table 21: Drug’s Prescription Rate by Therapy Market

Therapy Market Drug Prescription Rate
Gastrointestinal 0.674

Diabetes 0.827
Hematologic 0.454

Cardiovascular 0.786
Hypertension 0.946
Hyperlipidemia 0.800
Dermatological 0.751

Acne 0.751
Genitourinary 0.763
Urological 0.776

Endocrine/Metabolic 0.837
Infection 0.668
Cancer 0.371

Musculoskeletal 0.585
Gout 0.585

Analesics/Anesthetics 0.781
Epilepsy 0.861
Parkinson 0.81

Psycholeptic-related 0.668
Psychoanaleptics 0.69

Other Nervous system drugs 0.668
Respiratory 0.848
Ophthalmic 0.449
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Table 22: Therapy Classification and Full Sample in Demand Estimation
Therapy Name Freq. Percent Cum.
Gastrointestinal 265 6.18 6.18
Diabetes 117 2.73 8.9
Hematologic 47 1.1 10
Cardiovascular 416 9.7 19.7
Hypertension 170 3.96 23.66
Hyperlipidemia 124 2.89 26.55
Dermatological 450 10.49 37.04
Acne 14 0.33 37.37
Genitourinary 215 5.01 42.38
Urological 65 1.52 43.89
Endocrine/Metabolic 109 2.54 46.43
Infection 440 10.26 56.69
Cancer 85 1.98 58.67
Musculoskeletal 341 7.95 66.62
Gout 24 0.56 67.18
Analesics/Anesthetics 125 2.91 70.09
Epilepsy 201 4.69 74.78
Parkinson 45 1.05 75.83
Psycholeptic-related 221 5.15 80.98
Psychoanaleptics 333 7.76 88.74
Other Nervous system drugs 45 1.05 89.79
Respiratory 256 5.97 95.76
Ophthalmic 182 4.24 100

Total 4,290 100
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8.2.5 Demand Estimation with Therapy Class

Table 23: Demand Estimation of Drugs

N[1]

#phase4_trials 0.001***
log(age) 1.60***
log(age)2 -0.46***
therapy class therapy

A03/Gastrointestinal 0
A10/Diabetes 3.24***
B/Hematologic 2.19***
C/Cardiovascular 2.31***
C07_09/Hypertension 3.63***
C10/Hyperlipidemia 1.03***
D/Dermatological 0.41***
D10/Ance 2.49***
G/Genitourinary 1.21***
G04/Urological 3.11***
H/Endocrine/Metabolic 3.56***
J/Infection 0.063
L/Cancer 0.62***
M/Musculoskeletal 0.57***
M04/Gout 4.34***
N01/Analesics/Anesthetics 2.08***
N03/Epilepsy 1.99***
N04/Parkinson 3.65***
N05/Psycholeptic-related 1.49***
N06/Psychoanaleptics 0.91***
N07/Other Nervous system 3.79***
R/Respiratory 0.82**
S/Ophthalmic 1.44***
Constant -6.43***
Observations 6,701
R-squared 0.22

8.2.6 Comparison of Drug’s Value between Traded and Non-Traded Groups

Table 24 displays the expected value (VT = log(Rev)) of drugs at their final development stage for both
traded and non-traded drugs across different stages. The data suggest that drugs with higher market
values are more likely to be traded during the early stages, specifically before Phase I. Conversely,
starting from Phase II, the trend reverses; drugs that were traded tend to have lightly lower average
expected market values. This comparison focuses on the ex-post market value of the drug.
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Table 24: Mean value of drugs with/without trade
Expected value of the drug

Stages trade no trade

Before Phase I Clinical 18.32 17.77
Before Phase II Clinical 17.62 17.64
Before Phase III Clinical 17.37 17.65
Before Registration 17.56 17.58
Launched 16.95 17.56

8.2.7 Probability of Quit Across Stages: Traded and Non-Traded Drugs

Table 25 compares the probability of quit for drugs in the causal effect counterfactual (discussed
with Table 11). Assuming that all drugs in the sample initially start at stage t under their original
ownership, the table shows the simulated probability of quit at each stage when trade is either allowed
or prohibited at stage t. From the table, we can see that the effect of trade mainly comes from the stage
affected. For Phase I, III clinical trials, and FDA registration, allowing trade decreases the likelihood
of the drug discontinuing development at those specific stages. However, allowing trade before Phase
II clinical trial increases the likelihood of the drug discontinuing development at that stage.

Table 25: Mean value of drugs with/without trade
P (quit )

Stages Phase I Phase II Phase III FDA Registration

Phase I - trade 16.1% 8.5% 26.1% 31.4%
Phase I - no trade 16.6% 8.5% 26.1% 31.3%
Phase II - trade 8.5% 26.1% 31.4%
Phase II - no trade 6.9% 26.2% 31.3%
Phase III - trade 26.1% 31.4%
Phase III - no trade 26.5% 31.3%
FDA Regist - trade 31.4%
FDA Regist - no trade 33.0%

8.2.8 Counterfacutal of Transaction Cost at Last Stage

In the counterfactual analysis, I examine the scenario of reducing transaction costs at the final stage in
such a way that the relative change between development costs and transaction costs κ0launch− τCFlaunch
is proportional to the change in Phase I clinical trial. Table 26 presents the counterfactual results
using other stages as benchmarks. The impacts on the drug’s success rate are similar, with the use of
the FDA registration stage leading to the highest impact.
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κ0launch − τCFlaunch
κ0launch − τlaunch

=
κ0t − τCFt
κ0t − τt

Table 26: Probability of Success: Change of TC at Last Stage

Benchmark Stage P(success)
τ ↓ 50% τ ↓ 100%

[1] Phase I 40.1% 40.9%
[2] Phase II 39.8% 40.1%
[3] Phase III 40.1% 41.0%
[4] FDA Registration 40.9% 44.4%
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9 Appendix B: Data Construction

9.1 Firm Name-Matching Algorithm

In order to create a more precise list of firms and link firms between Cortellis and PRD datasets, a
firm name-matching algorithm is employed to clean the string variables for the assignor and the
assignee of all unnecessary indicators and company type abbreviations. If the cleaned assignor and
assignee strings are equal, they are considered the same firm. The firm name-matching algorithm
follows the methods in Akcigit, Celik, and Greenwood (2016). Details about the algorithm can be
found in their Appendix. The firm name-matching algorithm is run on Cortellis CompanyName and
PRD assignor / assignee, duplicates are dropped and a full list of firms (id) is created using cleaned
names from both datasets. All observations for which assignor and assignee can be uniquely
identified are used in this study. The subsidaries associated with a parent company can also be
identified using Cortellis Company dataset.

9.2 Patent Reassignment Database

For PRD dataset, there is 190,580 transaction records related to the pharma patents that appears in
PDP dataset. But PRD reassignment records include the first time assignment (application), so
181,996 records with “initial owner = assignee” are dropped. Different from Akcigit, Celik, and
Greenwood (2016), internal transfer records are identified and dropped using two criteria: assignee
equal to assignor, AND employer assignment indicator equal to 1.

9.3 Drug-Patent Link

This study specifically targets patents identified by a "US-" prefix, which are traceable within the
USPTO database. These contrast with patents prefixed by "WO-" which are filed through the PCT
application process and managed by WIPO but do not have automatic recognition under U.S. patent
law. To associate patents with drugs, we employ two methods: The first method involves extracting
patent details directly from drug development records. However, this approach has limitations as the
patent documentation is often incomplete, frequently only listing "WO-" prefixed patents.The second
method entails gathering patent data independently and then correlating these patents with the
drugs they are utilized in, thereby linking patent information to drug data. This linkage is facilitated
through drug names. It’s important to acknowledge that a single patent may apply to several drugs.
Therefore, we treat each drug development instance as an individual record to ensure accuracy in our
analysis.
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9.4 Therapy Class Identification

To calculate a drug’s potential earnings, it’s crucial to identify its therapeutic market and
competitors. Approved drugs are linked to an ATC code upon their release, which indicates the
organ or system they target (first digit) and their pharmacological or therapeutic properties (second
digit). In the MEPS survey data post-2002, drugs are additionally assigned a Therapy Class (TC)
code based on MULTUM secondary data. However, drugs that are still in development stages lack an
ATC classification, necessitating alternative methods to forecast their market returns.

The Cortellis database offers detailed information about the therapy areas and indications for each
drug, yet the categorization can sometimes be broad or inconsistent. For instance, a therapy area might
be as generic as "Neurology/Psychiatric," making it challenging to pinpoint a precise therapeutic field.
The indications provided for drugs can range from very specific conditions, like "Stage II melanoma,"
to broader terms, and occasionally multiple indications might overlap, referring to closely related
diseases.

In my approach, I use the established ATC2 codes and the associated therapy areas and indications
of approved drugs as a basis to decide the probable therapy areas for drugs currently in development.
This is constrained by the limited variety of ATC2 codes represented in the approved drugs within
my sample, with only certain codes appearing, and some represented by a sparse number of observa-
tions. Consequently, the therapeutic markets I identify are based on an aggregation of several ATC2
categories. To refine this classification, I integrate the therapeutic class (TC) variable from the MEPS
dataset, which offers an additional layer of therapeutic classification derived from the Multum Lexi-
con database. For instance, in the category of ATC A, which encompasses drugs for the alimentary
tract and metabolism, there exist 16 distinct sub-categories at the ATC2 level. However, only 7 of
these appear within the approved drug sample. These ATC2 categories are further condensed into two
broader therapy markets: one for diabetes and another for gastrointestinal drugs. This grouping is
corroborated by the TC codes from Multum, ensuring a consistent therapeutic market classification.

Certain drugs may be associated with multiple ATC2 codes, as the World Health Organization’s
Guidelines for ATC classification and DDD assignment 2018 suggests that “ATC codes are often
assigned according to the mechanism of action rather than therapy. An ATC group may therefore
include medicines with many different indications, and drugs with similar therapeutic use may be
classified in different groups.” As a result, a single ATC category could encompass medications with
a wide range of indications, and drugs with similar therapeutic applications might be classified under
different ATC groups. Given this, it is possible for a single drug to be linked with various ATC codes,
and similarly, a drug may be applicable for a range of indications, with no systematic correlation
between the two. For instance, a drug listed under J01 - ANTIBACTERIALS FOR SYSTEMIC
USE might also fall under S01 - OPHTHALMOLOGICALS if it is indicated for ocular infections. In
instances where a drug spans across multiple therapeutic categories, my approach is to assign it to a
more general class, such as anti-infectives, to provide a broader, inclusive categorization.
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Following the outlined criteria for data cleaning, every drug currently in development has been allocated
a therapy market according to its specific therapy area and active indications. To verify the precision
of this therapy market allocation, I reviewed the assigned markets of approved drugs that already
possess an ATC2 code. The analysis reveals a high degree of consistency, with 119 out of 133 therapy
classifications aligning with their corresponding ATC2 classifications.

9.5 OrangeBook-NBER NDC Drug Code Link

I initially link patents from Cortellis with those in the Orange Book using their patent numbers. This
method leaves 288 drugs whose patents could not be linked to those listed in the Orange Book. To
address the unmatched launched drugs, I propose two verification methods: First, I extract the drug
names from Cortellis, which typically reflect the active ingredient, and match these to the ingredient
variable in the Orange Book. Subsequently, we can verify the match by comparing it to the trade
names listed in “other drug names” records. A match is confirmed only if both the key ingredients and
trade names align. Second, for those that remain unmatched due to potential typos or discrepancies, a
manual examination is necessary. The aim is to acquire the application numbers of these drugs to align
them with the MEPS-NDC data. For this purpose, I consult the "other drug names" field for trade
names, which are then cross-referenced with the Orange Book, the NDC Directory, and the FDA’s
official database30 to secure the NDA application numbers. In cases where the drug trade name is
uncertain, I check with the Drugs@FDA database of approved drugs31 for further verification.

After matching the drugs listed in the Orange Book to the MEPS-NDC using their NDA application
numbers, I observed that a single NDA number can correspond to multiple NDCs, reflecting various
packaging options for the same drug formulation. To accurately estimate the expected return of a
specific drug, it is essential to consolidate these NDC entries into a single record. For the MEPS
dataset, aggregation should be performed at the application number level, since the ATC and therapy
class typically remain consistent for drugs under the same application number—the variations are
mainly in format or dosage. This aggregation should also consider the labeler name, as multiple
labelers may market the same drug, sometimes under the same application number but with different
market entry timings. If labeler names differ, we should identify if the initial entry belongs to the
brand name owner and, if so, retain only that entry for our analysis.32

After this matching process, we have identified 383 drugs that have reached the market launch phase.
However, only 141 of these have revenue or sales information available in the MEPS dataset. The
discrepancy arises for two main reasons: first, some drugs may have small market sizes and thus are
not captured by survey data; second, the MEPS coverage period is from 1996 to 2022, which means
drugs approved before this period and discontinued early are not recorded. For the drugs missing
from this dataset, I plan to estimate their expected returns using the same methodology applied to
the drugs still in development.

30https://www.accessdata.fda.gov/scripts/cder/daf/
31https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=browseByLetter.page&productLetter=A
32In the cases examined, the initial entry tends to be the brand-name drug, with subsequent entries being generics.
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