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0. Summary

e Nonlinear generalized method of moments (GMM)
estimators often encounter computational issues
when the moment conditions are over-identifying
and nonlinear.

e | propose a novel GMM estimator based on
linearized moment conditions approximated
around an underlying exactly-identified (or
over-identified) parameter estimate.

e For any given standard moment condition, I prove
the existence of such an underlying parameter, and
introduce a straightforward algorithm for its
identification. The added dimensions in the
underlying exactly-identified parameter can be
estimated one element at a time, separately.

e This estimator exhibits improved computational
properties while maintaining first-order asymptotic
eficiency.

e The enhancement arises from (i) the
better-behaved curvature of the GMM objective
function (e.g. strict local convexity) for estimating
the underlying parameter, and (ii) the availability
of a closed-form solution for the final estimate.

e The method 1s applied to Ahn, Lee, and
Schumidt’s (2013) panel data model with multiple
time-varying individual effects.

1. Introduction

e Supose a standard moment condition

b [gi (60)] =0
where
{wi}i\;l; 1.1.d data,
g; (B) = g (w;, B); g-dimensional moment function
B, . p-dimensional parameter
g > p; order condition

o (): Is it possible to find g; (v (8)) such that

gi (v (B)) = 9: (B) V5 € Oy
with exactly-identified =, and full rank
E[0g (7,) /0]

e [f 1t is, we can linearly expand the moment function

around
gi (7 (6)) ~ Ui (7) | 5)7/

and, noting that Zfil gi (7) =

min (7 (8) = 9)/ G () W

where Gy (7) = % 5’95_57).

e The same problem 1s solved by the classicle minimum distance
estimator given Gy () WGy (%) (Kim, 2020).

(v (B) =)

e Given the existence of g; (7 (8)), the approach based
on the moment function approximated to a generic
degree (e.g. second-order, third-order) is also
interesting. The linearized one has useful implications
on numerical issues in GMM estimation. Two benefits
are discussed in the following.

2. A Cause of Computational Issues

e We focus on the curvature of the GMM objective
function used in the second step of Hansen's
two-step GMM estimator. (e.g. Ahn, Lee, and
Schmidt, 2013)

o [wo-step GMM

e Stepl: a preliminary estimate 3 1s computed, for example
with the identity weighting matrix.

e Step2: the efficient estimator Bpg minimizes

Qn (5) = gn (8) Wan (B)
Where gN (5) = ]{] - 1gZ (B) and

= (+3°0 6i(B)g(B)) "
e The second order derivative of )y (5)

19 (3QN (5)) e &

— = Gy (B) WGN(B)
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not necessarily pd. =0 if linear or exact-id

N 0gi(f
where Gy (B) = NZZ . %ﬁ’ .

e Benefit 1: the curvature near its optimal point -y

+(1,® gy (8) W) o vee (G ()]
A

would be better-behaved. Also, the optimal value can

be known.

e When the sample moment condition is solvable, we can use
numerical algorithms for solving nonlinear equation systems
(e.g. Broyden-Powell method).

e When 1t 1s not solvable, we would still have
HWV “gn ()

the influence of the second term 1is reduced.

Wl/QgN H by construction of 7y so that

e Benefit 2: A closed form expression for the estimator
of 8 would be available given the v estimate.

5. Methods

e Construction of g (77 (8)) (based on the proof idea)
o Denote v = (¥4, ¥5) where ~y is p-dim and 7, is (¢ — p)-dim.
e First, consider trivial reparametrization: put 8 = ~y; for all
moments.
e Second, we select ¢ — p moments and pick one excess
parameter per moment to define s,

892’(50)} has full rank. WLOG, Stochastic

e We assume F

e
Gaussian Ehmmatlon will find an invertible AO such that
a 1 0 i
E | A, i (8 ) _ &
a6  Otg=p)xp _

where (G 18 an invertible upper triangular matrix. For
simplicity, let’s assume G 1s an identity matrix, I,
e Define A = RAy where R adds the first row of GG7 to all and

each of the lower zero matrix Oy,—p)xp-
e Reparametrize the first element of 5 to be an element in ¥ in
the lower (¢ — p) rows of Ag; (8). Then, the Jacobian with

respect to v will look like

Gy 0
i 0 I<q—p)_

e Bfficient LGMM
o Given g; (v (0)), estimate v by solving

I N (1.
win (Y00 (3 X a0)
® Fach of excess parameters 5 can be separately estimated given 7y,
estimate.

N

e closed form solution for 5.
e LGMM

Bron =[G 071G T| - [PG 07 G = TG0 ()
o LGMM-LITE (with ~ (53)

= [3; the preliminary estimate is taken as 7)
~ ~ . ~ _1 ~ ~ . ~
[kag 1GN,6} G?v,ﬁﬂ 19N(5)

e The resulting estimator maintains the first-order asymptotic

ﬁLGMM—L]TE — 6 o

eficiency. Asymptotic properties of the estimator and related
discussions can be found in the draft.

3. Existence of An Underlying Parameter: Reparametrization

Under standard assumptions, there exists reparametrization such that (a) g; (v(8)) =

g(B) VB € ©5 (b)

Elg(v)] = 0if and only if v = v, and (¢) rank (E|0g (v,) /07']) = p. If reparametrization can depend on the
value of E/[0g; (B,) /0B], it is possible to make E|0g (v,) /07| full rank.

4. Toy Example

For a scalar parameter 3, consider ¢ > 1 moment con-
dition

L [9@1 (5)] =0

B g (8)] = 0

The key idea 18 “reparametrization’

E g ()] =0

E giq (74)] = 0
where

y(B)=18---0]

6. Simulation

e Ahn, Lee, and Schmidt (2013). Two slope parameters.

Draws N | T |Biasl RMSE1 | Bias2 RMSE2 | Failure
2step 11000 1100/101.245 |.554 242 1 .546 59
L-Lite 11000 1100]/10].230 |.538 227 1.530 0
LGMM 1000 1100/10].252 |.512 210 1.566 0

7. Further Questions

e Higher-order approximations’

e Without estimating the Jacobian matrix?

e Email: doosoonet@gmail.com

e The paper and STATA package are available at
http://doosoo.kim
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