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Abstract Empirical Performance

We study probability forecasts in the context of cross-sectional asset pricing with a
large number of firm characteristics. Empirically, we find that a simple probability
forecast model can surprisingly perform as well as a sophisticated probability forecast
model, all of which deliver long-short portfolios whose Sharpe ratios are comparable
to those of the widely used return forecasts. Moreover, we show that combining
probability forecasts with return forecasts yields superior portfolio performance versus
using each type of forecast individually, suggesting that probability forecasts provide
valuable information beyond return forecasts for our understanding of the cross-
section of stock returns.

Why Probability Forecast?

* Focusing on probability unifies both risk and return.
* The probability of outperformance is linked to the Information Ratio (IR).
 Consider probability of a stock outperforming the market. Under normal

assumption: Ry e+1 ~ N(pie, (0f410)%), and RIE ~ N(pe, (a755)?).

* Probability of outperformance can be expressed as:
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» Applying CDF function to IR.
» If probability can be estimated with low error, sorting on probability is
equivalent to sorting on IR.

» Time-varying 0¢41)¢ leads to additional predictability in probability.

 The argument extends to factor models.
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» Probability is an increasing function of IR relative to the factor model.
» The IR can also be mapped to t-stat of a in time-series regression.

Methodology and Data

* Forecasting target: the probability of outperforming a benchmark
Vie = I{Ri¢ > R{™"

e Objective functions:
» Linear probability model: mean-squared error loss:
L(6) = 1/NT 2:?’:1 Z17:1=1(3’i,t+1 —9(zi;0)) 2.
» Logit probability model: cross-entropy loss:

L) = —1/NT 2L 21 (¥ies11089(2i;0) + (1 — yiey1) 10g(1 — g(zi 5 6))).

* Prediction models with different complexity:
» Linear probability models: OLS, PLS
» Logit probability model: Logistic Regression, Neural Networks with 1 to 5 layers.

* Data:
» Monthly stock returns from CRSP; 94 firm-level characteristics from Green, Hand,
and Zhang (2017) and Gu, Kelly, and Xiu (2020).
» Training, validation, and test specifications following Gu et al. (2020)
» Out-of-sample testing from January 1987 to December 2020.
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Figure 1. Cumulative Portfolio Returns Sorted on Probability Forecast

Conditional volatility plays an important role in determining probability.
» Sorting on probability generates portfolios with different volatility.

» We adjust the o of decile portfolios in realtime to have the same o as decile 1:

adj .
T}',t+1 = 7}"t+1 O-l,t/o-j,t for] = 1, cee 10.

Performance of variance adjusted decile portfolio sorted on probability forecasts:

OLS Logit
Prob  Prob  Mean SD SR Prob  Prob  Mean SD SR
Low (L) [ -002 045 o074 501 051 [ 038 039 -060 777  -0.31
2 014 044| 031 548 019 |041  043| o014 773 006
3 020 044 o010 520 007 |043  044| 048 772 021
4 038 044| 034 525 023 |045 045| o062 764 028
5 042 045 053 510 036 |046  046| 079 763 036
6 044  046| o051 515 035 |047  047| 093 771 042
7 047 047 063 504 043 | 048 048] 123 749 057
8 049 048] 073 498 051 |049 048] 146 740 069
9 052 048] 089 487 063 |050 049| 157 736 074
High (H) (058 049 117 48 084 [053 051 2 745 08
H-L — - 043 366 041 — [ 261 610 146
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Prob  Prob  Mean SD SR Prob  Prob  Mean SD SR

Low (L) 0.38 0.39 -0.62 7.78 -0.28 0.37 0.39 -0.64 8.03 -0.27
High (H) 0.53 0.51 1 LA8 08 0.50 0.50 Y £ L0 0 88
H-L - - 2.54 6.44 1.36 - - 2.59 6.74 1.33 )

Table 1. Probability Forecasts Decile Portfolio Performance

Probability vs Expected Return Forecasts

Do probability forecasts contain incremental information relative to expected return
forecasts?
Construct the following portfolios:
» Probability forecast long-short portfolios
» Expected return forecast long-short portfolios from Gu, Kelly, and Xiu (2020).
» Combination of the two portfolios
Probability LS portfolio has low correlation with expected return LS portfolio.
Combining both leads to significant higher SR.

Listen to our paper podcast here!

OLS Logit PLS NN4
Corr 0.25 0.34 0.34 0.33

Panel A: Probability Forecast

SR 0.41 1.46 1.36 133
% 2:15 512 5.60 552
Panel B: Expected Return Forecast (NN4)

SR 1.43 1.43 1.43 1.43
B 4.45 4.45 4.45 4.45
Panel C: 1/N Combination of Probability and Expected Return Forecasts

SR 133 | 176 18741 1.69 |
9 4.36 5.65 5.58 5.13
Panel D: Mean-variance Combination of Probability and Expected Return Forecasts
SR 1.38 | 1.73 1.68 1.65 |
28 4.56 5.37 5.19 5 15

Table 2. Combining Probability Forecasts with Expected Return Forecasts

Which variables matter for probability vs expected return forecasts?
» Shapley value decomposition of the prediction model.

Probability Forecast Expected Return Forecast
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Figure 2. Variable Importance for Probability vs Expected Return Forecasts

* Consistent results if we consider probability of outperforming factor models.

Forecasting and Managing Tail Risks

Consider the probability that the stock will have return smaller than -20% in
the next month.
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Figure 3. Prediction Accuracy and Economic Gains from Tail Risk Forecasts

* The tail risk measure remains significant under a wide array of controls from tail risk
literature.

* Economic gains: decile portfolios with lowest tail risk has MaxDD 33% lower than
market and SR 45% higher than market.

* Probability forecasts offer a valuable alternative to E[R] forecasts.

* Simple prediction model works well for probability forecasts.
 Combining both leads to superior portfolio performance.
* Probability forecasts generate large economic gains for managing tail risk.
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